1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 初中數(shù)學(xué)建模思想解析

        時(shí)間:2022-12-01 12:40:00 數(shù)學(xué)畢業(yè)論文 我要投稿
        • 相關(guān)推薦

        初中數(shù)學(xué)建模思想解析

          從客觀的角度來(lái)說(shuō),數(shù)學(xué)科目的奇妙之處在于,將實(shí)際問(wèn)題抽象化之后,解題方法就變得更加寬泛,下面是小編搜集整理的一篇探究數(shù)學(xué)建模思想解析的論文范文,歡迎閱讀參考。

        初中數(shù)學(xué)建模思想解析

          【摘要】 數(shù)學(xué)建模是人類(lèi)在探索自然和社會(huì)的運(yùn)作機(jī)理中所運(yùn)用的最有效的方法,也是數(shù)學(xué)應(yīng)用于科學(xué)技術(shù)與社會(huì)的最基本的途徑. 相對(duì)來(lái)說(shuō),在初中數(shù)學(xué)中建模,需要根據(jù)客觀上的學(xué)生需求,結(jié)合教師的實(shí)際教學(xué)水平,實(shí)現(xiàn)一個(gè)有效建模. 本文主要對(duì)初中數(shù)學(xué)建模思想進(jìn)行解析.

          【關(guān)鍵詞】 初中;數(shù)學(xué);建模;思想

          數(shù)學(xué)建模,即建立數(shù)學(xué)模型,是基于建構(gòu)主義理論的一種主動(dòng)學(xué)習(xí)過(guò)程,是對(duì)現(xiàn)象和過(guò)程進(jìn)行合理的抽象和量化,然后應(yīng)用數(shù)學(xué)公式進(jìn)行模擬和驗(yàn)證的一種模式化思維. 初中數(shù)學(xué)建模思想需要從多個(gè)角度出發(fā),例如實(shí)際教學(xué)情況、學(xué)生的學(xué)習(xí)方式和思維方式的發(fā)展、教學(xué)框架的改變等.

          一、對(duì)數(shù)學(xué)建模的認(rèn)識(shí)

          就當(dāng)下的情況來(lái)分析,如果想要應(yīng)用數(shù)學(xué)知識(shí)去更好地解決實(shí)際問(wèn)題,經(jīng)常需要在數(shù)學(xué)理論和實(shí)際問(wèn)題之間構(gòu)建一個(gè)橋梁來(lái)加以溝通,便于把實(shí)際問(wèn)題中的數(shù)學(xué)結(jié)構(gòu)明確表示出來(lái),這個(gè)橋梁就是數(shù)學(xué)模型. 本研究根據(jù)數(shù)學(xué)建模上的要求,通過(guò)以下步驟來(lái)實(shí)現(xiàn)數(shù)學(xué)建模:

          從上圖可以看到,初中數(shù)學(xué)建模,首先需要將現(xiàn)實(shí)問(wèn)題抽象化,一般來(lái)說(shuō),可以通過(guò)函數(shù)或者是方程的形式,建立一個(gè)切合實(shí)際的數(shù)學(xué)模型,通過(guò)這種方式,降低現(xiàn)實(shí)問(wèn)題的解決難度. 其次,必須根據(jù)已經(jīng)建立的數(shù)學(xué)模型,作出合理的數(shù)學(xué)解釋. 比方說(shuō),方程和函數(shù)的解決方法不同,最后得到的結(jié)果也不同. 第三,要對(duì)數(shù)學(xué)結(jié)果進(jìn)行翻譯和檢驗(yàn),觀察數(shù)學(xué)結(jié)果是否符合實(shí)際問(wèn)題的需求. 如果是負(fù)數(shù),即便符合數(shù)學(xué)本身的要求,但是不符合現(xiàn)實(shí)問(wèn)題,此結(jié)果必須舍棄. 第四,將得到的數(shù)學(xué)結(jié)果代入現(xiàn)實(shí)問(wèn)題中進(jìn)行解決,看看是否存在合理的解釋. 整個(gè)過(guò)程在理論上比較復(fù)雜,但在實(shí)際應(yīng)用時(shí),可以在短時(shí)間內(nèi)解決問(wèn)題,甚至改變問(wèn)題的方向,尋找到更好的解決方案.

          二、初中數(shù)學(xué)建模思想解析

          (一)方程(組)模型

          在模型建立當(dāng)中,方程組模型是一個(gè)比較常見(jiàn)的模型.例如:第一季度生產(chǎn)甲、乙兩種機(jī)械設(shè)備,總共生產(chǎn)485臺(tái)設(shè)備,通過(guò)技術(shù)上的改進(jìn),該公司計(jì)劃在第二季度生產(chǎn)兩種機(jī)械設(shè)備558臺(tái). 經(jīng)過(guò)統(tǒng)計(jì),甲種機(jī)械設(shè)備相對(duì)于第一季度,增產(chǎn)了15%;乙種機(jī)械設(shè)備相對(duì)于第一季度,增產(chǎn)22%. 請(qǐng)問(wèn)該公司在第一季度生產(chǎn)甲、乙兩種機(jī)械設(shè)備各多少臺(tái)?這種類(lèi)型題與現(xiàn)實(shí)生活的貼近程度較高,并且與學(xué)生的接觸面很大,在建模過(guò)程中,完全可以根據(jù)學(xué)生的思維和教師的教學(xué)水平進(jìn)行更好的發(fā)揮.

          (二)點(diǎn) 評(píng)

          對(duì)于現(xiàn)實(shí)生活而言,現(xiàn)階段廣泛存在增長(zhǎng)率、打折銷(xiāo)售等問(wèn)題,這些問(wèn)題的相同點(diǎn)在于含有等量關(guān)系,可以通過(guò)構(gòu)建方程組模型來(lái)解決. 初中數(shù)學(xué)的優(yōu)點(diǎn)是,總體上的深度不是很難理解,學(xué)生在學(xué)習(xí)數(shù)學(xué)建模思想時(shí),可以嘗試通過(guò)以下方法來(lái)學(xué)習(xí):首先,將教師講述的案例進(jìn)行轉(zhuǎn)化,上述的機(jī)械生產(chǎn)案例也許不是學(xué)生常見(jiàn)的,學(xué)生可以將“機(jī)械生產(chǎn)”改變?yōu)槠渌臇|西,例如紡織生產(chǎn)、零件生產(chǎn),只要符合主觀上的意愿即可;其次,設(shè)計(jì)出合理的數(shù)學(xué)建模,方程組僅僅是其中的一種,教師不應(yīng)該強(qiáng)求學(xué)生一定要通過(guò)方程組的方式來(lái)進(jìn)行數(shù)學(xué)建模,還可以通過(guò)函數(shù)、不等式組等其他方式來(lái)解決問(wèn)題,幫助學(xué)生的思維更加靈活,為解決問(wèn)題提供一個(gè)更加廣闊的基礎(chǔ);第三,數(shù)學(xué)建模的具體解決過(guò)程,需要通過(guò)詳細(xì)的計(jì)算來(lái)實(shí)現(xiàn),一般情況下會(huì)得到兩種結(jié)果,有時(shí)是一正一負(fù),有時(shí)是兩個(gè)負(fù)數(shù),有時(shí)是兩個(gè)正數(shù). 得到具體的結(jié)果后,要根據(jù)問(wèn)題的實(shí)際情況代入解答,這樣才算是完成了整個(gè)數(shù)學(xué)建模的建立和解答.

          三、其他類(lèi)型的數(shù)學(xué)建模

          從客觀的角度來(lái)說(shuō),數(shù)學(xué)科目的奇妙之處在于,將實(shí)際問(wèn)題抽象化之后,解題方法就變得更加寬泛,除了上述的方程組之外,還可以通過(guò)其他類(lèi)型的數(shù)學(xué)建模來(lái)解決. 例如不等式組. 從教學(xué)經(jīng)驗(yàn)上來(lái)分析,不等式組比較適合在市場(chǎng)經(jīng)營(yíng)、核定價(jià)格、分析盈虧等問(wèn)題的解答中應(yīng)用. 這些問(wèn)題并沒(méi)有一個(gè)特別確切的答案,往往會(huì)根據(jù)實(shí)際發(fā)展情況來(lái)進(jìn)行解答,不等式組可以縮小范圍,將問(wèn)題的答案更加細(xì)致化,避免單純數(shù)值帶來(lái)的問(wèn)題不確切、答案不清晰、解決問(wèn)題不徹底等現(xiàn)象. 還有,函數(shù)模型也是數(shù)學(xué)建模思想的重要組成部分. 初中數(shù)學(xué)的要點(diǎn)在于,掌握各種數(shù)學(xué)知識(shí)的基礎(chǔ)部分,函數(shù)模型符合初中學(xué)生的學(xué)習(xí)心理,可以讓學(xué)生去鉆研和探索. 從理論上來(lái)說(shuō),函數(shù)揭示了現(xiàn)實(shí)世界數(shù)量關(guān)系和運(yùn)動(dòng)、變化規(guī)律,適合解決成本最低、利潤(rùn)最大等問(wèn)題. 函數(shù)在運(yùn)用的過(guò)程中,能夠更加準(zhǔn)確地找到“最高點(diǎn)”和“最低點(diǎn)”,便于問(wèn)題的精確解答,在代入實(shí)際問(wèn)題時(shí),基本上不需要再一次檢驗(yàn),可以直接得出最優(yōu)結(jié)果.

          本文就初中數(shù)學(xué)建模思想進(jìn)行了討論和研究,就當(dāng)下的情況而言,初中數(shù)學(xué)建模的確取得了一定的積極成就,教師的教學(xué)水平和學(xué)生的思維框架都得到了提升. 在今后的相關(guān)教學(xué)工作中,初中數(shù)學(xué)建模思想還需要進(jìn)一步提升. 首先,建模思想要趨向于多元化;其次,建模方式要形成獨(dú)特的方案和思路;第三,初中數(shù)學(xué)建模思想必須具備長(zhǎng)效機(jī)制,不是一次用完就結(jié)束了. 相信在日后的努力當(dāng)中,初中數(shù)學(xué)建模思想可以獲得更大的發(fā)展,并且對(duì)學(xué)生、教師都產(chǎn)生較大的積極意義.

          【參考文獻(xiàn)】

          [1]奚秀琴.建模思想在初中數(shù)學(xué)教學(xué)中的應(yīng)用[J].數(shù)學(xué)學(xué)習(xí)與研究,2010(6).

          [2]翟愛(ài)國(guó).2009年中考應(yīng)用問(wèn)題中的模型構(gòu)建[J].中國(guó)數(shù)學(xué)教育,2010(Z2).

          [3]王允.初中數(shù)學(xué)應(yīng)用題教學(xué)的研究[J].科學(xué)之友,2010(14).

        【初中數(shù)學(xué)建模思想解析】相關(guān)文章:

        數(shù)學(xué)建模論文模板07-22

        數(shù)學(xué)建模論文模板07-22

        數(shù)學(xué)建模A優(yōu)秀論文08-01

        簡(jiǎn)單的數(shù)學(xué)建模小論文09-02

        數(shù)學(xué)建模論文(通用7篇)05-20

        (精)數(shù)學(xué)建模論文模板15篇07-21

        數(shù)學(xué)建模論文模板15篇[通用]07-21

        數(shù)學(xué)建模優(yōu)秀論文(通用10篇)08-02

        數(shù)學(xué)建模教育的作用與開(kāi)展策略(通用6篇)09-07

        數(shù)據(jù)建模論文格式06-29

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>