高中數(shù)學(xué)三角函數(shù)說課稿
作為一名教師,總不可避免地需要編寫說課稿,借助說課稿我們可以快速提升自己的教學(xué)能力。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編精心整理的高中數(shù)學(xué)三角函數(shù)說課稿,歡迎大家分享。
高中數(shù)學(xué)三角函數(shù)說課稿1
一、教學(xué)目標(biāo)
1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號判斷);了解任意角的余切、正割、余割函數(shù)的定義。
2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗三角函數(shù)概念的產(chǎn)生、發(fā)展過程。領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗。
3.培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識論觀點,滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀。
4.培養(yǎng)學(xué)生求真務(wù)實、實事求是的科學(xué)態(tài)度。
二、重點、難點、關(guān)鍵
重點:任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號判斷法。
難點:把三角函數(shù)理解為以實數(shù)為自變量的函數(shù)。
關(guān)鍵:如何想到建立直角坐標(biāo)系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。
三、教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí)而且要自主探索、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點和我自己的教學(xué)風(fēng)格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學(xué)。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)引入、回想再認(rèn)
開門見山,面對全體學(xué)生提問:
在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?
探索任意角的三角函數(shù)(板書課題),請同學(xué)們回想,再明確一下:
(情景1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?
讓學(xué)生回想后再點名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進行修正、強調(diào):
傳統(tǒng)定義:設(shè)在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域。
現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域。
設(shè)計意圖:
函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對三角函數(shù)的學(xué)習(xí)就是一個從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程。教學(xué)經(jīng)驗表明:學(xué)生對函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數(shù)概念進行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識和認(rèn)知準(zhǔn)備。
。ㄇ榫2)我們在初中通過銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個三角函數(shù)。請回想:這三個三角函數(shù)分別是怎樣規(guī)定的?
學(xué)生口述后再投影展示,教師再根據(jù)投影進行強調(diào):
設(shè)計意圖:
學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展)。溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少。
。ǘ┮熹亯|、創(chuàng)設(shè)情景
(情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!
留時間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo)。
能推廣嗎?怎樣推廣?針對剛才的問題點名讓學(xué)生回答。用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會想到(否則教師進行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù)。
設(shè)計意圖:
從學(xué)生現(xiàn)有知識水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng)造"征程。
教師對學(xué)生回答情況進行點評后布置任務(wù)情景:請同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!
師生共做(學(xué)生口述,教師板書圖形和比值):
把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構(gòu)造一個RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r。
根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應(yīng)列出三個倒數(shù)比值:
設(shè)計意圖:
此處做法簡單,思想重要。為了順利實現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形。由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來研究任意角的三角函數(shù)。初中以直角三角形邊角關(guān)系來定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義。這是一個認(rèn)識的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對某些知識進行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴展,從實數(shù)到復(fù)數(shù)的擴展等)。
(情景4)各個比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?
追問:銳角α大小發(fā)生變化時,比值會改變嗎?
先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化。
引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識,
探索發(fā)現(xiàn):
對于銳角α的每一個確定值,六個比值都是
確定的,不會隨P在終邊上的移動而變化。
得出結(jié)論(強調(diào)):當(dāng)α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。
設(shè)計意圖:
初中學(xué)生對函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識演繹到三角函數(shù)知識的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識納入函數(shù)知識結(jié)構(gòu)的關(guān)鍵。這樣做能夠使學(xué)生有效地增強函數(shù)觀念。
(三)分析歸納、自主定義
。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?
水到渠成,師生共同進行探索和推廣:
對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):
終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:
;
。ㄖ赋觯翰划嫵鼋堑姆较,表明角具有任意性)
怎樣刻畫任意角的三角函數(shù)呢?研究它的六個比值:
。ò鍟┰O(shè)α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:
α=kππ/2時,x=0,比值y/x、r/x無意義;
α=kπ時,y=0,比值x/y、r/y無意義。
追問:α大小發(fā)生變化時,比值會改變嗎?
先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉(zhuǎn)即角α變化,六個比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化。
再引導(dǎo)學(xué)生利用相似三角形知識,探索發(fā)現(xiàn):對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。
綜上得到(強調(diào)):當(dāng)角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析)。
因此,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。
根據(jù)歷史上的規(guī)定,對比值進行命名,指出英文記法和讀法,記作(承前作復(fù)合板書):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教師強調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號,是一個整體,相當(dāng)于函數(shù)記號f(x)。其它幾個三角函數(shù)也如此
投影顯示圖六,指導(dǎo)學(xué)生分析其對應(yīng)關(guān)系,進一步體會其函數(shù)內(nèi)涵:
。▓D六)
指導(dǎo)學(xué)生識記六個比值及函數(shù)名稱。
教師指出:正弦、余弦、正切、余切、正割、余割六個函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個函數(shù)的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求)。
引導(dǎo)學(xué)生進一步分析理解:
已知角的集合與實數(shù)集之間可以建立一一對應(yīng)關(guān)系,對于每一個確定的實數(shù),把它看成一個弧度數(shù),就對應(yīng)著唯一的一個角,從而分別對應(yīng)著六個唯一的三角函數(shù)值。因此,(板書)三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來很多方便。
設(shè)計意圖:
把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握。明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備。動畫演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵。引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù)。由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對"三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應(yīng)用加深理解。
。ㄋ模┨剿鞫x域
(情景6)(1)函數(shù)概念的三要素是什么?
函數(shù)三要素:對應(yīng)法則、定義域、值域。
正弦函數(shù)sinα的對應(yīng)法則是什么?
正弦函數(shù)sinα的對應(yīng)法則,實質(zhì)上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應(yīng),即α→y/r=sinα。
。2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請求出六個三角函數(shù)的定義域,填寫下表:
三角函數(shù)
sinα
cosα
tanα
cotα
cscα
secα
定義域
引導(dǎo)學(xué)生自主探索:
如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的'角α的取值范圍。
關(guān)于sinα=y/r、cosα=x/r,對于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實數(shù)集R。
對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}。
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶。
設(shè)計意圖:
定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域。指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進對三角函數(shù)概念的掌握。
(五)符號判斷、形象識記
。ㄇ榫7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看!
引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號決定于x、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識記口訣:
。ㄍ玫谜愄柕秘(fù))
sinα=y/r:上正下負(fù)橫為0cosα=x/r:左負(fù)右正縱為0tanα=y/x:交叉正負(fù)
設(shè)計意圖:
判斷三角函數(shù)值的正負(fù)符號,是本章教材的一項重要的知識、技能要求。要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號,并總結(jié)出形象的識記口訣,這也是理解和記憶的關(guān)鍵。
。┚毩(xí)鞏固、理解記憶
1、自學(xué)例1:已知角α的終邊經(jīng)過點P(2,—3),求α的六個三角函數(shù)值。
要求:讀完題目,思考:計算什么?需要準(zhǔn)備什么?閉目心算,對照解答,模仿書面表達(dá)格式,鞏固定義。
課堂練習(xí):
p19題1:已知角α的終邊經(jīng)過點P(—3,—1),求α的六個三角函數(shù)值。
要求心算,并提問中下學(xué)生檢驗,————————
點評:角α終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個點的坐標(biāo),就可以計算這個角的三角函數(shù)值(或判斷其無意義)。
補充例題:已知角α的終邊經(jīng)過點P(x,—3),cosα=4/5,求α的其它五個三角函數(shù)值。
師生探索:已知y=—3,要求其它五個三角函數(shù)值,須知r=?,x=?。根據(jù)定義得=(方程思想),x>0,解得x=4,從而————————。解答略。
2、自學(xué)例2:求下列各角的六個三角函數(shù)值:(1)0;(2)π/2;(3)3π/2。
提問,據(jù)反饋信息作點評、修正。
師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。
取特殊點能使計算更簡明。課堂練習(xí):p19題2。(改編)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義。
強調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值。
設(shè)計意圖:
及時安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進行適量的變式練習(xí),以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習(xí)活動進行思維訓(xùn)練,把"培養(yǎng)學(xué)生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學(xué)始終。
。ㄆ撸┗仡櫺〗Y(jié)、建構(gòu)網(wǎng)絡(luò)
要求全體學(xué)生根據(jù)教師所提問題進行總結(jié)識記,提問檢查并強調(diào):
1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點與坐標(biāo)原點重合,———,在終邊上任意取定一點P,———)
2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,——————)
3.你如何記憶正弦、余弦、正切函數(shù)值的符號?(根據(jù)定義,想象坐標(biāo)位置,—————)
設(shè)計意圖:
遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時總結(jié)識記主要內(nèi)容是上策。此處以問題形式讓學(xué)生自己歸納識記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時建構(gòu)知識網(wǎng)絡(luò),優(yōu)化知識結(jié)構(gòu),培養(yǎng)認(rèn)知能力。
(八)布置課外作業(yè)
1.書面作業(yè):習(xí)題第3、4、5題。
2.認(rèn)真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對科學(xué)的摯著精神和堅忍不拔的頑強毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況。
教學(xué)設(shè)計說明
一、對本節(jié)教材的理解
三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用。
星星之火,可以燎原。
直角三角形簡單樸素的邊角關(guān)系,以直角坐標(biāo)系為工具進行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個寶貴的源泉,自然地導(dǎo)出三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排。定義直接用于解析幾何(如直線斜率公式、極坐標(biāo)、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識是物理學(xué)、高等數(shù)學(xué)、測量學(xué)、天文學(xué)的重要基礎(chǔ)。
三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點就是定義本身。
二、教學(xué)法加工
數(shù)學(xué)教材通常用抽象概括的形式化的數(shù)學(xué)書面語言闡述其知識和方法,教師只有通過教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀,"將數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語),引導(dǎo)學(xué)生積極主動地進行思考活動,直接參與體驗數(shù)學(xué)知識產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質(zhì),體會其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數(shù)學(xué)知識和方法,有效地發(fā)展智力、培養(yǎng)能力。
在本節(jié)教材中,三角函數(shù)定義是重點,三角函數(shù)線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習(xí)的協(xié)調(diào)匹配,將不按教材順序來進行教學(xué),第一課時安排三角函數(shù)的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習(xí)1、2、3,第二課時安排三角函數(shù)線、p15練習(xí)(突破難點)、誘導(dǎo)公式一及課本例題3、4和其它練習(xí)。本課例屬第一課時。
教學(xué)經(jīng)驗表明,三角函數(shù)定義"簡單易記",學(xué)生很容易輕視它,不少學(xué)生機械記憶、一知半解。本課例堅持"教師主導(dǎo)、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學(xué)方法,在學(xué)生的最近發(fā)展區(qū)圍繞學(xué)生的學(xué)習(xí)目標(biāo)設(shè)計了一系列符合學(xué)生認(rèn)知規(guī)律的程序,通過多媒體輔助教學(xué)動畫演示比值與角之間的依賴關(guān)系,拓展思維活動時空,力求使學(xué)生全員主動參與,積極思考,體會定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識、培養(yǎng)能力。
將六個比值放在一起來研究,同時給出六個三角函數(shù)的定義,能夠增強對比感和整體感,至于大綱對兩組函數(shù)掌握與了解的不同要求,在下一步的教學(xué)中注意區(qū)分就行了。
教學(xué)中關(guān)于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數(shù)關(guān)系;另外可以先研究六個比值與α之間的函數(shù)關(guān)系,然后再對六個比值取名給出記法。后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì)。本課例采用后者組織教學(xué)。
三、教學(xué)過程分析(見穿插在教案中的設(shè)計意圖)。
高中數(shù)學(xué)三角函數(shù)說課稿2
教學(xué)目標(biāo):
一、借助單位圓理解任意角的三角函數(shù)的定義。
二、根據(jù)三角函數(shù)的定義,能夠判斷三角函數(shù)值的符號。
三、通過學(xué)生積極參與知識的"發(fā)現(xiàn)"與"形成"的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。
四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。
教學(xué)重點與難點:
重點:任意角的正弦、余弦、正切的定義;三角函數(shù)值的符號。
難點:任意角的三角函數(shù)概念的建構(gòu)過程。
授課過程:
一、引入
在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。
二、創(chuàng)設(shè)情境
三角函數(shù)是與角有關(guān)的函數(shù),在學(xué)習(xí)任意角概念時,我們知道在直角坐標(biāo)系中研究角,可以給學(xué)習(xí)帶來許多方便,比如我們可以根據(jù)角終邊的位置把它們進行歸類,現(xiàn)在大家考慮:若在直角坐標(biāo)系中來研究銳角,則銳角三角函數(shù)又可怎樣定義呢?
學(xué)生情況估計:學(xué)生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標(biāo)。
問題:
1、銳角三角函數(shù)能否表示成第二種比值方式?
2、點P能否取在終邊上的其它位置?為什么?
3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。
練習(xí):計算的各三角函數(shù)值。
三、任意角的三角函數(shù)的定義
角的概念已經(jīng)推廣道了任意角,那么三角函數(shù)的定義在任意角的范圍里改怎么定義呢?
嘗試:根據(jù)銳角三角函數(shù)的定義,你能嘗試著給出任意角三角函數(shù)的定義嗎?
評價學(xué)生給出的定義。給出任意角三角函數(shù)的定義。
四、解析任意角三角函數(shù)的定義
三角函數(shù)首先是函數(shù)。你能從函數(shù)觀點解析三角函數(shù)嗎?(定義域)
對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。由于角的集合和實數(shù)集之間可以建立一一對應(yīng)的關(guān)系,三角函數(shù)可以看成是自變量為實數(shù)的函數(shù)。
五、三角函數(shù)的應(yīng)用。
1、已知角,求a的三角函數(shù)值。
2、已知角a終邊上的一點P(-3,-4),求各三角函數(shù)值。
以上兩道書上的例題,讓學(xué)生自習(xí)看書,學(xué)生看書的同時,老師提出問題:
1、已知角如何求三角函數(shù)值?
2、利用角a的終邊上任意一點的坐標(biāo)也可以定義三角函數(shù),你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)
3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數(shù)值。
4、探究:三角函數(shù)的值在各象限的符號。
六、小結(jié)及作業(yè)
教案設(shè)計說明:
新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。
首先,角的概念推廣了,那么銳角三角函數(shù)的定義是否也該推廣到任意角的三角函數(shù)的定義呢?通過這個問題,讓學(xué)生體會到新知識的發(fā)生是可能的,自然的。
其次,到底應(yīng)該怎樣去合理定義任意角的三角函數(shù)呢?讓學(xué)生提出自己的想法,同時讓學(xué)生去辨證這個想法是否是科學(xué)的?因為一個概念是嚴(yán)謹(jǐn)?shù),科學(xué)的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數(shù)的定義有所沖突。在這個立-破的過程中,讓學(xué)生去體驗一個新的數(shù)學(xué)概念可能是如何形成,在形成的過程中可以從哪些角度加以科學(xué)的辯思。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。
再次,讓學(xué)生充分體會在任意角三角函數(shù)定義的推廣中,是如何將直角三角形這個"形"的問題,轉(zhuǎn)換到直角坐標(biāo)系下點的坐標(biāo)這個"數(shù)"的過程的。培養(yǎng)數(shù)形結(jié)合的思想。
【高中數(shù)學(xué)三角函數(shù)說課稿】相關(guān)文章:
高中數(shù)學(xué)經(jīng)典說課稿范文06-24
高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14
高中數(shù)學(xué)說課稿10篇06-13
高中數(shù)學(xué)說課稿15篇10-16
高中數(shù)學(xué)說課稿《正弦定理》范文11-29
高中數(shù)學(xué)必修五《正弦定理》說課稿11-12