1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-07-11 20:18:12 高中說課稿 我要投稿

        【推薦】高中數學說課稿四篇

          作為一位杰出的教職工,常常要寫一份優秀的說課稿,說課稿是進行說課準備的文稿,有著至關重要的作用。那么你有了解過說課稿嗎?以下是小編幫大家整理的高中數學說課稿4篇,歡迎閱讀,希望大家能夠喜歡。

        【推薦】高中數學說課稿四篇

        高中數學說課稿 篇1

          一、說設計理念

          《數學課程標準》指出要讓學生感受生活中處處有數學,用數學知識解決生活中的實際問題。

          基于這一理念,我在教學過程中力求聯系學生生活實際和已有的知識經驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數學課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學氛圍,讓學生經歷知識的探究過程,培養學生感受生活中的數學和用數學知識解決生活問題的能力,體驗數學的應用價值。

          二、教材分析:

         。ㄒ唬┙滩牡牡匚缓妥饔

          有關統計圖的認識,小學階段主要認識條形統計圖、折線統計圖和扇形統計圖?紤]到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學內容安排在本單元。本單元是在前面學習了條形統計圖和折線統計圖的特點和作用的基礎上進行教學的。主要通過熟悉的事例使學生體會到扇形統計圖的實用價值。

         。ǘ┙虒W目標

          1、聯系生活情境了解扇形統計圖的特點和作用

          2、能讀懂扇形統計圖,從中獲取有效的信息。

          3、讓學生在觀察、比較、討論和交流中體會扇形統計圖反映的是整體和部分的關系。

         。ㄈ┙虒W重點:

          1、能讀懂扇形統計圖,理解扇形統計圖的特點和作用,并能從中獲取有效信息。

          2、認識折線統計圖,了解折線統計圖的特點。

         。ㄋ模┙虒W難點:

          1、能從扇形統計圖中獲得有用信息,并做出合理推斷。

          2、能根據統計圖和數據進行數據變化趨勢的分析。

          二、學情分析

          本單元的教學是在學生已有統計經驗的基礎上,學習新知的。六年級的學生已經學習了條形統計圖和折線統計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎上,通過新舊知識對比,自然生成新知識點。

          三、設計理念和教法分析

          1、本堂課力爭做到由“關注知識”轉向“關注學生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領導者!睂⒄n堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。

          2、運用探究法。探究學習的內容以問題的形式出現在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構建知識體系。引導學生獲取信息并合作交流。

          四、說學法

          《數學課程標準》指出有效的數學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關注身邊的數學,使學生體會到觀察、概括、想象、遷移等數學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養學生學習的主動性和積極性。

          五、說教學程序

          本課分成創設情境,感知特點——分析數據,理解特征——嘗試制圖,看圖分析——實踐應用,全課總結四環節。

          六、說教學過程

          (一)復習引新

          1、復習舊知

          提問:我們學習過哪些統計方法?其中條形統計圖和折線統計圖各有什么特點?

          2、引入新課

          (二)自主探索,學習新知

          新知識教學分二步教學:第一步整體感知,看懂統計圖,理解特征,這是本節課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯系,放手讓學生獨立思考,互相合作,進一步了解統計圖的特征。

          第二步實踐應用環節。在教學中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯系。根據統計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發現問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數據變化帶來的啟示,并能合理地進行推理與判斷

          三、課堂總結

          四、布置作業。

          五、板書設計:

        高中數學說課稿 篇2

          【一】教學背景分析

          1.教材結構分析

          《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.

          2.學情分析

          圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.

          根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

          3.教學目標

          (1) 知識目標:①掌握圓的標準方程;

         、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

         、劾脠A的標準方程解決簡單的實際問題.

          (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

          ②加深對數形結合思想的理解和加強對待定系數法的運用;

         、墼鰪妼W生用數學的意識.

          (3) 情感目標:①培養學生主動探究知識、合作交流的意識;

         、谠隗w驗數學美的過程中激發學生的學習興趣.

          根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

          4. 教學重點與難點

          (1)重點:圓的標準方程的求法及其應用.

          (2)難點: ①會根據不同的已知條件求圓的標準方程;

         、谶x擇恰當的坐標系解決與圓有關的實際問題.

          為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

          好學教育:

          【二】教法學法分析

          1.教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.

          2.學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程. 下面我就對具體的教學過程和設計加以說明:

          【三】教學過程與設計

          整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

          創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

          反饋訓練 形成方法 小結反思 拓展引申

          下面我從縱橫兩方面敘述我的教學程序與設計意圖.

          首先:縱向敘述教學過程

          (一)創設情境——啟迪思維

          問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

          通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

          通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.

          (二)深入探究——獲得新知

          問題二 1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

          2.如果圓心在,半徑為時又如何呢?

          好學教育:

          這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.

          得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.

          (三)應用舉例——鞏固提高

          I.直接應用 內化新知

          問題三 1.寫出下列各圓的標準方程:

          (1)圓心在原點,半徑為3;

          (2)經過點,圓心在點.

          2.寫出圓的圓心坐標和半徑.

          我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.

          II.靈活應用 提升能力

          問題四 1.求以點為圓心,并且和直線相切的圓的方程.

          2.求過點,圓心在直線上且與軸相切的圓的方程.

          3.已知圓的方程為,求過圓上一點的切線方程.

          你能歸納出具有一般性的結論嗎?

          已知圓的方程是,經過圓上一點的切線的方程是什么?

          我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.

          III.實際應用 回歸自然

          問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

          好學教育:

          我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.

          (四)反饋訓練——形成方法

          問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.

          2.求圓過點的切線方程.

          3.求圓過點的切線方程.

          接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.

          (五)小結反思——拓展引申

          1.課堂小結

          把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

          圓心在原點時,半徑為r 的圓的標準方程為:.

         、谝阎獔A的方程是,經過圓上一點的切線的方程是:.

          2.分層作業

          (A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.

          3.激發新疑

          問題七 1.把圓的標準方程展開后是什么形式?

          2.方程表示什么圖形?

          在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.

          以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計

          (一)突出重點 抓住關鍵 突破難點

          好學教育:

          求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.

          第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.

          (二)學生主體 教師主導 探究主線

          本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.

          (三)培養思維 提升能力 激勵創新

          為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.

          以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.

        高中數學說課稿 篇3

          各位老師你們好!今天我要為大家講的課題是

          首先,我對本節教材進行一些分析:

          一、教材分析(說教材):

          1. 教材所處的地位和作用:

          本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。

          2. 教育教學目標:

          根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

         。1)知識目標: (2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。

          3. 重點,難點以及確定依據:

          本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點

          重點: 通過 突出重點

          難點: 通過 突破難點

          關鍵:

          下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:

          二、教學策略(說教法)

          1. 教學手段:

          如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟澱n的特點: 應著重采用 的教學方法。

          2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。

          3. 學情分析:(說學法)

          我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的.人”,因而在教學中要特別重視學法的指導。

         。1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學

          生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散

         。2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

          (3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力

          最后我來具體談談這一堂課的教學過程:

          4. 教學程序及設想:

         。1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

         。2)由實例得出本課新的知識點

         。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。

         。4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

         。5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。

         。6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。

         。7)板書

          (8)布置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

          教學程序:

          課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分

        高中數學說課稿 篇4

          一.說教材

          1.1 教材結構與內容簡析

          本節課為《江蘇省中等職業學校試用教材數學(第二冊)》5.6函數圖象的定位作圖法的第一課時,主要內容為基本函數 與一般函數 間的圖象平移變換規律。

          函數圖象的平移,既是前階段函數性質及具體函數研究的延續和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內容還蘊涵著重要的數學思想方法,如化歸思想、映射與對應思想、換元方法等。

          1.2 教學目標

          1.2.1知識目標

         、、給定平移前后函數解析式,能熟練敘述相應的平移變換,正確掌握平移方向與 、 符號的關系。

         、、能較熟練地化簡較復雜的函數解析式,找出對應的基本函數模型(如一次函數,反比例函數、指數函數等)。

         、恰⒊醪綄W會應用平移變換規律研究較復雜的函數的具體性質(如值域、單調性等)。

          1.2.2能力目標

         、、在數學實驗平臺上,能自主探究,改變相應參數和函數解析式,觀察相應圖象變化,經歷命題探索發現的過程,提高觀察、歸納、概括能力。

         、、結合學習中發現的問題,學會借助于數學軟件等工具研究、探索和解決問題,學會數學

          地解決問題。

         、、滲透數學思想與方法(如化歸、映射的思想,換元的方法)的學習,發展學生的非邏輯思維能力(合情推理、直覺等)。

          1.2.3情感目標

          培養學生積極參與、合作交流的主體意識,在知識的探索和發現的過程中,使學生感受數學學習的意義,改善學生的數學學習信念(態度、興趣等)。

          1.3 教材重點和難點處理思路

          重點:函數圖象的平移變換規律及應用

          難點:經歷數學實驗方法探索平移對函數解析式的影響及如何利用平移變換規律化簡函數解析式、研究復雜函數

          教材在這段內容的處理上,注重直觀性背景,注重學生豐富感性知識的獲得,淡化形式化的邏輯推導和形式化的結果即平移公式。實際教學中,我們發現如果學生不經受足夠的親身體驗而簡單的記住結論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯系,并且移軸與移圖象之間也容易搞混,說明這段內容不能采取簡單的“告訴”方式,須讓學生自主發現命題、發現規律,讓他們“知其然,更要知其所以然。”

          為了突出重點、突破難點,在教學中采取了以下策略:

         、、從學生已有知識出發,精心設計一些適合學生學力的數學實驗平臺,分層次逐步引導學生觀察圖象的平移方向與函數解析式中 、 符號的關系,抽象、歸納出平移變換規律。 ⑵、創設情境,引發學生認知沖突,激發學生求知欲,能借助于數學軟件多角度積極探求錯誤原因,使學生認識到形如 的函數須提取 前的系數化為 的形式,從而真正認識解析式形式化的特點。

         、恰祵W實驗采取小組合作研究共同完成簡單實驗報告的形式,通過學生的自主探究、合作交流,從而實現對平移變換規律知識的建構。

          二.說教法

          針對職高一年級學生的認知特點和心理特征,在遵循啟發式教學原則的基礎上,本節課我主要采取以實驗發現法為主,以討論法、練習法為輔的教學方法,引導學生通過實驗手段,從直觀、想象到發現、猜想,親歷數學知識建構過程,體驗數學發現的喜悅。

          本節課的設計一方面重視學生數學學習過程是活動的過程,因此不是按照已形式化了的現成的數學規則去操作數學,而是采取數學實驗的方式,使學生有機會經受足夠的親身體驗,親歷知識的自主建構過程;使學生學會從具體情境中提取適當的概念,從觀察到的實例中進行概括,進行合理的數學猜想與數學驗證,并作更高層次的數學概括與抽象;從而學會數學地思考。

          另一方面,注重創設機會使學生有機會看到數學的全貌,體會數學的全過程。整堂課的設計圍繞研究較復雜函數的性質展開,以問題“函數 的性質如何”為主線,既讓學生清楚研究函數圖象平移的必要性,明確學習目標,又讓學生初步學會如何應用規律解決問題,體會知識的價值,增強求知欲。

          總之,本節課采用數學實驗發現教學,學生采取小組合作的形式自主探究;利用實物投影進行集體交流,及時反饋相關信息。

          三.說學法

          “學之道在于悟,教之道在于度。”學生是學習的主體,教師在教學過程中須將學習的主動權交給學生。

          美國某大學有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領會了;讓我做過的,我就理解了。”通過學生的自主實驗,在探索新知的經歷和獲得新知的體驗的基礎之上,真正正確掌握平移方向。

          教師的“教”不僅要讓學生“學會知識”,更主要的是要讓學生“會學知識”。正如荷蘭數學教育家弗賴登塔爾所指出,“數學知識既不是教出來的,也不是學出來的,而是研究出來的!北竟澱n的教學中創設利于學生發現數學的實驗情境,讓學生自主地“做數學”,將傳統意義下的“學習”數學改變為“研究”數學。從而,使傳授知識與培養能力融為一體,在轉變學習方式的同時學會數學地思考。

          四.說程序

          4.1創設情境,引入課題

          在簡要回顧前面研究的具體函數(指數函數、冪函數、三角函數等)性質后,提出問題“如何研究 的性質?”

          引導學生討論后,總結出兩種思路,即:思路1、通過描點法作出函數的圖象,借助于圖象研究相關性質;思路2、將 的性質問題化歸為 的問題,借助于基本函數 的性質解決新問題。

          從而自然地引出課題,關鍵是找出 與 的關系,尤其是圖象間的聯系。更一般地,就是基本函數 與 間的聯系。

          4.2數學實驗,自主探索

          這一環節主要分兩階段。

          1、嘗試初探

          引例、函數 與 圖象間的關系

          這一階段主要由教師講解,學生觀察發現,意在突出兩函數圖象形狀相同、位置不同,后者可以由前者平移得到。

          講解時,利用幾何畫板的度量功能,給出兩個對應點的坐標,易于學生發現點的坐標關系,并給出相應的輔助線,一方面便于學生發現規律,另一方面也是為后面定位作圖法的學習作好鋪墊。

          2、實驗發現

          本階段由學生以小組合作探索的形式完成,通過填寫實驗報告的形式完成探索規律的任務。 實驗1、試改變實驗平臺1中的參數 、 ,觀察由 的圖象到 的變換現象,依照給出的樣例填寫下表,并總結其中的平移變換規律。

          函數 解析式平移變換規律12向左平移2個單位,向上平移1個單位 實驗結論

        【【推薦】高中數學說課稿四篇】相關文章:

        【推薦】高中數學說課稿4篇07-02

        高中數學經典說課稿范文06-24

        高中數學說課稿(15篇)11-03

        高中數學說課稿15篇10-16

        高中數學經典優秀說課稿模板07-14

        高中數學說課稿10篇06-13

        高中數學說課稿三篇06-09

        高中數學《什么是概率》說課稿范文01-27

        高中數學說課稿《正弦定理》范文01-23

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>