1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數(shù)學(xué)說課稿

        時間:2021-07-02 12:21:57 高中說課稿 我要投稿

        【推薦】高中數(shù)學(xué)說課稿4篇

          作為一位不辭辛勞的人民教師,時常會需要準(zhǔn)備好說課稿,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。我們應(yīng)該怎么寫說課稿呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿4篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

        【推薦】高中數(shù)學(xué)說課稿4篇

        高中數(shù)學(xué)說課稿 篇1

          【一】教學(xué)背景分析

          1。教材結(jié)構(gòu)分析

          《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。

          2。學(xué)情分析

          圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng)。

          根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

          3。教學(xué)目標(biāo)

         。1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

          ②會由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

          ③利用圓的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題。

          (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

         、诩由顚(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運(yùn)用;

         、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識。

         。3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

         、谠隗w驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

          根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

          4。 教學(xué)重點(diǎn)與難點(diǎn)

         。1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

         。2)難點(diǎn): ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

          ②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。

          為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

          好學(xué)教育:

          【二】教法學(xué)法分析

          1。教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。

          2。學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨(dú)立的條件才可以確定一個圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。 下面我就對具體的教學(xué)過程和設(shè)計(jì)加以說明:

          【三】教學(xué)過程與設(shè)計(jì)

          整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

          創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

          反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

          下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

          首先:縱向敘述教學(xué)過程

         。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維

          問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?

          通過對這個實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

          通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)。

         。ǘ┥钊胩骄俊@得新知

          問題二 1。根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

          2。如果圓心在,半徑為時又如何呢?

          好學(xué)教育:

          這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

          得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)。

          (三)應(yīng)用舉例——鞏固提高

          I。直接應(yīng)用 內(nèi)化新知

          問題三 1。寫出下列各圓的標(biāo)準(zhǔn)方程:

         。1)圓心在原點(diǎn),半徑為3;

          (2)經(jīng)過點(diǎn),圓心在點(diǎn)。

          2。寫出圓的圓心坐標(biāo)和半徑。

          我設(shè)計(jì)了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

          II。靈活應(yīng)用 提升能力

          問題四 1。求以點(diǎn)為圓心,并且和直線相切的圓的方程。

          2。求過點(diǎn),圓心在直線上且與軸相切的圓的方程。

          3。已知圓的方程為,求過圓上一點(diǎn)的切線方程。

          你能歸納出具有一般性的結(jié)論嗎?

          已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?

          我設(shè)計(jì)了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨(dú)立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。

          III。實(shí)際應(yīng)用 回歸自然

          問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

          好學(xué)教育:

          我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。

         。ㄋ模┓答佊(xùn)練——形成方法

          問題六 1。求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

          2。求圓過點(diǎn)的切線方程。

          3。求圓過點(diǎn)的切線方程。

          接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計(jì)對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

         。ㄎ澹┬〗Y(jié)反思——拓展引申

          1。課堂小結(jié)

          把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

          圓心在原點(diǎn)時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:。

         、谝阎獔A的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:。

          2。分層作業(yè)

          (A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程。

          3。激發(fā)新疑

          問題七 1。把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

          2。方程表示什么圖形?

          在本課的結(jié)尾設(shè)計(jì)這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

          以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì): 橫向闡述教學(xué)設(shè)計(jì)

         。ㄒ唬┩怀鲋攸c(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

          好學(xué)教育:

          求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時突破了難點(diǎn)。

          第二個教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計(jì),使學(xué)生在解決問題的同時,形成了方法,難點(diǎn)自然突破。

         。ǘ⿲W(xué)生主體 教師主導(dǎo) 探究主線

          本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

         。ㄈ┡囵B(yǎng)思維 提升能力 激勵創(chuàng)新

          為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

          以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

        高中數(shù)學(xué)說課稿 篇2

          說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。

          下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評價設(shè)計(jì)六個方面對本節(jié)課的思考進(jìn)行說明。

          一、 背景分析

          1、學(xué)習(xí)任務(wù)分析

          平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時,其中第一課時主要研究數(shù)量積的概念,第二課時主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時。

          本節(jié)課的主要學(xué)習(xí)任務(wù)是通過物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會類比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時也因?yàn)樵谶@個概念中,既有長度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。

          2、學(xué)生情況分析

          學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識,并且初步體會了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實(shí)數(shù)運(yùn)算類比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數(shù)量積概念的理解,一方面,相對于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個有形有數(shù)的向量經(jīng)過數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會造成學(xué)生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。

          二、 教學(xué)目標(biāo)設(shè)計(jì)

          《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》 對本節(jié)課的要求有以下三條:

          (1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。

          (2)體會平面向量的數(shù)量積與向量投影的關(guān)系。

          (3)能用運(yùn)數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。

          從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類比的基礎(chǔ)上,通過主動探究來發(fā)現(xiàn),因而對培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

          綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:

          1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;

          2、體會平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,

          并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;

          3、體會類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。

          三、課堂結(jié)構(gòu)設(shè)計(jì)

          本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):

          即先從數(shù)學(xué)和物理兩個角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過課堂小結(jié)提高學(xué)生認(rèn)識,形成知識體系。

          四、 教學(xué)媒體設(shè)計(jì)

          和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn):

          1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來節(jié)約課時,增加課堂容量。

          2、設(shè)計(jì)科學(xué)合理的板書(見下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。

          平面向量數(shù)量積的物理背景及其含義

          一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高

          1、 概念: 例1:

          2、 概念強(qiáng)調(diào) (1)記法 例2:

          (2)“規(guī)定” 三、數(shù)量積的運(yùn)算律 例3:

          3、幾何意義:

          4、物理意義:

          五、 教學(xué)過程設(shè)計(jì)

          課標(biāo)指出:數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個活動:

          活動一:創(chuàng)設(shè)問題情景,激發(fā)學(xué)習(xí)興趣

          正如教材主編寄語所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)量積這一重要概念,和向量的線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點(diǎn),我設(shè)計(jì)以下幾個問題:

          問題1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?

          問題2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的?

          期望學(xué)生回答:物理模型→概念→性質(zhì)→運(yùn)算律→應(yīng)用

          問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

          (1)力F所做的功W= 。

          (2)請同學(xué)們分析這個公式的特點(diǎn):

          W(功)是 量,

          F(力)是 量,

          S(位移)是 量,

          α是 。

          問題1的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。

          問題2的設(shè)計(jì)意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動指明方向。

          問題3的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時,也為抽象數(shù)量積的概念做好鋪墊。

          活動二:探究數(shù)量積的概念

          1、概念的抽象

          在分析“功”的計(jì)算公式的基礎(chǔ)上提出問題4

          問題4:你能用文字語言來表述功的計(jì)算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?

          學(xué)生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。

          2、概念的明晰

          已知兩個非零向量

          與

          ,它們的夾角為

          ,我們把數(shù)量 ︱

          ︱·︱

          ︱cos

          叫做

          與

          的數(shù)量積(或內(nèi)積),記作:

          ·

          ,即:

          ·

          = ︱

          ︱·︱

          ︱cos

          在強(qiáng)調(diào)記法和“規(guī)定”后 ,為了讓學(xué)生進(jìn)一步認(rèn)識這一概念,提出問題5

          問題5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:

          角

          的范圍0°≤

          <90°

          =90°0°<

          ≤180°

          ·

          的符號

          通過此環(huán)節(jié)不僅使學(xué)生認(rèn)識到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。

          3、探究數(shù)量積的幾何意義

          這個問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問題5。

          如圖,我們把│

          │cos

          (│

          │cos

          )叫做向量

          在

          方向上(

          在

          方向上)的投影,記做:OB1=│

          │cos

          問題6:數(shù)量積的幾何意義是什么?

          這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識數(shù)量積的`概念,從中體會數(shù)量積與向量投影的關(guān)系,同時也更符合知識的連貫性,而且也節(jié)約了課時。

          4、研究數(shù)量積的物理意義

          數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計(jì)以下問題 一方面使學(xué)生嘗試計(jì)算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時也為數(shù)量積的性質(zhì)埋下伏筆。

          問題7:

          (1) 請同學(xué)們用一句話來概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。

          (2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運(yùn)動:

         、、在水平面上位移為10米;

          ②、豎直下降10米;

         、、豎直向上提升10米;

         、堋⒀貎A角為30度的斜面向上運(yùn)動10米;

          分別求重力做的功。

          活動三:探究數(shù)量積的運(yùn)算性質(zhì)

          1、性質(zhì)的發(fā)現(xiàn)

          教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動,在完成上述練習(xí)后,我不失時機(jī)地提出問題8:

          (1)將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?

          (2)比較︱

          ·

          ︱與︱

          ︱×︱

          ︱的大小,你有什么結(jié)論?

          在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動。

          2、明晰數(shù)量積的性質(zhì)

          3、性質(zhì)的證明

          這樣設(shè)計(jì)體現(xiàn)了教師只是教學(xué)活動的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗(yàn)到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動的熱情,不僅使學(xué)生獲得了知識,更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。

          活動四:探究數(shù)量積的運(yùn)算律

          1、運(yùn)算律的發(fā)現(xiàn)

          關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9

          問題9:我們學(xué)過了實(shí)數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對向量是否也適用?

          通過此問題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運(yùn)算律。

          學(xué)生可能會提出以下猜測: ①

          ·

          =

          ·

         、(

          ·

          )

          =

          (

          ·

          ) ③(

          +

          )·

          =

          ·

          +

          ·

          猜測①的正確性是顯而易見的。

          關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問題:

          猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?

          學(xué)生通過討論不難發(fā)現(xiàn),猜測②是不正確的。

          這時教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律:

          2、明晰數(shù)量積的運(yùn)算律

          3、證明運(yùn)算律

          學(xué)生獨(dú)立證明運(yùn)算律(2)

          我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時,學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問題:

          當(dāng)λ<0時,向量

          與λ

          ,

          與λ

          的方向 的關(guān)系如何?此時,向量λ

          與

          及

          與λ

          的夾角與向量

          與

          的夾角相等嗎?

          師生共同證明運(yùn)算律(3)

          運(yùn)算律(3)的證明對學(xué)生來說是比較困難的,為了節(jié)約課時,這個證明由師生共同完成,我想這也是教材的本意。

          在這個環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時也增強(qiáng)了學(xué)生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起。

          活動五:應(yīng)用與提高

          例1、(師生共同完成)已知︱

          ︱=6,︱

          ︱=4,

          與

          的夾角為60°,求

          (

          +2

          )·(

          -3

          ),并思考此運(yùn)算過程類似于哪種運(yùn)算?

          例2、(學(xué)生獨(dú)立完成)對任意向量

          ,b是否有以下結(jié)論:

          (1)(

          +

          )2=

          2+2

          ·

          +

          2

          (2)(

          +

          )·(

          -

          )=

          2—

          2

          例3、(師生共同完成)已知︱

          ︱=3,︱

          ︱=4, 且

          與

          不共線,k為何值時,向量

          +k

          與

          -k

          互相垂直?并思考:通過本題你有什么收獲?

          本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時,我重點(diǎn)從對運(yùn)算原理的分析和運(yùn)算過程的規(guī)范書寫兩個方面加強(qiáng)示范。完成計(jì)算后,進(jìn)一步提出問題:此運(yùn)算過程類似于哪種運(yùn)算?目的是想讓學(xué)生在類比多項(xiàng)式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個公式,再由學(xué)生獨(dú)立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過類比這一思維模式達(dá)到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時,教給學(xué)生如何利用數(shù)量積來判斷兩個向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時重點(diǎn)給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。

          為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運(yùn)算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問題,再安排如下練習(xí):

          1、 下列兩個命題正確嗎?為什么?

          ①、若

          ≠0,則對任一非零向量

          ,有

          ·

          ≠0.

         、、若

          ≠0,

          ·

          =

          ·

          ,則

          =

          .

          2、已知△ABC中,

          =

          ,

          =

          ,當(dāng)

          ·

          <0或

          ·

          =0時,試判斷△ABC的形狀。

          安排練習(xí)1的主要目的是,使學(xué)生在與實(shí)數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識數(shù)量積這一重要運(yùn)算,

          通過練習(xí)2使學(xué)生學(xué)會用數(shù)量積表示兩個向量的夾角,進(jìn)一步感受數(shù)量積的應(yīng)用價值。

          活動六:小結(jié)提升與作業(yè)布置

          1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?

          2、平面向量數(shù)量積的兩個基本應(yīng)用是什么?

          3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運(yùn)算律的探究過程中,滲透了哪些數(shù)學(xué)思想?

          4、類比向量的線性運(yùn)算,我們還應(yīng)該怎樣研究數(shù)量積?

          通過上述問題,使學(xué)生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認(rèn)識,同時也為下

          一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。

          布置作業(yè):

          1、課本P121習(xí)題2.4A組1、2、3。

          2、拓展與提高:

          已知

          與

          都是非零向量,且

          +3

          與7

          -5

          垂直,

          -4

          與 7

          -2

          垂直求

          與

          的夾角。

          在這個環(huán)節(jié)中,我首先考慮檢測全體學(xué)生是否都達(dá)到了“課標(biāo)”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學(xué)有余力的同學(xué)選做。

          六、教學(xué)評價設(shè)計(jì)

          評價方式的轉(zhuǎn)變是新課程改革的一大亮點(diǎn),課標(biāo)指出:相對于結(jié)果,過程更能反映每個學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評價既要重視結(jié)果,也要重視過程。結(jié)合“課標(biāo)”對數(shù)學(xué)學(xué)習(xí)的評價建議,對本節(jié)課的教學(xué)我主要通過以下幾種方式進(jìn)行:

          1、 通過與學(xué)生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵的基礎(chǔ)上,糾正偏差,并對其進(jìn)行定

          性的評價。

          2、在學(xué)生討論、交流、協(xié)作時,教師通過觀察,就個別或整體參與活動的態(tài)度和表現(xiàn)做出評價,以此來調(diào)動學(xué)生參與活動的積極性。

          3、 通過練習(xí)來檢驗(yàn)學(xué)生學(xué)習(xí)的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。

          4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價,以便查漏補(bǔ)缺。

        高中數(shù)學(xué)說課稿 篇3

          一、教材地位與作用

          本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理的知識非常重要。

          二、學(xué)情分析

          作為高一學(xué)生,同學(xué)們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學(xué)生們在解決任意三角形的邊與角問題,就比較困難。

          教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

          根據(jù)我的教學(xué)內(nèi)容與學(xué)情分析以及教學(xué)重難點(diǎn),我制定了如下幾點(diǎn)教學(xué)目標(biāo)

          教學(xué)目標(biāo)分析:

          知識目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

          能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論。

          情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實(shí)際應(yīng)用價值。

          三、教法學(xué)法分析

          教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

          學(xué)法:指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,動手嘗試相結(jié)合,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,鍥而不舍的求學(xué)精神。

          四、教學(xué)過程

          (一)創(chuàng)設(shè)情境,布疑激趣

          “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實(shí)際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

          (二)探尋特例,提出猜想

          1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

          2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

          3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

          在三角形中,角與所對的邊滿足關(guān)系

          這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

          (三)邏輯推理,證明猜想

          1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明。

          (四)歸納總結(jié),簡單應(yīng)用

          1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

          2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

          3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識后用于實(shí)際的價值觀。

          (五)講解例題,鞏固定理

          1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

          例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

          例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

          (六)課堂練習(xí),提高鞏固

          1.在△ABC中,已知下列條件,解三角形。

          (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

          2.在△ABC中,已知下列條件,解三角形。

          (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

          學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

          (七)小結(jié)反思,提高認(rèn)識

          通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

          1.用向量證明了正弦定

          理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          2.它表述了三角形的邊與對角的正弦值的關(guān)系。

          3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

          (從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

          (八)任務(wù)后延,自主探究

          如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

        高中數(shù)學(xué)說課稿 篇4

          一、說設(shè)計(jì)理念

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實(shí)際問題。

          基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識經(jīng)驗(yàn),從學(xué)生感興趣的素材,設(shè)計(jì)新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗(yàn)數(shù)學(xué)的應(yīng)用價值。

          二、教材分析:

         。ㄒ唬┙滩牡牡匚缓妥饔

          有關(guān)統(tǒng)計(jì)圖的認(rèn)識,小學(xué)階段主要認(rèn)識條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖。考慮到扇形統(tǒng)計(jì)圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計(jì)圖的實(shí)用價值。

         。ǘ┙虒W(xué)目標(biāo)

          1、聯(lián)系生活情境了解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用

          2、能讀懂扇形統(tǒng)計(jì)圖,從中獲取有效的信息。

          3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計(jì)圖反映的是整體和部分的關(guān)系。

         。ㄈ┙虒W(xué)重點(diǎn):

          1、能讀懂扇形統(tǒng)計(jì)圖,理解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用,并能從中獲取有效信息。

          2、認(rèn)識折線統(tǒng)計(jì)圖,了解折線統(tǒng)計(jì)圖的特點(diǎn)。

         。ㄋ模┙虒W(xué)難點(diǎn):

          1、能從扇形統(tǒng)計(jì)圖中獲得有用信息,并做出合理推斷。

          2、能根據(jù)統(tǒng)計(jì)圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢的分析。

          二、學(xué)情分析

          本單元的教學(xué)是在學(xué)生已有統(tǒng)計(jì)經(jīng)驗(yàn)的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點(diǎn)。

          三、設(shè)計(jì)理念和教法分析

          1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者!睂⒄n堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。

          2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。

          四、說學(xué)法

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時,我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。

          五、說教學(xué)程序

          本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實(shí)踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

          六、說教學(xué)過程

         。ㄒ唬⿵(fù)習(xí)引新

          1、復(fù)習(xí)舊知

          提問:我們學(xué)習(xí)過哪些統(tǒng)計(jì)方法?其中條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖各有什么特點(diǎn)?

          2、引入新課

         。ǘ┳灾魈剿,學(xué)習(xí)新知

          新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計(jì)圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計(jì)圖的特征。

          第二步實(shí)踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計(jì)知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計(jì)圖回答問題,是讓學(xué)生運(yùn)用到剛才學(xué)習(xí)到的知識來解決生活中的一些問題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進(jìn)行推理與判斷

          三、課堂總結(jié)

          四、布置作業(yè)。

          五、板書設(shè)計(jì):

        【【推薦】高中數(shù)學(xué)說課稿4篇】相關(guān)文章:

        【推薦】高中數(shù)學(xué)說課稿四篇07-11

        高中數(shù)學(xué)經(jīng)典說課稿范文06-24

        高中數(shù)學(xué)說課稿(15篇)11-03

        高中數(shù)學(xué)說課稿15篇10-16

        高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14

        高中數(shù)學(xué)說課稿10篇06-13

        高中數(shù)學(xué)說課稿三篇06-09

        高中數(shù)學(xué)《什么是概率》說課稿范文01-27

        高中數(shù)學(xué)說課稿《正弦定理》范文01-23

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>