高中數學說課稿(15篇)
作為一名辛苦耕耘的教育工作者,常常要寫一份優秀的說課稿,借助說課稿可以讓教學工作更科學化。說課稿應該怎么寫才好呢?以下是小編為大家整理的高中數學說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學說課稿1
各位評委、各位老師:大家好!
我叫李長杉,來自甘肅省嘉峪關市第一中學。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內容分析、教法學法分析、教學過程分析和課堂意外預案等幾個方面逐一加以分析和說明。
一。教材內容分析:
1.本節課內容在整個教材中的地位和作用。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線形規劃、直線與圓錐曲線以及導數等內容密切相關。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數學教學中具有很強的基礎性,體現出很大的工具作用。
2.教學目標定位。
根據教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關系。第二層面是能力目標,培養學生運用數形結合與等價轉化等數學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統一關系的認識,向學生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發引導下,學生自主探究,交流討論,培養學生的合作意識和創新精神。
3.教學重點、難點確定。
本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數三者的關系,并利用其關系解不等式即可。因此,我確定本節課的教學重點為一元二次不等式的解法,關鍵是一元二次方程、一元二次不等式和二次函數三者的關系。
二。教法學法分析:
數學是發展學生思維、培養學生良好意志品質和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發引導下學會學習、樂于學習,感受數學學科的人文思想,使學生在學習中培養堅強的意志品質、形成良好的道德情感。為了更好地體現課堂教學中"教師為主導,學生為主體"的教學關系和"以人為本,以學定教"的教學理念,在本節課的教學過程中,我將緊緊圍繞教師組織——啟發引導,學生探究——交流發現,組織開展教學活動。我設計了①創設情景——引入新課,②交流探究——發現規律,③啟發引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個環環相扣、層層深入的教學環節,在教學中注意關注整個過程和全體學生,充分調動學生積極參與教學過程的每個環節。
三。教學過程分析:
1.創設情景——引入新課。我們常說"興趣是最好的老師",長期以來,學生對學習數學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據教材內容的安排,我以學生熟悉的畫一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結復習已有知識,為后面學習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數圖象來解答。二次函數是初中數學的重要內容,本題又給出了函數圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習中。
2.探究交流——發現規律。從特殊到一般是我們發現問題、尋求規律、揭示問題本質最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法——圖象法去解,學生由于熟知二次函數圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫圖求解。然后達成共識,如果二次項系數為負數時,先做等價轉化,把二次項系數化為正數再解,課本19頁例3、例4作為題組(二),繼續讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規律。
3.啟發引導——形成結論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發引導學生將特殊、具體題目的結論做一般化總結,與學生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫出解集即可,必要時也可以結合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。
4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環節請不同層次的學生在黑板上書寫解題過程,之后師生共同糾正問題,規范解題過程的書寫。
5.延伸拓寬——提高能力。課堂教學既要面向全體學生,又應關注學生的個體差異。體現分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。
四。課堂意外預案:
新課程理念下的教學更多的關注學生自主探究、關注學生的個性發展,鼓勵學生勇于提出問題,培養學生思維的批評性。在課堂上學生往往會提出讓老師感到"意外"的問題,我在平時的教學中重視對"課堂意外預案"的探索和思考,備課時盡量設想課堂中可能會出現的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結合以往經驗,在本節課,我提出兩個"意外預案".
1.學生在做課本練習1(x+2)(x-3)>0 時,可能會問到轉化為不等式組{ 或{ 求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節簡單分式不等式和高次不等式的解法有關,是解不等式的另一種解法——等價轉化法,不在本節課之列。
2.根據以往的經驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會出現將不等式轉化為不等式組{ 來求解的錯誤做法,教師要關注學生,及時發現問題并給予糾正,指出上面的轉化不是等價轉化。
以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!
高中數學說課稿2
一、背景分析
1、學習任務分析:充要條件是中學數學中最重要的數學概念之一,它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數學學習特別是數學推理的學習打下基礎。
教學重點:充分條件、必要條件和充要條件三個概念的定義。
2、學生情況分析:從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.因此,新教材在第一章的小結與復習中,把學生的學習要求規定為“初步掌握充要條件”(注意:新教學大綱的教學目標是“掌握充要條件的意義”),這是比較切合教學實際的.由此可見,教師在充要條件這一內容的新授教學時,不可拔高要求追求一步到位,而要在今后的教學中滾動式逐步深化,使之與學生的知識結構同步發展完善。
教學難點:“充要條件”這一節介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數學的難點之一,而必要條件的定義又是本節內容的難點.根據多年教學實踐,學生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結論,怎么又變成條件了呢?對這學生難于理解。
教學關鍵:找出A、B,根據定義判斷A=B與B=A是否成立。教學中,要強調先找出A、B,否則,學生可能會對必要條件難以理解。
二、教學目標設計:
。ㄒ唬┲R目標:
1、正確理解充分條件、必要條件、充要條件三個概念。
2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關系。
。ǘ┠芰δ繕耍
1、培養學生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。
2、培養學生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結出一般規律。
。ㄈ┣楦心繕耍
1、通過以學生為主體的教學方法,讓學生自己構造數學命題,發展體驗獲取知識的感受。
2、通過對命題的四種形式及充分條件,必要條件的相對性,培養同學們的辯證唯物主義觀點。
3、通過“會觀察”,“敢歸納”,“善建構”,培養學生自主學習,勇于創新,多方位審視問題的創造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現出濃厚的興趣和不畏困難、勇于進取的精神。
三、教學結構設計:
數學知識來源于生活實際,生活本身又是一個巨大的數學課堂,我在教學過程中注重把教材內容與生活實踐結合起來,加強數學教學的實踐性,給數學找到生活的原型。我對本節課的數學知識結構進行創造性地“教學加工”,在教學方法上采用了“合作——探索”的開放式教學模式,使課堂教學體現“參與式”、“生活化”、“探索性”,保證學生對數學知識的主動獲取,促進學生充分、和諧、自主、個性化的發展。
整體思路為:教師創設情境,激發興趣,引出課題 引導學生分析實例,給出定義 例題分析(采用開放式教學) 知識小結 擴展例題 練習反饋
整個教學設計的主要特色:
。1)由生活事例引出課題;
。2)采用開放式教學模式;
(3)擴展例題是分析生活中的名言名句,又將數學融入生活中。
努力做到:“教為不教,學為會學”;要“授之以魚”更要“授之以漁”。
四、教學媒體設計:
本節課是概念課,要避免單一的下定義作練習模式,應該努力使課堂元素更為豐富。這節課,我借助了多媒體課件,配合教學,添加了一些與例題相匹配的圖片背景,以激發學生的學習興趣,另外將學生的自編題利用多媒體課件展示出來分析,提高了課堂教學的效率。
五、教學過程設計:
第一,創設情境,激發興趣,引出課題:
考慮到高一學生學習這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。
我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業員應該買多少?他說買3米足夠了!边@樣,就產生了“3米布料”與“做一件襯衫夠不夠”的關系。用這個事件目的是為了第二部分引導學生得出充分條件的定義。這里要強調該事件包括:A:有3米布料;B:做一件襯衫夠了。
第二個事例是:“一人病重,呼吸困難,急診住院接氧氣!本彤a生了“氧氣”與“活命與否”的關系。用這個事件的目的是為了第二部分引導學生得出必要條件的定義。這里要強調該事件包括:A:接氧氣;B:活了。
用以上兩個生活中的事例來說明數學中應研究的概念、關系,會使學生感到親切自然,有助于提高興趣和深入領會概念的內容,特別是它的必要性。
第二,引導學生分析實例,給出定義。
在第一部分激發起學生的學習興趣后,緊接著開展第二部分,引導學生分析實例,讓學生從事例中抽象出數學概念,得出本節課所要學習的充分條件和必要條件的定義。在引導過程中盡量放慢語速,結合事例幫助學生分析。
得出定義之后,這里有必要再利用本課前面兩節的“邏輯聯結詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。
還應指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。
當兩個定義分別給出后,我又對它們之間的區別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數學事例來強化。
高中數學說課稿3
一、教材分析
本節知識是必修五第一章《解三角形》的第一節資料,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,并且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。
根據上述教材資料分析,研究到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
本事目標:引導學生經過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維本事,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,經過學生之間、師生之間的交流、合作和評價,調動學生的主動性和進取性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的資料,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數。
二、教法
根據教材的資料和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究資料,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,進取探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的本事線聯系方法與技能使學生較易證明正弦定理,另外經過例題和練習來突破難點
三、學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自我所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維本事,構成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,構成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創設情境,布疑激趣
“興趣是最好的教師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫忙別人的熱情和學習的興趣,從而進入今日的學習課題。
。ǘ┨綄ぬ乩岢霾孪
1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生經過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
。ㄋ模w納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的資料,討論能夠解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發學生知識后用于實際的價值觀。
。ㄎ澹┲v解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
。┱n堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,教師巡視,及時發現問題,并解答。
(七)小結反思,提高認識
經過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現了數形結合的數學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
(從實際問題出發,經過猜想、實驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生進取性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發現正弦定理不適用了,那么自然過渡到下一節資料,余弦定理。布置作業,預習下一節資料。
高中數學說課稿4
一、教材分析:
1.教材所處的地位和作用:
本節內容在全書和章節中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數學教材數學2第一章空間幾何體3節內容。在此之前學生已學習了空間幾何體的結構、三視圖和直觀圖為基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在空間幾何中,占據重要的地位。以及為其他學科和今后的學習打下基礎。
2.教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
知識與能力:
(1)了解柱體、錐體、臺體的表面積.
。2)能用公式求柱體、錐體、臺體的表面積。
(3)培養學生空間想象能力和思維能力
過程與方法:
讓學生經歷幾何體的表面積的實際求法,感知幾何體的形狀,培養學生對數學問題的轉化化歸能力。
情感、態度與價值觀:
通過學習,是學生感受到幾何體表面積的求解過程,激發學生探索、創新意識,增強學習積極性。
3.重點,難點以及確定依據:
本著新課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點
教學重點:柱,錐,臺的表面積公式的推導
教學難點:柱,錐,臺展開圖與空間幾何體的轉化
二、教法分析
1.教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點:應著重采用合作探究、小組討論的教學方法。
2.教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的探究式討論教學法。在學生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
三.學情分析
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
(1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散
。2)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
四、教學過程分析
。1)由一段動畫視頻引入:豐富生動的吸引學生的注意力,調動學生學習積極性
(2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。
(3)探究問題。完全將主動權教給學生,讓學生主動去探究,得到解決問題的思路,鍛煉學生動手能力,解決實際問題能力。
。4)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。
(5)例題及練習,見學案。
。6)布置作業。
針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
。7)小結。讓學生總結本節課的收獲。老師適時總結歸納。
高中數學說課稿5
高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節為單位,將那些零碎的、散亂的知識點串聯起來,并將他們系統化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。
一、內容分析說明
1、本小節內容是初中學習的多項式乘法的繼續,它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯系:
(1)二項展開式與多項式乘法有聯系,本小節復習可對多項式的變形起到復習深化作用。
。2)二項式定理與概率理論中的二項分布有內在聯系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯系,形成知識網絡。
。3)二項式定理是解決某些整除性、近似計算等問題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的
試題,考察的題型穩定,通常以選擇題或填空題出現,有時也與應用題結合在一起求某些數、式的
近似值。
二、學校情況與學生分析
。1)我校是一所鎮普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。
。2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。
三、教學目標
復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:
1、知識目標:(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。
。2)會運用展開式的通項公式求展開式的特定項。
2、能力目標:(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優化記憶品質。記憶力是一般數學能力,是其它能力的基礎。
(2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。
3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。
四、教學過程
1、知識歸納
。1)創設情景:①同學們,還記得嗎? 、 、 展開式是什么?
②學生一起回憶、老師板書。
設計意圖:①提出比較容易的問題,吸引學生的注意力,組織教學。
②為學生能回憶起二項式定理作鋪墊:激活記憶,引起聯想。
。2)二項式定理:①設問 展開式是什么?待學生思考后,老師板書
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
、诶蠋熞髮W生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數從n起依次減小1,直到0為止;b的指數從0起依次增加1,直到n為止。每一項里a、b的指數和均為n。
、垤柟叹毩 填空
設計意圖:①教給學生記憶的方法,比較分析公式的特點,記規律。
、谧冇霉,熟悉公式。
(3) 展開式中各項的系數C , C , C ,… , 稱為二項式系數.
展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.
2、例題講解
例1求 的展開式的第4項的二項式系數,并求的第4項的系數。
講解過程
設問:這里 ,要求的第4項的有關系數,如何解決?
學生思考計算,回答問題;
老師指明①當項數是4時, ,此時 ,所以第4項的二項式系數是 ,
、诘4項的系數與的第4項的二項式系數區別。
板書
解:展開式的第4項
所以第4項的系數為 ,二項式系數為 。
選題意圖:①利用通項公式求項的系數和二項式系數;②復習指數冪運算。
例2 求 的展開式中不含的 項。
講解過程
設問:①不含的 項是什么樣的項?即這一項具有什么性質?
、趩栴}轉化為第幾項是常數項,誰能看出哪一項是常數項?
師生討論 “看不出哪一項是常數項,怎么辦?”
共同探討思路:利用通項公式,列出項數的方程,求出項數。
老師總結思路:先設第 項為不含 的項,得 ,利用這一項的指數是零,得到關于 的方程,解出 后,代回通項公式,便可得到常數項。
板書
解:設展開式的第 項為不含 項,那么
令 ,解得 ,所以展開式的第9項是不含的 項。
因此 。
選題意圖:①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。
②判斷第幾項是常數項運用方程的思想;找到這一項的項數后,實現了轉化,體現轉化的數學思想。
例3求 的展開式中, 的系數。
解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數。
板書
解:由于 ,則 的展開式中 的系數為 的展開式中 的系數之和。
而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數分別是: 。
所以 的展開式中 的系數為
例4 如果在( + )n的展開式中,前三項系數成等差數列,求展開式中的有理項.
解:展開式中前三項的系數分別為1, , ,
由題意得2× =1+ ,得n=8.
設第r+1項為有理項,T =C · ·x ,則r是4的倍數,所以r=0,4,8.
有理項為T1=x4,T5= x,T9= .
3、課堂練習
1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數為C ·22=24.
答案:C
2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數項是
A.14 B.14 C.42 D.-42
解析:設(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·
。ǎ1)r·x ,
當- +3(7-r)=0,即r=6時,它為常數項,∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展開式中各項系數的和是128,則展開式中x5的系數是_____________.(以數字作答)
解析:∵(x +x )n的展開式中各項系數和為128,
∴令x=1,即得所有項系數和為2n=128.
∴n=7.設該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,
令 =5即r=3時,x5項的系數為C =35.
答案:35
五、課堂教學設計說明
1、這是一堂復習課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數、項的二項式系數等有關概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養學生的運算能力,邏輯思維能力,強化方程的思想和轉化的思想。
2、在例題的選配上,我設計了一定梯度。第一層次是給出二項式,求指定的項,即項數已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創造代入的條件,先判斷哪一項為所求,即先求項數,利用通項公式中指數的關系求出,此后轉化為第一層次的問題。第三層次突出數學思想的滲透,例3需要變形才能求某一項的系數,恒等變形是實現轉化的手段。在求每個局部展開式的某項系數時,又有分類討論思想的指導。而例4的設計是想增加題目的綜合性,求的n過程中,運用等差數列、組合數n等知識,求出后,有化歸為前面的問題。
六、個人見解
高中數學說課稿6
各位老師:
大家好!我叫***,來自**。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1、教材所處的地位和作用
本節課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。
2、教學的重點和難點
重點:概率的加法公式及其應用;事件的關系與運算。
難點:互斥事件與對立事件的區別與聯系
二、教學目標分析
1.知識與技能目標
、帕私怆S機事件間的基本關系與運算;
⑵掌握概率的幾個基本性質,并會用其解決簡單的概率問題。
2、過程與方法:
、磐ㄟ^觀察、類比、歸納培養學生運用數學知識的綜合能力;
⑵通過學生自主探究,合作探究培養學生的動手探索的能力。
3、情感態度與價值觀:
通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發學習數學的情趣。
三、教法分析
采用實驗觀察、質疑啟發、類比聯想、探究歸納的教學方法。
四、教學過程分析
1、創設情境,引入新課
在擲骰子的試驗中,我們可以定義許多事件,如:
c1=﹛出現的點數=1﹜,c2=﹛出現的點數=2﹜
c3=﹛出現的點數=3﹜,c4=﹛出現的點數=4﹜
c5=﹛出現的點數=5﹜,c6=﹛出現的點數=6﹜
D1=﹛出現的點數不大于1﹜D2=﹛出現的點數大于3﹜
D3=﹛出現的點數小于5﹜,E=﹛出現的點數小于7﹜
f=﹛出現的點數大于6﹜,G=﹛出現的點數為偶數﹜
H=﹛出現的點數為奇數﹜
、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關系和相等關系。
⑵從以上兩個關系學生不難發現事件間的關系與集合間的關系相類似。進而引導學生思考,是否可以把事件和集合對應起來。
「設計意圖」引出我們接下來要學習的主要內容:事件之間的關系與運算
2、探究新知
㈠事件的關系與運算
、沤涍^上面的思考,我們得出:
試驗的可能結果的全體←→全集
↓↓
每一個事件←→子集
這樣我們就把事件和集合對應起來了,用已有的集合間關系來分析事件間的關系。
集合的并→兩事件的并事件(和事件)
集合的交→兩事件的交事件(積事件)
在此過程中要注意幫助學生區分集合關系與事件關系之間的不同。
。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發生,表示或者事件A發生,或者事件B發生。)
「設計意圖」為更好地理解互斥事件和對立事件打下基礎,
、扑伎迹孩偃糁粩S一次骰子,則事件c1和事件c2有可能同時發生么?
、谠跀S骰子實驗中事件G和事件H是否一定有一個會發生?
「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區別與聯系。
、强偨Y出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區別與聯系。
、染毩暎和ㄟ^多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。
、娓怕实幕拘再|:
⑴回顧:頻率=頻數/試驗的次數
我們知道當試驗次數足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質、
。ㄍㄟ^對頻率的理解并結合前面投硬幣的實驗來總結出概率的基本性質,師生共同交流得出結果)
3、典型例題探究
例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?
事件A:命中環數大于7環;事件B:命中環數為10環;
事件c:命中環數小于6環;事件D:命中環數為6、7、8、9、10環、
分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯系與區別弄清楚
例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:
(1)取到紅色牌(事件c)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).
「設計意圖」通過這兩道例題,進一步鞏固學生對本節課知識的掌握,并將所學知識應用到實際解決問題中去。
4、課堂小結
、爬斫馐录年P系和運算
、普莆崭怕实幕拘再|
「設計意圖」小結是引導學生對問題進行回味與深化,使知識成為系統。讓學生嘗試小結,提高學生的總結能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。
5、布置作業
習題3、1A1、3、4
「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。
五、板書設計
概率的基本性質
一、事件間的關系和運算
二、概率的基本性質
三、例1的板書區
例2的板書區
四、規律性質總結
高中數學說課稿7
一、說教材
1.從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要資料,它不僅僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,并且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養.
2.從學生認知角度看
從學生的思維特點看,很容易把本節資料與等差數列前n項和從公式的構成、特點等方面進行類比,這是進取因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不一樣,這對學生的思維是一個突破,另外,對于q=1這一特殊情景,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學情分析
教學對象是剛進入高中的學生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹.
4.重點、難點
教學重點:公式的推導、公式的特點和公式的運用.
教學難點:公式的推導方法和公式的靈活運用.
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點.
二、說目標
知識與技能目標:
理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題.
過程與方法目標:
經過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事.
情感與態度價值觀:
經過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點.
三、說過程
學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的構成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1.創設情境,提出問題
在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數學家計算,結果出來后,國王大吃一驚.為什么呢
設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的進取性.故事資料緊扣本節課的主題與重點.
此時我問:同學們,你們明白西薩要的是多少粒小麥嗎引導學生寫出麥?倲.帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識構成過程的氛圍,突破學生學習的障礙.同時,構成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.
2.師生互動,探究問題
在肯定他們的思路后,我之后問:1,2,22,…,263是什么數列有何特征應歸結為什么數學問題呢
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系(學生會發現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發現
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,所以教學中應著力在這兒做文章,從而抓住培養學生的辯證思維本事的良好契機.
經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.教師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心.
3.類比聯想,解決問題
這時我再順勢引導學生將結論一般化,
那里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自我探究公式,從而體驗到學習的愉快和成就感.
對不對那里的q能不能等于1等比數列中的公比能不能為1q=1時是什么數列此時sn=(那里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)
再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來(引導學生得出公式的另一形式)
設計意圖:經過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和理解,變為對知識的主動認識,從而進一步提高分析、類比和綜合的本事.這一環節十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.
4.討論交流,延伸拓展
(略)
高中數學說課稿8
說課:古典概型
麻城理工學校謝衛華
。ㄒ唬┙滩牡匚患白饔:本節課是高中數學(必修
3)第三章概率的第二節古典概型的第一課時,是在
隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。
根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點:理解古典概型的概念及利用古典概型求解隨機事件的概率;
根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。
(二)根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂教學目標:
1.知識與技能
(1)理解古典概型及其概率計算公式(2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率2.情感態度與價值觀
概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神
。ㄈ┙虒W方法:根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征,觀
察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。
。ㄋ模┙虒W過程:
一、提出問題引入新課:在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:試驗一:拋擲一枚質地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄“1點”、“2點”、“3點”、“4點”、“5點”和“6點”的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。
教師最后匯總方法、結果和感受,并提出問題:1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?
二、思考交流形成概念:學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。
基本事件有如下的兩個特點:(1)任何兩個基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學生自行解決,從而進一步理解基本事件,然后讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,(1)試驗中所有可能出現的基本事件只有有限個(有限性);(2)每個基本事件出現的可能性相等(等可能性)。我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱
古典概型。
三、觀察分析推導公式:教師提出問題:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率
結果,發現其中的聯系。實驗一中,出現正面朝上的概率與反面朝上的概率相等,即
1“出現正面朝上”所包含的基本事件的個數,試驗二中,出現各個點的概率相等,即
P(“出現正面朝上”)==
2基本事件的總數3“出現偶數點”所包含的基本事件的個數,根據上述兩則模擬試驗,可以概括總結出,古典
P(“出現偶數點”)==
6基本事件的總數
概型計算任何事件的
的理解,教師提問:在使用古典概型的概率公式時,應該注意什么?學生回答,教師歸納:應該注意,(1)要判斷該概率模型是不是古典概型;
。2)要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。
四、例題分析推廣應用:通過例題2及3,鞏固學生對已學知識的掌握,提高學生分析問題、解決問題的能力。讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。適時利用列表數形結合和分類討論等思想方法,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。
五、總結概括加深理解:學生小結歸納,不足的地方老師補充說明。使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
。ㄎ澹┎贾米鳂IP123練習1、2題(六)板書設計
3.2.13.2.1古典概型古典概型試驗一試驗二基本事件
古典概型概率
計算公式
例3列表
例1樹狀圖古典概型
例2
以上是我對《古典概型概型》這節課的理解和處理方法,歡迎各位專家朋友批評指正,謝謝!
說課教案:古典概型
麻城理工學校謝衛華
高中數學說課稿9
各位老師你們好!今天我要為大家講的課題是
首先,我對本節教材進行一些分析:
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。
2. 教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標: (2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3. 重點,難點以及確定依據:
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點
重點: 通過 突出重點
難點: 通過 突破難點
關鍵:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1. 教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟澱n的特點: 應著重采用 的教學方法。
2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
3. 學情分析:(說學法)
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
(1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學
生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散
。2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4. 教學程序及設想:
。1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
。2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。
。4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
。5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。
。6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。
(7)板書
。8)布置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:
課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分
高中數學說課稿10
各位評委老師你們好,我是第?號選手。我今天說課的題目是《 》,我將從教材分析,教法,學法,教學程序,等幾個方面進行我的說課。
一,教材分析
這部分我主要從3各方面闡述
1, 教材的地位和作用
《 》是北師大版必修?第?章第?節的內容,在此之前,同學們已經學習了、,這些對本節課的學習有一定的鋪墊作用,同是學好本節的內容不僅加深前面所學習的知識,而且為后面我們將要學習的?知識打好基礎,?所以說本節課的學習在整個高中數學學習過程中占有重要地位!
2.根據教學大綱的規定,教學內容的要求,教學對象的實情我確定了如下3維教學目標(i)知識目標:
II能力目標;初步培養學生歸納,抽象,概括的思維能力。
訓練學生認識問題,分析問題,解決問題的能力
III情感目標;通過學生的探索,史學生體會數學就在我們身邊,讓學生發現生活的數學,培養不斷超越的創新品質,提高數學素養。
3, 結合以上分析以及高一學生的人知水平我確定啦本節課的重難點
教學重點:
教學難點;
二,教法
教學方法是完成教學任務的手段,恰當的學者教學方法至關重要,根據本節課的教學內容,考慮到高一學生已經初步具有一定的探索能力,并喜歡挑戰問題的實際情況,為啦更有效的突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的知道思想。我主要采用 問題探究法 引導發現發,案例教學法,講授法,在教學過程中精心設計帶有啟發性和思考性的問題,滿足學生探索的欲望,培養學生的學習興趣,激發來自學生主體最有利的動力。并運用多媒體課件的形式,更形象直觀,提高教學效果的同時加大啦課堂密度!
學法
根據學生的年齡特征,運用訊息漸進,逐步升入,理論聯系實際的規律,讓學生從問題中質疑,嘗試,歸納,總結,運用。培養學生發現問題,研究問題,分析問題的能力。自主參與知識的發生,發展,形成過程,完成從感性認識 到理性思維的質的飛躍,史學生在知識和能力方面都有所提高。
三,教學程序
1, 創設情境,提出問題
讓學生產生強烈的問題意識,學生試著利用以前的知識經驗,同化索引出當前學習的新知識,激發學習的興趣和動機。
2, 引導探究,直奔主題。(揭示概念)
參用小組合作的方式,各小組派代表發表成果,教師作為教學的引導者,給予肯定的評價,并給出一定的指導,最后師生共同得出??!教師引導學生進一步學習。整個過程充分突出學生的主體地位,培養學生合作探究的能力,激發興趣,更讓學生在思考學術問題以及解決數學問題的思想方法上有更深的交流。
3, 自我嘗試,初步應用
在講解是,不僅在于怎樣接,更在于為什么這樣解,及時引導學生探究運用知識,解決問題的方法,及時對解題方法和規律進行概括,有利于培養學生的思維能力。 4 .當堂訓練,鞏固深化(反饋矯正)
通過學生的主體參與,讓學生鞏固所學的知識,實現對知識再認識的以及在數學解題思想方法層面上進一步升華
5,歸納小結,回顧反思
從知識,方法,經驗等方面進行總結。讓學生思考本節課學到啦那些知識,還有那些疑問。本節課最大的體驗。本節課你學會那些技能。
知識性的內容小結,可以把課堂教學傳授的知識盡快轉化為學生的素養,數學思想發放的小結,可以使學生更深刻地理解數學思想發放在解題中的地位和作用,并且逐步培養學生良好的個性品質目標。
,6,變式延伸,布置作業
必做題,對本屆課學生知識水平的反饋。選作題,對本節課知識內容的延伸。使不同層次學生都可以收獲成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,讓每個學生在原有的基礎上有所發展。做到人人學數學,人人學不同的數學。
7板書設計
力圖簡潔,形象,直觀,概括以便學生易于掌握。
四,教學評價
學生學習結果評價當然重要,但是學習過程的評價更加重要。本節課中高度重視學生學習過程中的參與度,自信心,團隊精神,合作意識,獨立思考習慣的養成。數學發現的能力,以及學習的興趣和成就感,,學生熟悉的問題情境可以激發學生的學習興趣,問題串的設計可以讓更多學生主動參與,師生對話可以實現師生合作,適度的研討可以駐京生生交流,知識的生成和問題的解決可以讓學生感受到成功的喜悅。縝密的思考可以培養學生獨立思考的習慣,讓學生在教室評價,學生評價以及自我評價的過程中體驗知識的積累,探索能力的長進和思維品質的提高,為學生的可持續發展打下基礎,
以上就是我的說課內容。不當之處,希望各位老師給予指正。謝謝各位評委老師!你們幸苦啦!
高中數學說課稿11
一、說教材:
1、地位、作用和特點:
《 》是高中數學課本第 冊( 修)的第 章“ ”的第 節內容,高中數學課本說課稿。
本節是在學習了 之后編排的。通過本節課的學習,既可以對 的知識進一步鞏固和深化,又可以為后面學習 打下基礎,所以
是本章的重要內容。此外,《 》的知識與我們日常生活、生產、科學研究 有著密切的聯系,因此學習這部分有著廣泛的現實意義。本節的特點之一是;
特點之二是: 。
教學目標:
根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:
(1)知識目標:A、B、C
。2)能力目標:A、B、C
(3)德育目標:A、B
教學的重點和難點:
(1)教學重點:
。2)教學難點:
二、說教法:
基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:
導入新課 新課教學
反饋發展
三、說學法:
學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。
1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。
本節教師通過列舉具體事例來進行分析,歸納出 ,并依
據此知識與具體事例結合、推導出 ,這正是一個分析和推理的'全過程。
2、讓學生親自經歷運用科學方法探索的過程。 主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授 時,可通過
演示,創設探索 規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。
3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。
4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。
四、教學過程:
。ㄒ唬、課題引入:
教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例,教案《高中數學課本說課稿》。C、講述數學科學史上的有關情況。)激發學生的探究欲望,引導學生提出接下去要研究的問題。
。ǘ⑿抡n教學:
1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。
2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。
(三)、實施反饋:
1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。
2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。
五、板書設計:
在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。
六、說課綜述:
以上是我對《 》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的 知識,并把它運用到對
的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。
總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。
高中數學說課稿12
一、教材分析
1.《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
、谡莆罩笖岛瘮档膱D象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
、贊B透數形結合的基本數學思想方法
、谂囵B學生觀察、聯想、類比、猜測、歸納的能力;
(3)情感目標:
①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力
、垲I會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。
4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。
2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。
1.創設情景、導入新課
教師活動:
、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,
②將學生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
、诨貞浿笖档母拍;
、蹥w納指數函數的概念;
④分析出對指數函數底數討論的必要性以及分類的方法。
設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性, 為突破難點做好準備;
2.啟發誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。
學生活動:
、佼嫵鰞蓚簡單的指數函數圖象
、诮涣、討論
、蹥w納出研究函數性質涉及的方面
、芸偨Y出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:
①板書例1
、诎鍟2第一問
、劢榻B有關考古的拓展知識。
高中數學說課稿13
一、教材分析
1!吨笖岛瘮怠吩诮滩闹械牡匚弧⒆饔煤吞攸c
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2。教學目標、重點和難點
通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
。1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;
。2)技能目標:①滲透數形結合的基本數學思想方法②培養學生觀察、聯想、類比、猜測、歸納的能力;
。3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數學科學的應用價值。
。4)教學重點:指數函數的圖象和性質。
。5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1。創設問題情景。按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2。強化“指數函數”概念。引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3。突出圖象的作用。在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。
4。注意數學與生活和實踐的聯系。數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1。再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。
2。領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3。在互相交流和自主探
高中數學說課稿14
本節課講述的是人教版高一數學(上)3.2等差數列(第一課時)的內容。
一、教材分析
1、教材的地位和作用:
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
2、教學目標
根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標
a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建!钡乃枷敕椒ú⒛苓\用。
b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
3、教學重點和難點
根據教學大綱的要求我確定本節課的教學重點為:
、俚炔顢盗械母拍。
②等差數列的通項公式的推導過程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建!钡乃枷敕椒ㄝ^為陌生,因此用數學思想解決實際問題是本節課的另一個難點。
二、學情教法分析:
對于三中的高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合
這類學生的心理發展特點,從而促進思維能力的進一步發展。
針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。
三、學法指導:
在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學程序
本節課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。
(一)復習引入:
1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)
通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數列的概念:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,
這個常數叫做等差數列的公差,通常用字母d來表示。強調:
、 “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(強調“同一個常數” );
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。
1. 9 ,8,7,6,5,4,??;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01
3. 0,0,0,0,0,0,??.; √ d=0
4. 1,2,3,2,3,4,??;×
5. 1,0,1,0,1,??×
其中第一個數列公差<0,>0,第三個數列公差=0
由此強調:公差可以是正數、負數,也可以是0
2、第二個重點部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
??
猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
??
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d
。1)
當n=1時,(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。
在迭加法的證明過程中,我采用啟發式教學方法。
利用等差數列概念啟發學生寫出n-1個等式。
對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求
接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2 ,
即an=2n-1 以此來鞏固等差數列通項公式運用
同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。
。ㄈ⿷门e例
這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另
一部分量。
例1 (1)求等差數列8,5,2,?的第20項;第30項;第40項
。2)-401是不是等差數列-5,-9,-13,?的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an.
例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎上將例2當作練習作為對通項公式的鞏固
例3 是一個實際建模問題
建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型------等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發了學生的興趣;3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建!钡臄祵W思想方法
(四)反饋練習
1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。
目的:對學生加強建模思想訓練。
3、若數例{an} 是等差數列,若 bn = k an ,(k為常數)試證明:數列{bn}是等差數列
此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。
(五)歸納小結(由學生總結這節課的收獲)
1.等差數列的概念及數學表達式.
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數
2.等差數列的通項公式 an= a1+(n-1) d會知三求一
3.用“數學建!彼枷敕椒ń鉀Q實際問題
(六)布置作業
必做題:課本P114 習題3.2第2,6 題
選做題:已知等差數列{an}的首項a1=-24,從第10項開始為正數,求公差d的取值范圍。
。康模和ㄟ^分層作業,提高同學們的求知欲和滿足不同層次的學生需求)
五、板書設計
在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。
高中數學說課稿15
教材地位及作用
本節課是高中數學3(必修)第三章概率的第二節古典概型的第一課時,是在隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。
學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。
教學重點
理解古典概型的概念及利用古典概型求解隨機事件的概率。
根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點。
教學難點
如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。
根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點。
教學目標
1.知識與技能
。1)理解古典概型及其概率計算公式,
。2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。
2.過程與方法
根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征:試驗結果的有限性和每一個試驗結果出現的等可能性,觀察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。
3.情感態度與價值觀
概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神。
根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂而成。這對激發學生學好數學概念,養成數學習慣,感受數學思想,提高數學能力起到了積極的作用。
教學過程分析
一,提出問題引入新課
在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受。
教師最后匯總方法、結果和感受,并提出問題?
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?
學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出問題。
通過課前的模擬實驗的展示,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。
二,思考交流形成概念
在試驗一中隨機事件只有兩個,即"正面朝上"和"反面朝上",并且他們都是互斥的,由于硬幣質地是均勻的,因此出現兩種隨機事件的可能性相等,即它們的概率都是;
在試驗二中隨機事件有六個,即"1點"、"2點"、"3點"、"4點"、"5點"和"6點",并且他們都是互斥的,由于骰子質地是均勻的,因此出現六種隨機事件的可能性相等,即它們的概率都是。
我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。
基本事件有如下的兩個特點:
(1)任何兩個基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和。
特點(2)的理解:在試驗一中,必然事件由基本事件"正面朝上"和"反面朝上"組成;在試驗二中,隨機事件"出現偶數點"可以由基本事件"2點"、"4點"和"6點"共同組成。
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。
讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。
三,思考交流形成概念
例1從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?
分析:為了解基本事件,我們可以按照字典排序的順序,把所有可能的結果都列出來。利用樹狀圖可以將它們之間的關系列出來。
我們一般用列舉法列出所有基本事件的結果,畫樹狀圖是列舉法的基本方法,一般分布完成的結果(兩步以上)可以用樹狀圖進行列舉。
。錉顖D)
解:所求的基本事件共有6個:
,,,
,,
觀察對比,發現兩個模擬試驗和例1的共同特點:
試驗一中所有可能出現的基本事件有"正面朝上"和"反面朝上"2個,并且每個基本事件出現的可能性相等,都是;
試驗二中所有可能出現的基本事件有"1點"、"2點"、"3點"、"4點"、"5點"和"6點"6個,并且每個基本事件出現的可能性相等,都是;
例1中所有可能出現的基本事件有"A"、"B"、"C"、"D"、"E"和"F"6個,并且每個基本事件出現的可能性相等,都是;
經概括總結后得到:
1,試驗中所有可能出現的基本事件只有有限個;(有限性)
2,每個基本事件出現的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
思考交流:
。1)向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的"可能性相同",但這個試驗不滿足古典概型的第一個條件。
。2)如圖,某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環。。。。。。命中5環和不中環。你認為這是古典概型嗎?為什么?
答:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環。。。。。。命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。
先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。學生互相交流,回答補充,教師歸納。將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點。培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過用表格列出相同和不同點,能讓學生很好的理解古典概型。從而突出了古典概型這一重點。
兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點。突破了如何判斷一個試驗是否是古典概型這一教學難點。
四,觀察分析推導方程
問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
分析:
實驗一中,出現正面朝上的概率與反面朝上的概率相等,即
P("正面朝上")=P("反面朝上")
由概率的加法公式,得
P("正面朝上")+P("反面朝上")=P(必然事件)=1
因此P("正面朝上")=P("反面朝上")=
即試驗二中,出現各個點的概率相等,即
P("1點")=P("2點")=P("3點")
。絇("4點")=P("5點")=P("6點")
反復利用概率的加法公式,我們有
P("1點")+P("2點")+P("3點")+P("4點")+P("5點")+P("6點")=P(必然事件)=1
所以P("1點")=P("2點")=P("3點")
。絇("4點")=P("5點")=P("6點")=
進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,
P("出現偶數點")=P("2點")+P("4點")+P("6點")=++==
即根據上述兩則模擬試驗,可以概括總結出,古典概型計算任何事件的概率計算公式為:
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系。
鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
。1)在例1的實驗中,出現字母"d"的概率是多少?
出現字母"d"的概率為:
提問:
。2)在使用古典概型的概率公式時,應該注意什么?
歸納:
在使用古典概型的概率公式時,應該注意:
。1)要判斷該概率模型是不是古典概型;
。2)要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。除了畫樹狀圖,還有什么方法求基本事件的個數呢?
教師提問,學生回答,加深對古典概型的概率計算公式的理解。
深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
四,例題分析推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
分析:
解決這個問題的關鍵,即討論這個問題什么情況下可以看成古典概型。如果考生掌握或者掌握了部分考察內容,這都不滿足古典概型的第2個條件——等可能性,因此,只有在假定考生不會做,隨機地選擇了一個答案的情況下,才可以化為古典概型。
解:
這是一個古典概型,因為試驗的可能結果只有4個:選擇A、選擇B、選擇C、選擇D,即基本事件共有4個,考生隨機地選擇一個答案是選擇A,B,C,D的可能性是相等的。從而由古典概型的概率計算公式得:
課后思考:
。1)在標準化考試中既有單選題又有多選題,多選題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?
(2)假設有20道單選題,如果有一個考生答對了17道題,他是隨機選擇的可能性大,還是他掌握了一定知識的可能性大?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。
鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
。1)一共有多少種不同的結果?
。2)其中向上的點數之和是5的結果有多少種?
。3)向上的點數之和是5的概率是多少?
解:(1)擲一個骰子的結果有6種,我們把兩個骰子標上記號1,2以便區分,由于1號骰子的結果都可以與2號骰子的任意一個結果配對,我們用一個"有序實數對"來表示組成同時擲兩個骰子的一個結果(如表),其中第一個數表示1號骰子的結果,第二個數表示2號骰子的結果。(可由列表法得到)
由表中可知同時擲兩個骰子的結果共有36種。
(2)在上面的結果中,向上的點數之和為5的結果有4種,分別為:
。1,4),(2,3),(3,2),(4,1)
。3)由于所有36種結果是等可能的,其中向上點數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得
先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。
引導學生用列表來列舉試驗中的基本事件的總數。
利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解,和用列舉法來計算一些隨機事件所含基本事件的個數及事件發生的概率。
培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。
五,探究思考鞏固深
化問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?
如果不標上記號,類似于(1,2)和(2,1)的結果將沒有區別。這時,所有可能的結果將是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種,和是5的結果有2個,它們是(1,4)(2,3),所求的概率為
這就需要我們考察兩種解法是否滿足古典概型的要求了。
可以通過展示兩個不同的骰子所拋擲出來的點,感受第二種方法構造的基本事件不是等可能事件,另外還可以利用Excel展示第二種方法中構造的21個基本事件不是等可能事件。從而加深印象,鞏固知識。
要求學生觀察對比兩種結果,找出問題產生的原因。
通過觀察對比,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。
六,總結概括加深理解
1.我們將具有
。1)試驗中所有可能出現的基本事件只有有限個;(有限性)
(2)每個基本事件出現的可能性相等。(等可能性)
這樣兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
2.古典概型計算任何事件的概率計算公式
3.求某個隨機事件A包含的基本事件的個數和實驗中基本事件的總數的常用方法是列舉法(畫樹狀圖和列表),應做到不重不漏。
學生小結歸納,不足的地方老師補充說明。
使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
七,布置作業
P123練習1、2題
學生課后自主完成。
進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。
八,板書設計教法與學法分析教法分析
根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
學法分析
學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
評價分析評價設計
本節課的教學通過提出問題,引導學生發現問題,經歷思考交流概括歸納后得出古典概型的概念,由兩個問題的提出進一步加深對古典概型的兩個特點的理解;再通過學生觀察類比推導出古典概型的概率計算公式。這一過程能夠培養學生發現問題、分析問題、解決問題的能力。
在解決概率的計算上,教師鼓勵學生嘗試列表和畫出樹狀圖,讓學生感受求基本事件個數的一般方法,從而化解由于沒有學習排列組合而學習概率這一教學困惑。整個教學設計的順利實施,達到了教師的教學目標。
【高中數學說課稿(15篇)】相關文章: