1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-11 14:08:39 高中說課稿 我要投稿

        關于高中數學說課稿范文集錦5篇

          作為一位不辭辛勞的人民教師,時常要開展說課稿準備工作,借助說課稿可以讓教學工作更科學化。快來參考說課稿是怎么寫的吧!下面是小編整理的高中數學說課稿5篇,僅供參考,歡迎大家閱讀。

        關于高中數學說課稿范文集錦5篇

        高中數學說課稿 篇1

          一、教材分析

          1、教材內容

          本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2.1.3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題.

          2、教材所處地位、作用

          函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質.通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題.通過上述活動,加深對函數本質的認識.函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法.

          3、教學目標

          (1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性

          的方法;

          (2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力.

         。3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質.

          4、重點與難點

          教學重點(1)函數單調性的概念;

         。2)運用函數單調性的定義判斷一些函數的單調性.

          教學難點(1)函數單調性的知識形成;

         。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.

          二、教法分析與學法指導

          本節課是一節較為抽象的數學概念課,因此,教法上要注意:

          1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性.

          2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.

          3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用.具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達.

          4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性.

          在學法上:

          1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力.

          2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍.

        高中數學說課稿 篇2

          一、說教材:

          1、教材的地位與作用

          導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節課里學生對導數的概念已經有了充分的認識,本節課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發現、思維、運用形成完整概念. 通過本節的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。

          2、教學的重點、難點、關鍵

          教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。

          教學難點:理解導數的幾何意義的本質內涵

          1) 從割線到切線的過程中采用的逼近方法;

          2) 理解導數的概念,將多方面的意義聯系起來,例如,導數反映了函數f(x)在點x附近的變化快慢,導數是曲線上某點切線的斜率,等等.

          二、說教學目標:

          根據新課程標準的要求、學生的認知水平,確定教學目標如下:

          1、知識與技能 :

          通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。

          過程與方法:

          經歷切線定義的形成過程,培養學生分析、抽象、概括等思維能力;體會導數的思想及內涵,完善對切線的認識和理解

          通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。

          3、情感態度與價值觀:

          滲透逼近、數形結合、以直代曲等數學思想,激發學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數學的統一美,意識到數學的應用價值

          三、說教法與學法

          對于直線來說它的導數就是它的斜率,學生會很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:

          教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數的幾何意義和直觀感知“逼近”的數學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;

          學法:為了發揮學生的主觀能動性,提高學生的綜合能力,本節課采取了

          自主 、合作、探究的學習方法。

          教具: 幾何畫板、幻燈片

          四、說教學程序

          1.創設情境

          學生活動——問題系列

          問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

          問題2 如圖直線l是曲線C的切線嗎?

          (1)與 (2)與 還有直線與雙曲線的位置關系

          問題3 那么對于一般的曲線,切線該如何定義呢?

          【設計意圖】:通過類比構建認知沖突。

          學生活動——復習回顧

          導數的定義

          【設計意圖】:從理論和知識基礎兩方面為本節課作鋪墊。

          2.探索求知

          學生活動——試驗探究

          問一;求導數的步驟是怎樣的?

          第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數就是。

          【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。

          問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。

          【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。

          問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。

          【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。

          探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。

          【設計意圖】: 借助多媒體教學手段引導學生發現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。

          問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?

          【設計意圖】:引導學生發現并說出:,割線PQ切線PT,所以割線

          PQ的斜率切線PT的斜率。因此,=切線PT的斜率。

          五、教學評價

          1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;

          2、通過學生對方法的選擇,對學生的學習能力評價;

          3、通過練習、課后作業,對學生的學習效果評價.

          4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;

          5、本節課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統一,運動和靜止的統一,感受量變到質變的轉化。希望利用這節課滲透辨證法的思想精髓.

        高中數學說課稿 篇3

          說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。

          下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。

          一、 背景分析

          1、學習任務分析

          平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。

          本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。

          2、學生情況分析

          學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。

          二、 教學目標設計

          《普通高中數學課程標準(實驗)》 對本節課的要求有以下三條:

          (1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

          (2)體會平面向量的數量積與向量投影的關系。

          (3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。

          從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

          綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:

          1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

          2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,

          并能運用性質和運算律進行相關的運算和判斷;

          3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。

          三、課堂結構設計

          本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:

          即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。

          四、 教學媒體設計

          和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:

          1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。

          2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。

          平面向量數量積的物理背景及其含義

          一、 數量積的概念 二、數量積的性質 四、應用與提高

          1、 概念: 例1:

          2、 概念強調 (1)記法 例2:

          (2)“規定” 三、數量積的運算律 例3:

          3、幾何意義:

          4、物理意義:

          五、 教學過程設計

          課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:

          活動一:創設問題情景,激發學習興趣

          正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:

          問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?

          問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

          期望學生回答:物理模型→概念→性質→運算律→應用

          問題3:如圖所示,一物體在力F的作用下產生位移S,

          (1)力F所做的功W= 。

          (2)請同學們分析這個公式的特點:

          W(功)是 量,

          F(力)是 量,

          S(位移)是 量,

          α是 。

          問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。

          問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。

          問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。

          活動二:探究數量積的概念

          1、概念的抽象

          在分析“功”的計算公式的基礎上提出問題4

          問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

          學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。

          2、概念的明晰

          已知兩個非零向量

          與

          ,它們的夾角為

          ,我們把數量 ︱

          ︱·︱

          ︱cos

          叫做

          與

          的數量積(或內積),記作:

          ·

          ,即:

          ·

          = ︱

          ︱·︱

          ︱cos

          在強調記法和“規定”后 ,為了讓學生進一步認識這一概念,提出問題5

          問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

          角

          的范圍0°≤

          <90°

          =90°0°<

          ≤180°

          ·

          的符號

          通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。

          3、探究數量積的幾何意義

          這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。

          如圖,我們把│

          │cos

          (│

          │cos

          )叫做向量

          在

          方向上(

          在

          方向上)的投影,記做:OB1=│

          │cos

          問題6:數量積的幾何意義是什么?

          這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。

          4、研究數量積的物理意義

          數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題 一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。

          問題7:

          (1) 請同學們用一句話來概括功的數學本質:功是力與位移的數量積 。

          (2)嘗試練習:一物體質量是10千克,分別做以下運動:

         、、在水平面上位移為10米;

         、凇⒇Q直下降10米;

          ③、豎直向上提升10米;

         、、沿傾角為30度的斜面向上運動10米;

          分別求重力做的功。

          活動三:探究數量積的運算性質

          1、性質的發現

          教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:

          (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

          (2)比較︱

          ·

          ︱與︱

          ︱×︱

          ︱的大小,你有什么結論?

          在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。

          2、明晰數量積的性質

          3、性質的證明

          這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。

          活動四:探究數量積的運算律

          1、運算律的發現

          關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9

          問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?

          通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。

          學生可能會提出以下猜測: ①

          ·

          =

          ·

          ②(

          ·

          )

          =

          (

          ·

          ) ③(

          +

          )·

          =

          ·

          +

          ·

          猜測①的正確性是顯而易見的。

          關于猜測②的正確性,我提示學生思考下面的問題:

          猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

          學生通過討論不難發現,猜測②是不正確的。

          這時教師在肯定猜測③的基礎上明晰數量積的運算律:

          2、明晰數量積的運算律

          3、證明運算律

          學生獨立證明運算律(2)

          我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:

          當λ<0時,向量

          與λ

          ,

          與λ

          的方向 的關系如何?此時,向量λ

          與

          及

          與λ

          的夾角與向量

          與

          的夾角相等嗎?

          師生共同證明運算律(3)

          運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。

          在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。

          活動五:應用與提高

          例1、(師生共同完成)已知︱

          ︱=6,︱

          ︱=4,

          與

          的夾角為60°,求

          (

          +2

          )·(

          -3

          ),并思考此運算過程類似于哪種運算?

          例2、(學生獨立完成)對任意向量

          ,b是否有以下結論:

          (1)(

          +

          )2=

          2+2

          ·

          +

          2

          (2)(

          +

          )·(

          -

          )=

          2—

          2

          例3、(師生共同完成)已知︱

          ︱=3,︱

          ︱=4, 且

          與

          不共線,k為何值時,向量

          +k

          與

          -k

          互相垂直?并思考:通過本題你有什么收獲?

          本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。

          為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:

          1、 下列兩個命題正確嗎?為什么?

         、佟⑷

          ≠0,則對任一非零向量

          ,有

          ·

          ≠0.

          ②、若

          ≠0,

          ·

          =

          ·

          ,則

          =

          .

          2、已知△ABC中,

          =

          ,

          =

          ,當

          ·

          <0或

          ·

          =0時,試判斷△ABC的形狀。

          安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,

          通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。

          活動六:小結提升與作業布置

          1、本節課我們學習的主要內容是什么?

          2、平面向量數量積的兩個基本應用是什么?

          3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?

          4、類比向量的線性運算,我們還應該怎樣研究數量積?

          通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下

          一節做好鋪墊,繼續激發學生的求知欲。

          布置作業:

          1、課本P121習題2.4A組1、2、3。

          2、拓展與提高:

          已知

          與

          都是非零向量,且

          +3

          與7

          -5

          垂直,

          -4

          與 7

          -2

          垂直求

          與

          的夾角。

          在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。

          六、教學評價設計

          評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:

          1、 通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定

          性的評價。

          2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。

          3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。

          4、 通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。

        高中數學說課稿 篇4

          今天我說課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時:《棱錐的概念和性質》。下面我就從教材分析、教法、學法和教學程序四個方面對本課的教學設計進行說明。

          一、說教材

          1、本節在教材中的地位和作用:

          本節是棱柱的后續內容,又是學習球的必要基礎。第一課時的教學目的是讓學生掌握棱錐的一些必要的基礎知識,同時培養學生猜想、類比、比較、轉化的能力。著名的生物學家達爾文說:“最有價值的知識是關于方法和能力的知識”,因此,應該利用這節課培養學生學習方法、提高學習能力。

          2. 教學目標確定:

          (1)能力訓練要求

         、偈箤W生了解棱錐及其底面、側面、側棱、頂點、高的概念。

          ②使學生掌握截面的性質定理,正棱錐的性質及各元素間的關系式。

          (2)德育滲透目標

          ①培養學生善于通過觀察分析實物形狀到歸納其性質的能力。

          ②提高學生對事物的感性認識到理性認識的能力。

          ③培養學生“理論源于實踐,用于實踐”的觀點。

          3. 教學重點、難點確定:

          重 點:1.棱錐的截面性質定理 2.正棱錐的性質。

          難 點:培養學生善于比較,從比較中發現事物與事物的區別。

          二、說教學方法和手段

          1、教法:

          “以學生參與為標志,以啟迪學生思維,培養學生創新能力為核心”。

          在教學中根據高中生心理特點和教學進度需要,設置一些啟發性題目,采用啟發式誘導法,講練結合,發揮教師主導作用,體現學生主體地位。

          2、教學手段:

          根據《教學大綱》中“堅持啟發式,反對注入式”的教學要求,針對本節課概念性強,思維量大,整節課以啟發學生觀察思考、分析討論為主,采用“多媒體引導點撥”的教學方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學生沿著積極的思維方向,逐步達到即定的教學目標,發展學生的邏輯思維能力;學生在教師營造的“可探索”的環境里,積極參與,生動活潑地獲取知識,掌握規律、主動發現、積極探索。

          三、說學法:

          這節課的核心是棱錐的截面性質定理,.正棱錐的性質。教學的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發學生反復思考,不斷內化成為自己的認知結構。

          四、 學程序:

          [復習引入新課]

          1.棱柱的性質:

          (1)側棱都相等,側面是平行四邊形

         。2)兩個底面與平行于底面的截面是全等的多邊形

         。3)過不相鄰的兩條側棱的截面是平行四邊形

          2.幾個重要的四棱柱:

          平行六面體、直平行六面體、長方體、正方體

          思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?

          [講授新課]

          1、棱錐的基本概念

          (1).棱錐及其底面、側面、側棱、頂點、高、對角面的概念

         。2).棱錐的表示方法、分類

          2、棱錐的性質

          (1). 截面性質定理:

          如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

          證明:(略)

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

          的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

          (2).正棱錐的定義及基本性質:

          正棱錐的定義:

         、俚酌媸钦噙呅

         、陧旤c在底面的射影是底面的中心

          ①各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

         、诶忮F的高、斜高和斜高在底面內的射影組成一個直角三角形;

          棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形

          引申:

         、僬忮F的'側棱與底面所成的角都相等;

         、谡忮F的側面與底面所成的二面角相等;

          (3)正棱錐的各元素間的關系

          下面我們結合圖形,進一步探討正棱錐中各元素間的關系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。

          引申:

         、儆^察圖中三棱錐S-OBM的側面三角形狀有何特點?

         。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)

         、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過三角形得出以上各元素間的關系式。

         。ㄕn后思考題)

          [例題分析]

          例1.若一個正棱錐每一個側面的頂角都是600,則這個棱錐一定不是( )

          A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

         。ù鸢福篋)

          例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經過SO的中點且平行于底面的截面△A’B’C’的面積。

          ﹙解析及圖略﹚

          例3.已知正四棱錐的棱長和底面邊長均為a,求:

         。1)側面與底面所成角α的余弦(2)相鄰兩個側面所成角β的余弦

          ﹙解析及圖略﹚

          [課堂練習]

          1、 知一個正六棱錐的高為h,側棱為L,求它的底面邊長和斜高。

          ﹙解析及圖略﹚

          2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。

          ﹙解析及圖略﹚

          [課堂小結]

          一:棱錐的基本概念及表示、分類

          二:棱錐的性質

          截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

          2.正棱錐的定義及基本性質

          正棱錐的定義:

          ①底面是正多邊形

         、陧旤c在底面的射影是底面的中心

         。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高

          相等,它們叫做正棱錐的斜高;

          (2)棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形

          引申: ①正棱錐的側棱與底面所成的角都相等;

          ②正棱錐的側面與底面所成的二面角相等;

          ③正棱錐中各元素間的關系

          [課后作業]

          1:課本P52 習題9.8 : 2、 4

          2:課時訓練:訓練一

        高中數學說課稿 篇5

          一、說教材

         。1)說教材的內容和地位

          本次說課的內容是人教版高一數學必修一第一單元第一節《集合》(第一課時)。集合這一課里,首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握以及使用數學語言的基礎。從知識結構上來說是為了引入函數的定義。因此在高中數學的模塊中,集合就顯得格外的舉足輕重了。

         。2)說教學目標

          根據教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據新課標制定如下教學目標:

          1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關系的意義,掌握集合元素的特征。

          2.過程與方法:通過情景設置提出問題,揭示課題,培養學生主動探究新知的習慣。并通過"自主、合作與探究"實現"一切以學生為中心"的理念。

          3.情感態度與價值觀:感受數學的人文價值,提高學生的學習數學的興趣,由集合的學習感受數學的簡潔美與和諧統一美。同時通過自主探究領略獲取新知識的喜悅。

         。3)說教學重點和難點

          依據課程標準和學生實際,我確定本課的教學重點為

          教學重點:集合的基本概念及元素特征。

          教學難點:掌握集合元素的三個特征,體會元素與集合的屬于關系。

          二、說教法和學法

          接下來則是說教法、學法

          教法與學法是互相聯系和統一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發性原則為出發點,就本節課而言,我采用"生活實例與數學實例"相結合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創造條件讓學生參與探究活動,()不僅提高了學生探究能力,更讓學生獲得學習的技能和激發學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發現、合作交流、歸納總結等。

          總之,不管采取什么教法和學法,每節課都應不斷研究學生的學習心理機制,不斷優化教師本身的教學行為,自始至終以學生為主體,為學生創造和諧的課堂氛圍。

          三、說教學過程

          接著我來說一下最重要的部分,本節課的教學過程:

          這節課的流程主要分為六個環節:創設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業布置(反饋矯正)。上述六個環節由淺入深,層層遞進。 多層次、多角度地加深對概念的理解。 提高學生學習的興趣,以達到良好的教學效果。

          第一環節:創設問題情境,引入目標

          課堂開始我將提出兩個問題:

          問題1:班級有20名男生,16名女生,問班級一共多少人?

          問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

          這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節課主要形式。

          待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。

          安排這一過程的意圖是為了從實際問題引入,讓學生了解數學來源于實際。從而激發學生參與課堂學習的欲望。

          很自然地進入到第二環節:自主探究

          讓學生閱讀教材,并思考下列問題:

          (1)有那些概念?

          (2)有那些符號?

         。3)集合中元素的特性是什么?

          安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養學生的探究能力。

          讓學生自主探究之后將進入第三環節:討論辨析

          小組合作探究(1)

          讓學生觀察下列實例

         。1)1~20以內的所有質數;

         。2)所有的正方形;

         。3)到直線 的距離等于定長 的所有的點;

         。4)方程 的所有實數根;

          通過以上實例,辨析概念:

         。1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

          (2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

          小組合作探究(2)——集合元素的特征

          問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

          問題4:某單位所有的"帥哥"能否構成一個集合?由此說明什么?

          集合中的元素必須是確定的

          問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

          集合中的元素是不重復出現的

          問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

          我如此設計的意圖是因為:問題是數學的心臟,感受問題是學習數學的根本動力。

          小組合作探究(3)——元素與集合的關系

          問題7:設集合A表示"1~20以內的所有質數",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

          問題8:如果元素a是集合A中的元素,我們如何用數學化的語言表達?

          a屬于集合A,記作a∈A

          問題9:如果元素a不是集合A中的元素,我們如何用數學化的語言表達?

          a不屬于集合A,記作aA

          小組合作探究(4)——常用數集及其表示方法

          問題10:自然數集,正整數集,整數集,有理數集,實數集等一些常用數集,分別用什么符號表示?

          自然數集(非負整數集):記作 N

          正整數集:

          整數集:記作 Z

          有理數集:記作 Q 實數集:記作 R

          設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發,從而不斷完善自己的知識結構。

          第四環節:理論遷移 變式訓練

          1.下列指定的對象,能構成一個集合的是

         、 很小的數

         、 不超過30的非負實數

         、 直角坐標平面內橫坐標與縱坐標相等的點

          ④ π的近似值

         、 所有無理數

          A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

          第五環節:課堂小結,自我評價

          1.這節課學習的主要內容是什么?

          2.這節課主要解釋了什么數學思想?

          設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統。教師用激勵性的語言加一點評,讓學生的思想敞亮的發揮出來。

          第六環節:作業布置,反饋矯正

          1.必做題 課本習題1.1—1、2、3.

          2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數a 的值。

          設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。

          四、板書設計

          好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下:

          集 合

          1.集合的概念

          2.集合元素的特征

         。▽W生板演)

          3.常見集合的表示

          4.范例研究

        【關于高中數學說課稿范文集錦5篇】相關文章:

        關于高中數學說課稿范文集錦6篇08-11

        關于高中數學說課稿范文集錦7篇08-10

        關于高中數學說課稿范文集錦8篇08-10

        關于高中數學說課稿范文集錦9篇08-06

        關于高中數學說課稿集錦六篇06-20

        關于高中數學說課稿范文集錦十篇08-18

        關于高中數學說課稿范文集錦七篇08-17

        高中數學經典說課稿范文06-24

        關于高中數學說課稿模板集錦八篇08-01

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>