1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 矩陣方程AX=B的轉動不變解及其最佳逼近

        時間:2024-08-24 17:19:10 數學畢業論文 我要投稿

        矩陣方程AX=B的轉動不變解及其最佳逼近

        矩陣方程AX=B的轉動不變解及其最佳逼近

        摘要
        本文利用矩陣的廣義逆、奇異值分解、張量積和拉直算子, 給出了矩陣方程AX=B有轉動不變解的充分必要條件及有解時通解的表達式; 給出了矩陣方程解集合中與給定矩陣的最佳逼近解的表達式。
        關鍵詞:矩陣方程, 轉動不變解, 最佳逼近

        The rotation  invariable  solution of matrix equation AX=B and its optimal approximation

        ABSTRACT
        By using the generalized inverse, singular value decomposition, tensor product and draw operator of matrices, the sufficient and necessary conditions for the existence of and the general expressions for matrix equation AX=B has a rotation invariable solution are derived. In addition, in the solution set of the matrix equation, the unique optimal approximation solution to a given matrix in Frobenius norm is driven.

        Keywords: Matrix equation, rotation invariable matrix, matrix norm.

        目 錄

        中文標題2
        中文摘要、關鍵詞2
        英文標題2
        英文摘要、關鍵詞2
        正 文
        1引言3
        2問題Ⅰ的解4
        3問題Ⅱ的解8
        參考文獻11
        致謝詞12

        【包括:畢業論文、任務書】

        【說明:論文中有些數學符號是編輯器編輯而成,網頁上無法顯示或者顯示格式錯誤,給您帶來不便請諒解。】

        【矩陣方程AX=B的轉動不變解及其最佳逼近】相關文章:

        數學畢業論文-矩陣方程AX=B的轉動不變解及其最佳逼近03-04

        矩陣分解與矩陣方程AX=B,AXB=C的解03-07

        數學畢業論文-矩陣分解與矩陣方程AX=B,AXB=C的解03-04

        矩陣方程的自反和反自反矩陣解03-07

        矩陣的分解及其應用03-07

        Z-變換及其數值逼近03-07

        矩陣函數的性質及其應用03-07

        矩陣對角化及其應用03-07

        矩陣的廣義逆及其應用03-07

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>