1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. Z-變換及其數(shù)值逼近

        時(shí)間:2023-03-07 08:18:41 數(shù)學(xué)畢業(yè)論文 我要投稿
        • 相關(guān)推薦

        Z-變換及其數(shù)值逼近

        目 錄

        摘  要 1
        Abstract 1
        前  言 2
        1 Z-變換及其性質(zhì) 3
        1.1 Z-變換式 3
        1.2 Z-變換的逆變換 8
        1.2.1 留數(shù)方法 8
        1.2.2  冪級數(shù)方法 10
        2 Z-變換的應(yīng)用 12
        2.1 求解具有常系數(shù)的線性差分方程 12
        2.2 脈沖系統(tǒng)的傳遞函數(shù) 14
        3 數(shù)值逼近 20
        3.1 Pade逼近方法 20
        3.2 Pade逼近的1些定理 23
        4 Z-變換的數(shù)值逼近 26
        結(jié)束語 28
        致謝詞 29
        參考文獻(xiàn): 30
        附錄: 31
         
        摘  要

        論文既描述了Z-變換的基本概念和性質(zhì),又有重點(diǎn)的講述了Z-變換的1些應(yīng)用和求法。本文共有3個(gè)部分:Z-變換及其性質(zhì);Z變換的應(yīng)用;Z-變換的有理數(shù)值逼近。第1部分:“Z-變換及其性質(zhì)”,主要通過Z-變換的定義和留數(shù)定理導(dǎo)出Z-變換的逆變換的求法,還有Z-變換的10個(gè)性質(zhì)定理。在這里進(jìn)行Z-變換的研究時(shí),主要借鑒了在研究拉普拉斯變換時(shí)的1些經(jīng)驗(yàn)和方法。第2部分:“Z變換的應(yīng)用”,主要通過上1章研究的Z-變換的逆變換和10個(gè)性質(zhì)定理,研究了Z-變換在求解具有常系數(shù)的線性差分方程和脈沖系統(tǒng)的傳遞函數(shù)方面的應(yīng)用。這里主要借鑒了用拉普拉斯變換法求解微分方程的推導(dǎo)過程。第3部分:“Z-變換的有理數(shù)值逼近”,主要介紹了Prony指數(shù)型函數(shù)逼近方法。并且了解了從實(shí)質(zhì)上講,Prony指數(shù)型函數(shù)逼近方法是與某些相應(yīng)的Z-變換的Pade逼近是相通的。
        關(guān)鍵字:Z-變換,數(shù)值逼近,拉普拉斯變換。

        Abstract


        In this dissertation, we deal with the related theory as well as the application of Z-transformation and numerical approximation. First we give an introduction to the basic concepts and properties of Z-transformation; then emphasis is put on some of the applications and its solving methods. The whole paper is divided into three parts: Z-transformation and its properties; the applications of Z-transformation; the numerical approximation of Z-transformation. In the first part, the method to solving inverse transformation is educed on the basis of the definition of Z-transformation and residence theorems; and ten theorems about its properties are also explained. The study here can trace its theoretical foundation from the methods and experience of the research on Laplace transformation. In the second part, we make the study of the application of Z-transformation when we solve linear difference equation bearing constant coefficient and transmission function in pulsing system. Here the educing process of solving differential equation with Laplace methods is practiced. In the last part, we mainly introduce Prony approximation methods of exponential function. We also reveal that the approximation method of Prony exponential function and the corresponding Pade approximation of Z-transformation are of the same pattern.

        Keywords:  Z-transformation; numerical approximation; Laplace transformation 

        前  言

        隨著電子計(jì)算機(jī)及各種數(shù)字技術(shù)的不斷發(fā)展,常常將信號按1定時(shí)間采樣后再進(jìn)行傳送或處理,這樣就產(chǎn)生了離散信號。離散信號作用于線性系統(tǒng)時(shí),這種線性系統(tǒng)就成為離散系統(tǒng)。在研究離散系統(tǒng)的激勵(lì)與響應(yīng)的關(guān)系以及分析系統(tǒng)的特性時(shí)常采用Z-變換,所以Z-變換在實(shí)際應(yīng)用中的作用是非常大的。再者,當(dāng)今時(shí)代是科學(xué)技術(shù)日新月異地飛速發(fā)展的時(shí)代,在幾乎所有的學(xué)科中都有逼近的思想和方法的滲透,這中間既包括自然學(xué)科也包括人文學(xué)科,也包括理工學(xué)科。而在Z-變換的范疇里,由于有些經(jīng)過Z-變換后得到的式子比較復(fù)雜,無法求出精確的解,所以就有運(yùn)用逼近的思想來解決這1問提的想法,于是就有了Z-變換的數(shù)值逼近這1個(gè)非常實(shí)際的課題。本論文也將在這個(gè)問題上做出1定的研究。通過這次的畢業(yè)設(shè)計(jì),我培養(yǎng)出了刻苦鉆研的學(xué)習(xí)精神和嚴(yán)肅認(rèn)真的學(xué)習(xí)態(tài)度,這對我以后的學(xué)習(xí)和工作有很大的益處。

        【Z-變換及其數(shù)值逼近】相關(guān)文章:

        中國改革觀察:轉(zhuǎn)折點(diǎn)正在逼近06-08

        試論誠信及其價(jià)值06-01

        論文寫作及其研究的特點(diǎn)06-19

        韓愈的師說及其影響10-19

        隱私權(quán)及其探究06-03

        論文答辯問題及其答案07-26

        淺談數(shù)學(xué)精神及其教育價(jià)值04-21

        行政執(zhí)法文書及其規(guī)范05-22

        明示預(yù)期違約及其撤回規(guī)則06-08

        漢英疊詞對比及其英譯06-12

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>