1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 矩陣方程的自反和反自反矩陣解

        時(shí)間:2023-03-07 08:18:56 數(shù)學(xué)畢業(yè)論文 我要投稿
        • 相關(guān)推薦

        矩陣方程的自反和反自反矩陣解

        矩陣方程 的自反和反自反矩陣解
         

        摘要:如果 滿(mǎn)足條件:(1)  ,(2)  ,則稱(chēng) 為廣義反射矩陣,廣義反射矩陣也是自伴的對(duì)合矩陣。設(shè) 和 都是廣義反射矩陣,如果 滿(mǎn)足  ,則稱(chēng) 為關(guān)于矩陣對(duì) 的廣義(反)自反矩陣;如果 滿(mǎn)足  ,則 稱(chēng)為關(guān)于矩陣 的廣義(反)自反矩陣。這篇論文介紹了矩陣方程 ,在系數(shù)矩陣 , 為廣義(反)自反矩陣的條件下,(反)自反矩陣解存在的充分必要條件及表達(dá)形式。另外,研究了矩陣方程 的(反)自反矩陣解集 ,利用矩陣的分解,導(dǎo)出(反)自反矩陣問(wèn)題的最佳逼近解。
        關(guān)鍵詞:自反矩陣;反自反矩陣;矩陣方程;Frobenius范數(shù);矩陣最佳逼近問(wèn)題

        The reflexive and anti-reflexive solutions of the
        matrix equation 
         
        Abstract :An  complex matrix   is said to be a generalized reflection matrix if   and  .An   complex matrix   ia said to be a reflexive (or anti-reflexive) matrix with respect to the generalized reflection matrixs  , if   . An   complex matrix   ia said to be a reflexive (or anti-reflexive) matrix with respect to the generalized reflection matrix  , if  .This paper establishes the necessary and sufficient conditions for the existence of and the expressions for the reflexive and anti-reflexive with respect to a generalized reflection matrixs   solutions of the matrix equation .In addition, incorresponding solution set of the equation.The explicit expression of the nearest matrix to a given matrix in the Frobenius noum have been provided.
        Keywords:Reflexive matrix; Anti-reflexive matrix; Matrix equation; Frobenius norm; Matrix nearness problem.

        【矩陣方程的自反和反自反矩陣解】相關(guān)文章:

        廣義對(duì)稱(chēng)、反對(duì)稱(chēng)矩陣反問(wèn)題05-11

        用于壓縮感知的無(wú)線傳感網(wǎng)測(cè)量矩陣設(shè)計(jì)方法05-27

        淺談解肝煎的臨床應(yīng)用07-26

        巧用晨昏線妙解日照?qǐng)D04-21

        木質(zhì)素?zé)峤馐е靥匦约捌錃庀喈a(chǎn)物釋放規(guī)律05-02

        線性方程組關(guān)于調(diào)味品配方問(wèn)題的應(yīng)用分析08-17

        淺談私立和公立幼兒園的管理區(qū)別和方法06-10

        論文提綱和寫(xiě)作步驟06-23

        論文的結(jié)構(gòu)和排版格式07-25

        淺談舞蹈形象和意境04-12

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>