- 相關(guān)推薦
矩陣方程的自反和反自反矩陣解
矩陣方程 的自反和反自反矩陣解
摘要:如果 滿(mǎn)足條件:(1) ,(2) ,則稱(chēng) 為廣義反射矩陣,廣義反射矩陣也是自伴的對(duì)合矩陣。設(shè) 和 都是廣義反射矩陣,如果 滿(mǎn)足 ,則稱(chēng) 為關(guān)于矩陣對(duì) 的廣義(反)自反矩陣;如果 滿(mǎn)足 ,則 稱(chēng)為關(guān)于矩陣 的廣義(反)自反矩陣。這篇論文介紹了矩陣方程 ,在系數(shù)矩陣 , 為廣義(反)自反矩陣的條件下,(反)自反矩陣解存在的充分必要條件及表達(dá)形式。另外,研究了矩陣方程 的(反)自反矩陣解集 ,利用矩陣的分解,導(dǎo)出(反)自反矩陣問(wèn)題的最佳逼近解。
關(guān)鍵詞:自反矩陣;反自反矩陣;矩陣方程;Frobenius范數(shù);矩陣最佳逼近問(wèn)題
The reflexive and anti-reflexive solutions of the
matrix equation
Abstract :An complex matrix is said to be a generalized reflection matrix if and .An complex matrix ia said to be a reflexive (or anti-reflexive) matrix with respect to the generalized reflection matrixs , if . An complex matrix ia said to be a reflexive (or anti-reflexive) matrix with respect to the generalized reflection matrix , if .This paper establishes the necessary and sufficient conditions for the existence of and the expressions for the reflexive and anti-reflexive with respect to a generalized reflection matrixs solutions of the matrix equation .In addition, incorresponding solution set of the equation.The explicit expression of the nearest matrix to a given matrix in the Frobenius noum have been provided.
Keywords:Reflexive matrix; Anti-reflexive matrix; Matrix equation; Frobenius norm; Matrix nearness problem.
【矩陣方程的自反和反自反矩陣解】相關(guān)文章:
廣義對(duì)稱(chēng)、反對(duì)稱(chēng)矩陣反問(wèn)題05-11
用于壓縮感知的無(wú)線傳感網(wǎng)測(cè)量矩陣設(shè)計(jì)方法05-27
淺談解肝煎的臨床應(yīng)用07-26
巧用晨昏線妙解日照?qǐng)D04-21
木質(zhì)素?zé)峤馐е靥匦约捌錃庀喈a(chǎn)物釋放規(guī)律05-02
線性方程組關(guān)于調(diào)味品配方問(wèn)題的應(yīng)用分析08-17
論文提綱和寫(xiě)作步驟06-23
論文的結(jié)構(gòu)和排版格式07-25
淺談舞蹈形象和意境04-12