1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 房地產影響因素分析

        時間:2020-08-30 15:11:11 經濟畢業論文 我要投稿

        房地產影響因素分析

        房地產影響因素分析
         (背景)2002年以來,我國商品房銷售額大幅攀升?帶動了房地產開發和城市基礎設施投資的新一輪高速增長。通過產業鏈的傳遞,進而又拉動鋼材、有色金屬、建材、石化等生產資料價格的快速上漲,刺激這些生產資料部門產能投資的成倍擴張,最后導致全社會固定資產投資規模過大、增速過快情況的.出現。房價過快上漲在推動投資增長過快的同時,已經成為抑制消費的重要因素。
         房地產價格本身呈自然上漲趨勢,房價中長期趨勢總是看漲。隨著我國經濟發展,居民可支配收入提高,民間資金雄厚,大量資金需要尋找投資渠道,而股票市場等投資渠道目前又處于低迷狀態,這是房地產投資需求不斷擴大的經濟背景。強勁的CPI上漲說明當前的房價上漲并非孤立,是有其宏觀經濟背景的。宏觀調控能否有效防止局部行業過熱出現反彈,其中的關鍵就是要繼續加強和完善對房地產業的調控。   (引言)國際上關于房地產有一種普遍的觀點:人均收入超過1000美元,房地產市場呈現高速發展階段。歐美等發達國家基本都經歷了這樣一個階段。我們這篇論文,主要探討房地產影響因素分析,主要從人均收入對房地產長期發展的影響闡述。
         
        年份    X1    X2    X3     Y
        1990 2551.736 1510.16 222 704.3319
        1991 1111.236 1700.6 233.3 786.1935
        1992 590.5998 2026.6 253.4 994.6555
        1993 2897.019 2577.4 294.2 1291.456
        1994 3532.471 3496.2 367.8 1408.639
        1995 3983.081 4282.95 429.6 1590.863
        1996 4071.181 4838.9 467.4 1806.399
        1997 3527.536 5160.3 481.9 1997.161
        1998 2966.057 5425.1 479 2062.569
        1999 2818.805 5854 472.8 2052.6
        2000 2674.264 6279.98 476.6 2111.617
        2001 2830.688 6859.6 479.9 2169.719
        2002 2906.16 7702.8 475.1 2250.177
        2003 3011.424 8472.2 479.4 2359.499
        2004 3441.62 9421.6 495.2 2713.878

        房地產影響因素分析

        X1=建材成本(元/平方米 )  X2=居民人均收入(元)     X3=物價指數     Y=房地產價格(元/平方米)
        初定模型:Y=c+a1*x1 +a2*x2 +a3*x3+et
        Dependent Variable: Y
        Method: Least Squares
        Date: 06/05/05   Time: 23:04
        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        X3 2.537578 0.590422 4.297908 0.0013
        X2 0.146495 0.020968 6.986568 0.0000
        X1 -0.018016 0.035019 -0.514447 0.6171
        C 33.20929 118.2747 0.280781 0.7841
        R-squared 0.983094     Mean dependent var 1753.317
        Adjusted R-squared 0.978483     S.D. dependent var 600.9536
        S.E. of regression 88.15143     Akaike info criterion 12.01917
        Sum squared resid 85477.42     Schwarz criterion 12.20798
        Log likelihood -86.14376     F-statistic 213.2186
        Durbin-Watson stat 1.504263     Prob(F-statistic) 0.000000

        一:多元線性回歸
           
                  
        Dependent Variable: Y
        Method: Least Squares
        Date: 06/05/05   Time: 23:05
        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        X1 0.336010 0.151084 2.223999 0.0445
        C 792.0169 453.4460 1.746662 0.1043
        R-squared 0.275612     Mean dependent var 1753.317
        Adjusted R-squared 0.219889     S.D. dependent var 600.9536
        S.E. of regression 530.7855     Akaike info criterion 15.51016
        Sum squared resid 3662533.     Schwarz criterion 15.60457
        Log likelihood -114.3262     F-statistic 4.946171
        Durbin-Watson stat 0.275870     Prob(F-statistic) 0.044490

        Dependent Variable: Y
        Method: Least Squares
        Date: 06/05/05   Time: 23:09
        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        X3 5.501779 0.525075 10.47809 0.0000
        C -486.8605 220.1227 -2.211769 0.0455
        R-squared 0.894128     Mean dependent var 1753.317
        Adjusted R-squared 0.885984     S.D. dependent var 600.9536
        S.E. of regression 202.9191     Akaike info criterion 13.58706
        Sum squared resid 535290.2     Schwarz criterion 13.68146
        Log likelihood -99.90293     F-statistic 109.7903
        Durbin-Watson stat 0.440527     Prob(F-statistic) 0.000000

        Dependent Variable: Y
        Method: Least Squares
        Date: 06/05/05   Time: 23:10
        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        X2 0.236347 0.015879 14.88417 0.0000
        C 561.9975 88.56333 6.345713 0.0000
        R-squared 0.944572     Mean dependent var 1753.317
        Adjusted R-squared 0.940308     S.D. dependent var 600.9536
        S.E. of regression 146.8243     Akaike info criterion 12.93992
        Sum squared resid 280245.9     Schwarz criterion 13.03432
        Log likelihood -95.04937     F-statistic 221.5384
        Durbin-Watson stat 0.475648     Prob(F-statistic) 0.000000

        Dependent Variable: Y
        Method: Least Squares
        Date: 06/07/05   Time: 21:42
        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        X3 2.355833 0.458340 5.139923 0.0002
        X2 0.150086 0.019157 7.834714 0.0000
        C 37.56794 114.2991 0.328681 0.7481
        R-squared 0.982687     Mean dependent var 1753.317
        Adjusted R-squared 0.979802     S.D. dependent var 600.9536
        S.E. of regression 85.40783     Akaike info criterion 11.90961
        Sum squared resid 87533.98     Schwarz criterion 12.05122
        Log likelihood -86.32207     F-statistic 340.5649
        Durbin-Watson stat 1.408298     Prob(F-statistic) 0.000000


            得到結果發現,x1的系數小,然后對y與x1回歸可決系數小,相關性差,剔出這個因素。因為價格更多取決于供需關系。
        修正之后為:Y=c+a2*x2+a3*x3+et
        二:多重線性分析:三個表如上:
            X2 與X3 存在多重共線性,
        1.000000  0.876073
         0.876073  1.000000

        Dependent Variable: Y
        Method: Least Squares
        Date: 06/05/05   Time: 23:09
        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        X3 5.501779 0.525075 10.47809 0.0000
        C -486.8605 220.1227 -2.211769 0.0455
        R-squared 0.894128     Mean dependent var 1753.317
        Adjusted R-squared 0.885984     S.D. dependent var 600.9536
        S.E. of regression 202.9191     Akaike info criterion 13.58706
        Sum squared resid 535290.2     Schwarz criterion 13.68146
        Log likelihood -99.90293     F-statistic 109.7903
        Durbin-Watson stat 0.440527     Prob(F-statistic) 0.000000

        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        X2 0.236347 0.015879 14.88417 0.0000
        C 561.9975 88.56333 6.345713 0.0000
        R-squared 0.944572     Mean dependent var 1753.317
        Adjusted R-squared 0.940308     S.D. dependent var 600.9536
        S.E. of regression 146.8243     Akaike info criterion 12.93992
        Sum squared resid 280245.9     Schwarz criterion 13.03432
        Log likelihood -95.04937     F-statistic 221.5384
        Durbin-Watson stat 0.475648     Prob(F-statistic) 0.000000

         由于引入物價指數改善小,所以模型僅一步改進為:Y=c+a2*x2+et

        三:異方差檢驗:
          
        ARCH Test:
        F-statistic 1.315031     Probability 0.335173
        Obs*R-squared 3.963227     Probability 0.265462
            
        Test Equation:
        Dependent Variable: RESID^2
        Method: Least Squares
        Date: 06/05/05   Time: 23:46
        Sample(adjusted): 1993 2004
        Included observations: 12 after adjusting endpoints
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 22737.94 10296.61 2.208295 0.0582
        RESID^2(-1) 0.241952 0.383144 0.631493 0.5453
        RESID^2(-2) -0.327769 0.404787 -0.809734 0.4415
        RESID^2(-3) -0.273720 0.378355 -0.723449 0.4900
        R-squared 0.330269     Mean dependent var 16705.23
        Adjusted R-squared 0.079120     S.D. dependent var 18205.33
        S.E. of regression 17470.29     Akaike info criterion 22.63559
        Sum squared resid 2.44E+09     Schwarz criterion 22.79723
        Log likelihood -131.8136     F-statistic 1.315031
        Durbin-Watson stat 1.842435     Prob(F-statistic) 0.335173

         

         ARCH=3.963<臨界值7.81473
         所以無異方差
         
         
        White Heteroskedasticity Test:
        F-statistic 0.159291     Probability 0.854522
        Obs*R-squared 0.387928     Probability 0.823687
            
        Test Equation:
        Dependent Variable: RESID^2
        Method: Least Squares
        Date: 06/05/05   Time: 23:46
        Sample: 1990 2004
        Included observations: 15
        Variable Coefficient Std. Error t-Statistic Prob. 
        C 31063.28 22612.20 1.373740 0.1946
        X2 -5.055754 9.640127 -0.524449 0.6095
        X2^2 0.000421 0.000907 0.464605 0.6505
        R-squared 0.025862     Mean dependent var 18683.06
        Adjusted R-squared -0.136494     S.D. dependent var 18673.13
        S.E. of regression 19906.77     Akaike info criterion 22.81236
        Sum squared resid 4.76E+09     Schwarz criterion 22.95397
        Log likelihood -168.0927     F-statistic 0.159291
        Durbin-Watson stat 1.357657     Prob(F-statistic) 0.854522

         

         WHITE=0.3879<臨界值7.81473
         無異方差。

        四:自相關分析:
          DW=0.4756
         查表的dl=1.077 。洌酰剑保常叮
         存在自相關
         廣義差分法修正:ρ=1-0.4756/2=0.7622
         
         
        Dependent Variable: DY
        Method: Least Squares
        Date: 06/06/05   Time: 00:18
        Sample(adjusted): 1991 2004
        Included observations: 14 after adjusting endpoints
        Variable Coefficient Std. Error t-Statistic Prob. 
        DX2 0.182086 0.034918 5.214655 0.0002
        C 236.5589 63.27388 3.738650 0.0028
        R-squared 0.693820     Mean dependent var 544.1620
        Adjusted R-squared 0.668305     S.D. dependent var 148.7133
        S.E. of regression 85.64840     Akaike info criterion 11.86994
        Sum squared resid 88027.77     Schwarz criterion 11.96124
        Log likelihood -81.08959     F-statistic 27.19263
        Durbin-Watson stat 1.584278     Prob(F-statistic) 0.000217

         得出:回歸后可決系數降低,考慮其他方法。
         1.迭代法:表:
           發現可決系數提高,F統計量提高,DW=1.5547〉1.361
         已經無自相關。
        結論:Y-bY(-1)=c*(1-b)+a2*(x2-b*x2(-1))+et

        由下表的b=0.681
         C=561.9975    a2=0.236347    179.2772
         Y*= Y-0.681Y(-1)      X*= x2-0.681*x2(-1)
         Y*=179.2272 +0.2363X*+et
         
         

        Method: Least Squares
        Date: 06/07/05   Time: 20:57
        Sample(adjusted): 1991 2004
        Included observations: 14 after adjusting endpoints
        Variable Coefficient Std. Error t-Statistic Prob. 
        E2 0.680509 0.177696 3.829624 0.0024
        C 11.68773 24.88825 0.469608 0.6471
        R-squared 0.549989     Mean dependent var 15.32764
        Adjusted R-squared 0.512488     S.D. dependent var 133.2751
        S.E. of regression 93.05539     Akaike info criterion 12.03583
        Sum squared resid 103911.7     Schwarz criterion 12.12712
        Log likelihood -82.25081     F-statistic 14.66602
        Durbin-Watson stat 1.313042     Prob(F-statistic) 0.002397

         2.改進模型方程(對數法,然后用迭代法):Ly-bLy(-1)= c*(1-b)+a2*(Lx2-b*Lx2(-1)
         可決系數很高,F統計量相對1中也有提高,DW=1.81>1.361
         無自相關。
         
        Dependent Variable: LY
        Method: Least Squares
        Date: 06/06/05   Time: 10:24
        Sample(adjusted): 1991 2004
        Included observations: 14 after adjusting endpoints
        Convergence achieved after 7 iterations
        Variable Coefficient Std. Error t-Statistic Prob. 
        LX2 0.586203 0.100243 5.847799 0.0001
        C 2.525810 0.882350 2.862594 0.0154
        AR(1) 0.567144 0.220457 2.572589 0.0259
        R-squared 0.980054     Mean dependent var 7.460096
        Adjusted R-squared 0.976428     S.D. dependent var 0.351331
        S.E. of regression 0.053941     Akaike info criterion -2.814442
        Sum squared resid 0.032006     Schwarz criterion -2.677501
        Log likelihood 22.70109     F-statistic 270.2458
        Durbin-Watson stat 1.810100     Prob(F-statistic) 0.000000
        Inverted AR Roots        .57


        Dependent Variable: E1
        Method: Least Squares
        Date: 06/07/05   Time: 21:00
        Sample(adjusted): 1991 2004
        Included observations: 14 after adjusting endpoints
        Variable Coefficient Std. Error t-Statistic Prob. 
        E2 0.501784 0.219561 2.285394 0.0413
        C 0.006639 0.015069 0.440600 0.6673
        R-squared 0.303258     Mean dependent var 0.007495
        Adjusted R-squared 0.245197     S.D. dependent var 0.064877
        S.E. of regression 0.056365     Akaike info criterion -2.782368
        Sum squared resid 0.038124     Schwarz criterion -2.691074
        Log likelihood 21.47658     F-statistic 5.223026
        Durbin-Watson stat 1.517853     Prob(F-statistic) 0.041274

         用1,2兩種修正,兩種效果都很好,都消除了自相關,相比較2更好。
        所以,方程:b=0.502
          Y*= Ly-o.502*Ly(-1)   X*= Lx2-0.502*Lx2(-1)
        Y*=1.2579+0.5862X*+et

        以上就是通過分析和檢驗得到的回歸方程。所以,人均收入水平的高低在一定程度上影響房地產價格。當前的房地產價格增長背后收入是不可忽略的因素。

        資料來源:中經網,國家統計局網站,

        【房地產影響因素分析】相關文章:

        1.美國留學影響就業因素分析

        2.影響生化檢測的常見因素分析

        3.房地產經濟波動的影響因素分析及對策論文

        4.分析影響學生心理健康的因素

        5.影響英語聽力因素的分析論文

        6.高校行政管理效率影響因素分析

        7.審計證據數量的影響因素分析論文

        8.醫院員工敬業度及其影響因素分析

        9.關于競爭情報的主要影響因素分析論文

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>