1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中必修二數學知識點總結

        時間:2024-10-14 07:40:38 學習總結 我要投稿
        • 相關推薦

        高中必修二數學知識點總結

          高中必修二數學有哪一些知識點呢?我們應該怎么進行總結呢?高中必修二數學知識點總結是小編為大家整理的,在這里跟大家分享一下。

        高中必修二數學知識點總結

          高中必修二數學知識點總結

          1定理總結

          公理1:如果一條直線上的兩點在一個平面內,那么這條直線上的所有的點都在這個平面內。公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。公理3:過不在同一條直線上的三個點,有且只有一個平面。

          推論1:經過一條直線和這條直線外一點,有且只有一個平面。

          推論2:經過兩條相交直線,有且只有一個平面。

          推論3:經過兩條平行直線,有且只有一個平面。

          公理4:平行于同一條直線的兩條直線互相平行。

          等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

          2空間兩直線的位置關系

          空間兩條直線只有三種位置關系:平行、相交、異面

          1、按是否共面可分為兩類:

          (1)共面:平行、相交

          (2)異面:

          異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

          異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

          兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

          兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

          2、若從有無公共點的角度看可分為兩類:

          (1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

          直線和平面的位置關系:

          直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行

          ①直線在平面內——有無數個公共點

         、谥本和平面相交——有且只有一個公共點

          直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

          空間向量法(找平面的法向量)

          規定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角

          由此得直線和平面所成角的取值范圍為[0°,90°]

          最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

          三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

          直線和平面垂直

          直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

          直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

          直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

          直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

          直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

          直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

          3兩個平面的位置關系

          (1)兩個平面互相平行的定義:空間兩平面沒有公共點

          (2)兩個平面的位置關系:

          兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

          a、平行

          兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

          兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交

          二面角

          (1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

          (2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

          (3)二面角的棱:這一條直線叫做二面角的棱。

          (4)二面角的面:這兩個半平面叫做二面角的面。

          (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的.平面角。

          (6)直二面角:平面角是直角的二面角叫做直二面角。

          兩平面垂直

          兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

          兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直

          兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平

          二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)

          4多面體

          1、棱柱

          棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

          棱柱的性質

          (1)側棱都相等,側面是平行四邊形

          (2)兩個底面與平行于底面的截面是全等的多邊形

          (3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形

          2、棱錐

          棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

          棱錐的性質:

          (1)側棱交于一點。側面都是三角形

          (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

          3、正棱錐

          正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

          正棱錐的性質:

          (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

          (3)多個特殊的直角三角形

          a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

          b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

        【高中必修二數學知識點總結】相關文章:

        高中化學必修二知識點總結09-10

        高中政治必修二知識點總結06-19

        高中必修一數學知識點總結04-06

        高二數學知識點總結歸納必修10-26

        數學必修1知識點總結04-03

        生物必修二知識點總結04-03

        必修二政治知識點總結07-06

        數學必修3統計知識點的總結12-28

        高考歷史必修二知識點總結04-06

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>