1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中必修一數學知識點總結

        時間:2024-10-14 15:52:17 學習總結 我要投稿
        • 相關推薦

        高中必修一數學知識點總結

          高一數學必修一的學習,需要大家對知識點進行總結,這樣大家最大效率地提高自己的學習成績。下面高中必修一數學知識點總結是小編為大家整理的,在這里跟大家分享一下。

        高中必修一數學知識點總結

          高中必修一數學知識點總結

          第一章 集合與函數概念

          一、集合有關概念

          1.集合的含義

          2.集合的中元素的三個特性:

          (1)元素的確定性如:世界上最高的山

          (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          (3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

          3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

          (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

          (2)集合的表示方法:列舉法與描述法。

          注意:常用數集及其記法:X Kb 1.C om

          非負整數集(即自然數集) 記作:N

          正整數集 :N*或 N+

          整數集: Z

          有理數集: Q

          實數集: R

          1)列舉法:{a,b,c……}

          2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{xR|x-3>2} ,{x|x-3>2}

          3) 語言描述法:例:{不是直角三角形的三角形}

          4) Venn圖:

          4、集合的分類:

          (1)有限集 含有有限個元素的集合

          (2)無限集 含有無限個元素的集合

          (3)空集 不含任何元素的集合  例:{x|x2=-5}

          二、集合間的基本關系

          1.“包含”關系—子集

          注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

          2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

          實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

          即:① 任何一個集合是它本身的子集。AA

         、 真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)

         、 如果 AB, BC ,那么 AC

         、 如果AB 同時 BA 那么A=B

          3. 不含任何元素的集合叫做空集,記為Φ

          規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

          4.子集個數:

          有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

          三、集合的運算

          運算類型 交 集 并 集 補 集

          定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

          由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

          設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

          記作 ,即

          CSA=

          A A=A

          A Φ=Φ

          A B=B A

          A B A

          A B B

          A A=A

          A Φ=A

          A B=B A

          A B A

          A B B

          (CuA) (CuB)

          = Cu (A B)

          (CuA) (CuB)

          = Cu(A B)

          A (CuA)=U

          A (CuA)= Φ.

          二、函數的有關概念

          1.函數的概念

          設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

          注意:

          1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

          求函數的定義域時列不等式組的主要依據是:

          (1)分式的分母不等于零;

          (2)偶次方根的被開方數不小于零;

          (3)對數式的真數必須大于零;

          (4)指數、對數式的底必須大于零且不等于1.

          (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

          (6)指數為零底不可以等于零,

          (7)實際問題中的函數的定義域還要保證實際問題有意義.

          相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);

          ②定義域一致 (兩點必須同時具備)

          2.值域 : 先考慮其定義域

          (1)觀察法 (2)配方法 (3)代換法

          3. 函數圖象知識歸納

          (1)定義:

          在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .

          (2) 畫法

          1.描點法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換

          4.區間的概念

          (1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間 (3)區間的數軸表示.

          5.映射

          一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f(對應關系):A(原象) B(象)”

          對于映射f:A→B來說,則應滿足:

          (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;

          (2)集合A中不同的元素,在集合B中對應的象可以是同一個;

          (3)不要求集合B中的每一個元素在集合A中都有原象。

          6.分段函數

          (1)在定義域的不同部分上有不同的解析表達式的函數。

          (2)各部分的自變量的取值情況.

          (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

          補充:復合函數

          如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。

          二.函數的'性質

          1.函數的單調性(局部性質)

          (1)增函數

          設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1

          如果對于區間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

          注意:函數的單調性是函數的局部性質;

          (2) 圖象的特點

          如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

          (3).函數單調區間與單調性的判定方法

          (A) 定義法:

          (1)任取x1,x2∈D,且x1

          (2)作差f(x1)-f(x2);或者做商

          (3)變形(通常是因式分解和配方);

          (4)定號(即判斷差f(x1)-f(x2)的正負);

          (5)下結論(指出函數f(x)在給定的區間D上的單調性).

          (B)圖象法(從圖象上看升降)

          (C)復合函數的單調性

          復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

          注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集.

          8.函數的奇偶性(整體性質)

          (1)偶函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

          (2)奇函數:一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

          (3)具有奇偶性的函數的圖象的特征:偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

          9.利用定義判斷函數奇偶性的步驟:

          ○1首先確定函數的定義域,并判斷其是否關于原點對稱;

          ○2確定f(-x)與f(x)的關系;

          ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

          注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .

          10、函數的解析表達式

          (1)函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

          (2)求函數的解析式的主要方法有:1.湊配法2.待定系數法3.換元法4.消參法

          11.函數最大(小)值

          ○1 利用二次函數的性質(配方法)求函數的最大(小)值

          ○2 利用圖象求函數的最大(小)值

          ○3 利用函數單調性的判斷函數的最大(小)值:

          如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

          如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

          第三章 基本初等函數

          一、指數函數

          (一)指數與指數冪的運算

          1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.

          負數沒有偶次方根;0的任何次方根都是0,記作 。

          當 是奇數時, ,當 是偶數時,

          2.分數指數冪

          正數的分數指數冪的意義,規定:

          ,

          0的正分數指數冪等于0,0的負分數指數冪沒有意義

          3.實數指數冪的運算性質

          (1) • ;

          (2) ;

          (3) .

          (二)指數函數及其性質

          1、指數函數的概念:一般地,函數 叫做指數函數,其中x是自變量,函數的定義域為R.

          注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

          2、指數函數的圖象和性質

          a>1 0

          定義域 R 定義域 R

          值域y>0 值域y>0

          在R上單調遞增 在R上單調遞減

          非奇非偶函數 非奇非偶函數

          函數圖象都過定點(0,1) 函數圖象都過定點(0,1)

          注意:利用函數的單調性,結合圖象還可以看出:

          (1)在[a,b]上, 值域是 或 ;

          (2)若 ,則 ; 取遍所有正數當且僅當 ;

          (3)對于指數函數 ,總有 ;

          二、對數函數

          (一)對數

          1.對數的概念:

          一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

          說明:○1 注意底數的限制 ,且 ;

          ○2 ;

          ○3 注意對數的書寫格式.

          兩個重要對數:

          ○1 常用對數:以10為底的對數 ;

          ○2 自然對數:以無理數 為底的對數的對數 .

          指數式與對數式的互化

          冪值 真數

          = N = b

          底數

          指數 對數

          (二)對數的運算性質

          如果 ,且 , , ,那么:

          ○1 • + ;

          ○2 - ;

          ○3 .

          注意:換底公式: ( ,且 ; ,且 ; ).

          利用換底公式推導下面的結論:(1) ;(2) .

          (3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恒等式

          (二)對數函數

          1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞).

          注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱其為對數型函數.

          ○2 對數函數對底數的限制: ,且 .

          2、對數函數的性質:

          a>1 0

          定義域x>0 定義域x>0

          值域為R 值域為R

          在R上遞增 在R上遞減

          函數圖象都過定點(1,0) 函數圖象都過定點(1,0)

          (三)冪函數

          1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.

          2、冪函數性質歸納.

          (1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1);

          (2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

          (3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.

          第四章 函數的應用

          一、方程的根與函數的零點

          1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。

          2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。

          即:方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.

          3、函數零點的求法:

          ○1 (代數法)求方程 的實數根;

          ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點.

          4、二次函數的零點:

          二次函數 .

          (1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.

          (2)△=0,方程 有兩相等實根,二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.

          (3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

          5.函數的模型

        【高中必修一數學知識點總結】相關文章:

        高中化學必修一知識點總結08-24

        高中化學必修二知識點總結09-10

        高中政治必修2知識點總結04-06

        高中政治必修二知識點總結06-19

        高中必修二數學知識點總結04-06

        高中化學必修一知識點總結10-27

        高中必修一化學知識點總結大全06-10

        高中政治必修三知識點總結06-20

        人教版高中化學必修一知識點總結04-04

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>