1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高一數學知識點總結

        高一新生的學習主動性太差是一個普遍存在的問題。小學生,常常是完成了作業就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學習好。高中則不然,作業雖多,但是只知做作業就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明。因此,高中新生必須提高自己學習的主動性。準備向將來的大學生的學習方法過渡。

        高一數學知識點總結1

          一、集合有關概念

          1. 集合的含義

          2. 集合的中元素的三個特性:

          (1) 元素的確定性,

          (2) 元素的互異性,

          (3) 元素的無序性,

          3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

          (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

          (2) 集合的表示方法:列舉法與描述法。

          ? 注意:常用數集及其記法:

          非負整數集(即自然數集) 記作:N

          正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R

          1) 列舉法:{a,b,c……}

          2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

          3) 語言描述法:例:{不是直角三角形的三角形}

          4) Venn圖:

          4、集合的分類:

          (1) 有限集 含有有限個元素的集合

          (2) 無限集 含有無限個元素的集合

          (3) 空集 不含任何元素的集合 例:{x|x2=-5}

          二、集合間的基本關系

          1.“包含”關系—子集

          注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

          2.“相等”關系:A=B (5≥5,且5≤5,則5=5)

          實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

          即:① 任何一個集合是它本身的子集。A?A

         、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

         、廴绻 A?B, B?C ,那么 A?C

         、 如果A?B 同時 B?A 那么A=B

          3. 不含任何元素的集合叫做空集,記為Φ

          規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

          ? 有n個元素的集合,含有2n個子集,2n-1個真子集

          三、集合的運算

          運算類型 交 集 并 集 補 集

          定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

          由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

          設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

          二、函數的有關概念

          1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

          注意:

          1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。

          求函數的定義域時列不等式組的主要依據是:

          (1)分式的分母不等于零;

          (2)偶次方根的被開方數不小于零;

          (3)對數式的真數必須大于零;

          (4)指數、對數式的底必須大于零且不等于1.

          (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

          (6)指數為零底不可以等于零,

          (7)實際問題中的函數的定義域還要保證實際問題有意義.

          相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)

          2.值域 : 先考慮其定義域

          (1)觀察法

          (2)配方法

          (3)代換法

          3. 函數圖象知識歸納

          (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .

          (2) 畫法

          A、 描點法:

          B、 圖象變換法

          常用變換方法有三種

          1) 平移變換

          2) 伸縮變換

          3) 對稱變換

          4.區間的概念

          (1)區間的分類:開區間、閉區間、半開半閉區間

          (2)無窮區間

          (3)區間的數軸表示.

          5.映射

          一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B

          6.分段函數

          (1)在定義域的不同部分上有不同的解析表達式的函數。

          (2)各部分的自變量的取值情況.

          (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

          補充:復合函數

          如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。

          二.函數的性質

          1.函數的單調性(局部性質)

          (1)增函數

          設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1

          如果對于區間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

          注意:函數的單調性是函數的局部性質;

          (2) 圖象的特點

          如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

          (3).函數單調區間與單調性的判定方法

          (A) 定義法:

          ○1 任取x1,x2∈D,且x1

          ○2 作差f(x1)-f(x2);

          ○3 變形(通常是因式分解和配方);

          ○4 定號(即判斷差f(x1)-f(x2)的正負);

          ○5 下結論(指出函數f(x)在給定的區間D上的單調性).

          (B)圖象法(從圖象上看升降)

          (C)復合函數的單調性

          復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

          注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其并集.

          8.函數的奇偶性(整體性質)

          (1)偶函數

          一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

          (2).奇函數

          一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

          (3)具有奇偶性的函數的圖象的特征

          偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

          利用定義判斷函數奇偶性的步驟:

          ○1首先確定函數的定義域,并判斷其是否關于原點對稱;

          ○2確定f(-x)與f(x)的關系;

          ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

          (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

          (3)利用定理,或借助函數的圖象判定 .

          9、函數的解析表達式

          (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

          (2)求函數的解析式的主要方法有:

          1) 湊配法

          2) 待定系數法

          3) 換元法

          4) 消參法

          10.函數最大(小)值(定義見課本p36頁)

          ○1 利用二次函數的性質(配方法)求函數的最大(小)值

          ○2 利用圖象求函數的最大(小)值

          ○3 利用函數單調性的判斷函數的最大(小)值:

          如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

          如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

        高一數學知識點總結2

          一、直線與方程

          (1)直線的傾斜角

          定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

          (2)直線的斜率

         、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

          ②過兩點的直線的斜率公式:

          注意下面四點:

          (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90

          (2)k與P1、P2的順序無關;

          (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

          (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

          (3)直線方程

         、冱c斜式:直線斜率k,且過點

          注意:當直線的斜率為0時,k=0,直線的方程是y=y1。當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

         、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

          ③兩點式:()直線兩點,

          ④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

         、菀话闶剑(A,B不全為0)

         、菀话闶剑(A,B不全為0)

          注意:○1各式的適用范圍

          ○2特殊的方程如:平行于x軸的直線:(b為常數);平行于y軸的直線:(a為常數);

          (4)直線系方程:即具有某一共同性質的直線

          (一)平行直線系

          平行于已知直線(是不全為0的常數)的直線系:(C為常數)

          (二)過定點的直線系

          (ⅰ)斜率為k的直線系:直線過定點;

          (ⅱ)過兩條直線,的交點的直線系方程為(為參數),其中直線不在直線系中。

          (5)兩直線平行與垂直;

          注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

          (6)兩條直線的交點

          相交:交點坐標即方程組的一組解。方程組無解;方程組有無數解與重合

          (7)兩點間距離公式:設是平面直角坐標系中的兩個點,則

          (8)點到直線距離公式:一點到直線的距離

          (9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。

        高一數學知識點總結3

          棱錐

          棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

          棱錐的的性質:

          (1)側棱交于一點。側面都是三角形

          (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

          正棱錐

          正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

          正棱錐的性質:

          (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

          (3)多個特殊的直角三角形

          esp:

          a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

          b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>