1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2024-11-10 20:19:39 王娟 高中說課稿 我要投稿

        高中數學說課稿(通用20篇)

          作為一名優秀的教育工作者,編寫說課稿是必不可少的,說課稿有助于教學取得成功、提高教學質量。說課稿應該怎么寫才好呢?下面是小編收集整理的高中數學說課稿,歡迎閱讀與收藏。

        高中數學說課稿(通用20篇)

          高中數學說課稿 1

          說教學目標

          A、知識目標:

          掌握等差數列前n項和公式的推導方法;掌握公式的運用。

          B、能力目標:

         。1)通過公式的探索、發現,在知識發生、發展以及形成過程中培養學生觀察、聯想、歸納、分析、綜合和邏輯推理的能力。

         。2)利用以退求進的思維策略,遵循從特殊到一般的認知規律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數列的求和公式,培養學生類比思維能力。

          (3)通過對公式從不同角度、不同側面的剖析,培養學生思維的靈活性,提高學生分析問題和解決問題的能力。

          C、情感目標:(數學文化價值)

         。1)公式的發現反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

          (2)通過公式的運用,樹立學生"大眾教學"的思想意識。

         。3)通過生動具體的現實問題,令人著迷的數學史,激發學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數學的心理體驗,產生熱愛數學的情感。

          說教學重點:

          等差數列前n項和的公式。

          說教學難點:

          等差數列前n項和的公式的靈活運用。

          說教學方法

          啟發、討論、引導式。

          教具:

          現代教育多媒體技術。

          教學過程

          一、創設情景,導入新課。

          師:上幾節,我們已經掌握了等差數列的概念、通項公式及其有關性質,今天要進一步研究等差數列的.前n項和公式。提起數列求和,我們自然會想到德國偉大的數學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數學習題:"把從1到100的自然數加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

          例1,計算:1+2+3+4+5+6+7+8+9+10。

          這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發言解答。

          生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

          生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫成S=10+9+8+7+6+5+4+3+2+1。

          上面兩式相加得2S=11+10+……+11=10x11=110

          10個

          所以我們得到S=55,即1+2+3+4+5+6+7+8+9+10=55

          師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學的方法相類似。

          理由是:1+100=2+99=3+98=……=50+51=101,有50個101,所以1+2+3+……+100=50x101=5050。請同學們想一下,上面的方法用到等差數列的哪一個性質呢?

          生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。

          二、教授新課(嘗試推導)

          師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。

          生4:Sn=a1+a2+……an—1+an也可寫成

          Sn=an+an—1+……a2+a1

          兩式相加得2Sn=(a1+an)+(a2+an—1)+……(an+a1)

          n個

          =n(a1+an)

          所以Sn=(I)

          師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得

          Sn=na1+d(II)

          上面(I)、(II)兩個式子稱為等差數列的前n項和公式。公式(I)是基本的,我們可以發現,它可與梯形面積公式(上底+下底)x高÷2相類比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學生總結:這些公式中出現了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯系?[an=a1+(n—1)d,Sn==na1+d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。

          三、公式的應用(通過實例演練,形成技能)。

          1、直接代公式(讓學生迅速熟悉公式,即用基本量例2、計算:

         。1)1+2+3+……+n

         。2)1+3+5+……+(2n—1)

          (3)2+4+6+……+2n

         。4)1—2+3—4+5—6+……+(2n—1)—2n

          請同學們先完成(1)—(3),并請一位同學回答。

          生5:直接利用等差數列求和公式(I),得

         。1)1+2+3+……+n=

         。2)1+3+5+……+(2n—1)=

         。3)2+4+6+……+2n==n(n+1)

          師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發言解答。

          生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開,可看成兩個等差數列,所以

          原式=[1+3+5+……+(2n—1)]—(2+4+6+……+2n)

          =n2—n(n+1)=—n

          生7:上題雖然不是等差數列,但有一個規律,兩項結合都為—1,故可得另一解法:

          原式=—1—1—……—1=—n

          n個

          師:很好!在解題時我們應仔細觀察,尋找規律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數列的項數,否則會引起錯解。

          例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

          生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

          又∵d=—2,∴a1=6

          ∴S12=12a1+66x(—2)=—60

          生9:(2)由a1+a2+a3=12,a1+d=4

          a8+a9+a10=75,a1+8d=25

          解得a1=1,d=3

          ∴S10=10a1+=145

          師:通過上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據例3自己編題,作為本節的課外練習題,以便下節課交流。

          師:(繼續引導學生,將第(2)小題改編)

         、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

          ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數列性質,用整體思想考慮求a1+a10的值。

          2、用整體觀點認識Sn公式。

          例4,在等差數列{an},(1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發學生解)

          師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發現了什么?

          生10:根據等差數列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8x18=144。

          師:對!(簡單小結)這個題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數學問題的體現。

          師:由于時間關系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數,那么從二次(或一次)的函數的觀點如何來認識Sn公式后,這留給同學們課外繼續思考。

          最后請大家課外思考Sn公式(1)的逆命題:

          已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說明理由。

          四、小結與作業。

          師:接下來請同學們一起來小結本節課所講的內容。

          生11:1、用倒序相加法推導等差數列前n項和公式。

          2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。

          生12:1、運用Sn公式要注意此等差數列的項數n的值。

          2、具體用Sn公式時,要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

          3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數列的有關性質,看能否用整體思想的方法求a1+an的值。

          師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發現更多的性質,主動積極地去學習。

          本節所滲透的數學方法;觀察、嘗試、分析、歸納、類比、特定系數等。

          數學思想:類比思想、整體思想、方程思想、函數思想等。

          作業:P49:13、14、15、17

          高中數學說課稿 2

          一、教材分析:

          《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節課。本節資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

          二、學情分析:

          學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節資料的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。

          三、教學目的:

          1、經過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

          2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

          3、經過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的能力。

          四、教學重、難點

          重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

          難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。

          五、教學方法

          本節采用以下教學方法:

          1、類比:由數的加法運算類比向量的加法運算。

          2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;經過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。

          3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。

          4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

          六、數學思想的體現:

          1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。

          2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。

          3、歸納思想:主要體現在以下三個環節:

          ①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。

          ②由共線向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。

         、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。

          七、教學過程:

          1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。

          2、引入新課:

          (1)平行四邊形法則的引入。

          學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要經過講解例1,使學生認識到能夠經過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

          設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發揮了作用,加深了學生對向量加法的`平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。

         。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

          所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。

          這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。

          設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。

         。3)共線向量的加法

          方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

          方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做?墒菍W生學過有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導學生嘗試運用三角形法則去做,發現結論正確。

          反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則經過以上幾個環節的討論,能夠作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

          設計意圖:經過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。

          (4)向量加法的運算律

         、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。

          ②結合律:結合律是經過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。

          接下來是對應的兩個練習,運用交換律與結合律計算向量的和。

          設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。

          3、小結

          先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結資料,使學生印象更深。

         。1)平行四邊形法則:起點相同,適用于不共線向量的求和。

          (2)三角形法則首尾相接,適用于任意多個向量的求和。

          高中數學說課稿 3

        尊敬的各位考官:

          大家好!

          我是今天的xx號考生,今天我說課的題目是《直線與平面平行的判定》。

          高中數學課程以學生發展為本,提升數學學科核心素養。這節課我將秉承這一教學理念,從教材分析、教學目標、教學過程等幾個方面來展開我的說課。

          一、說教材

          本節課選自人教A版高中數學必修2第二章第2節。此前學生對空間立體幾何已經有了一定的感知。通過本節課的學習,能使學生進一步了解空間中直線與平面平行關系的判定方法,培養學生的邏輯思維和空間想象能力。

          二、說學情

          學生已經學習了空間中點、直線、平面間的位置關系,知道若直線與平面平行,則沒有公共點,但直接利用定義無法進行判斷。因而我會注意在教學時逐步引導學生,在辯證思考中探索直線與平面平行的條件。

          三、說教學目標

          根據以上對教材的分析和對學情的把握,我設置本節課的教學目標如下:

         。ㄒ唬┲R與技能

          掌握直線與平面平行的判定定理,會用文字語言、符號語言和圖形語言描述判定定理,并會進行簡單應用。

         。ǘ┻^程與方法

          通過直觀感知、觀察、操作確認的認知過程,培養空間想象力和邏輯思維能力,體會“降維”的思想。

          (三)情感、態度與價值觀

          通過生活中的實例,體會平行關系在生活中的.廣泛應用;在探究線面平行判定定理的過程中,形成學習數學的積極態度。

          四、說教學重難點

          根據學生現有的知識儲備和知識本身的難易程度,我設置本節課教學重點為:直線與平面平行的判定定理。教學難點為:直線與平面平行的判定定理的探究。

          五、說教法和學法

          為達成教學目標,突破教學重難點,本節課我將采用講授法、自主探究法、練習法等教學方法,以達到教與學的和諧完美統一。

          六、說教學過程

          下面我將重點談談我的教學過程。

         。ㄒ唬┮胄抡n

          導入環節我會帶領學生從文字語言、圖形語言和符號語言這三個角度復習直線與平面有哪些位置關系。接著我會請學生思考,該如何判定直線與平面平行。根據定義,只需判定直線與平面沒有公共點即可。但直線無限伸長,平面無限延展,如何保證直線與平面無公共點。由此引發認知沖突,引入本節課的學習。

          通過復習導入,不僅鞏固了之前所學,建立起新舊知識之間的聯系,而且能夠有效激發起學生的學習興趣,從而為下面的學習打好基礎。

          (二)講解新知

          接下來是新知講解環節。

          我會請學生觀察,教室門扇的兩邊是平行的,當門扇繞著一邊轉動時,觀察門扇轉動的一邊和門框所在平面有怎樣的位置關系。并組織學生動手操作,將書本平放在桌面上,翻動書的封面,封面邊緣所在直線與桌面所在平面具有什么樣的位置關系。

          學生不難看出其中的平行關系。在此基礎上,我會請學生同桌兩人交流討論,如果直線與平面平行,則這條直線與平面內多少條直線平行。如果這條直線平行于平面內的無數條直線,那么這條直線是否一定與這個平面平行。

         。ㄈ┱n堂練習

          除了知道知識,學生還要能對知識進行應用。我會出示以下練習題:求證空間四邊形相鄰兩邊中點的連線平行于另外兩邊所在的平面。結合這一練習題,我會進一步強調,線面平行問題可轉化為線線平行問題。這也為之后線面、面面關系的學習奠定基礎。

         。ㄋ模┬〗Y作業

          課堂小結部分,我會充分發揮學生的主體性,請學生說一說本節課的收獲。收獲不僅僅只是知識方面,也可以說一說這節課學到的思想方法等,進一步培養學生的綜合素質。

          課后作業我會請學生完成書上相應練習題,使學生在課后也能得到思考,夯實學生對于新知的掌握。

          七、說板書設計

          我的板書設計遵循簡潔明了、突出重點的原則,以下是我的板書設計:

          略。

          高中數學說課稿 4

        各位老師:

          大家好!

          我叫xx,來自xx。我說課的題目是《用樣本的數字特征估計總體的數字特征》,內容選自于高中教材新課程人教A版必修3第二章第二節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1、教材所處的地位和作用

          在上一節我們已經學習了用圖、表來組織樣本數據,并且學習了如何通過圖、表所提供的信息,用樣本的頻率分布估計總體的分布情況。本節課是在前面所學內容的基礎上,進一步學習如何通過樣本的情況來估計總體,從而使我們能從整體上更好地把握總體的規律,為現實問題的解決提供更多的幫助。

          2、教學的重點和難點

          重點:

         、拍芾妙l率頒布直方圖估計總體的眾數,中位數,平均數。

         、企w會樣本數字特征具有隨機性

          難點:能應用相關知識解決簡單的實際問題。

          二、教學目標分析

          1、知識與技能目標

         。1)能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。

         。2)能用樣本的眾數,中位數,平均數估計總體的眾數,中位數,平均數,并結合實際,對問題作出合理判斷,制定解決問題的有效方法。

          2、過程與方法目標:

          通過對本節課知識的學習,初步體會、領悟"用數據說話"的統計思想方法。

          3、情感態度與價值觀目標:

          通過對有關數據的搜集、整理、分析、判斷培養學生"實事求是"的科學態度和嚴謹的工作作風。

          三、教學方法與手段分析

          1、教學方法:結合本節課的教學內容和學生的認知水平,在教法上,我采用"問答探究"式的教學方法,層層深入。充分發揮教師的主導作用,讓學生真正成為教學活動的主體。

          2、教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。

          四、教學過程分析

          1、復習回顧,問題引入

          「屏幕顯示」

          〈問題1〉在日常生活中,我們往往并不需要了解總體的分布形態,而是更關心總體的某一數字特征,例如:買燈泡時,我們希望知道燈泡的平均使用壽命,我們怎樣了解燈泡的的使用壽命呢?當然不能把所有燈泡一一測試,因為測試后燈泡則報廢了。于是,需要通過隨機抽樣,把這批燈泡的壽命看作總體,從中隨機取出若干個個體作為樣本,算出樣本的數字特征,用樣本的數字特征來估計總體的數字特征。

          提出問題:什么是平均數,眾數,中位數?

          (教師提問,鋪墊復習,學生思考、積極回答。根據學生回答,給出補充總結,借助用多媒體分別給出他們的定義)

          「設計意圖」使學生對本節課的學習做好知識準備。

         。ㄟM一步提出實例、導入新課。)

          「屏幕顯示」

          〈問題2〉選擇薪水高的職業是人之常情,假如你大學畢業有兩個工作相當的單位可供選擇,現各從甲乙兩單位分別隨機抽取了50名員工的月工資資料如下(單位:元)

          分組計算這兩組50名員工的月工資平均數,眾數,中位數并估計這兩個公司員工的平均工資。你選擇哪一個公司,并說明你的理由。

         。▽W生分組分別求兩組數據的平均工資。

          學生:甲、乙平均工資分別為:甲:1320元,乙:1530元。

          所以我選乙公司。

          學生乙:甲、乙兩公司的眾數分別為甲:1200,乙:1000,所以我選擇甲公司。

          學生丙:我要根據我的能力選擇。)

          「設計意圖」學生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據并不可靠,從而引導學生進一步深入問題。

          2講授新課,深入認識

         、拧钙聊伙@示」

          例如,在上一節抽樣調查的100位居民的月均用水量的數據中,我們畫出了這組數據的頻率分布直方圖,F在,觀察這組數據的頻率分布直方圖,能否得出這組數據的眾數、中位數和平均數?

         。ò褜W生分成若干小組,分別計算平均數、中位數、眾數,或估計平均數、中位數、眾數。然后比較結果,會發現通過計算的結果和通過估計的'結果出現了一定的誤差。引導學生分析產生誤差的原因。原因是由于樣本數據的頻率分布直方圖把原始的一些數據給遺失了。讓學生明白產生這樣的誤差對總體的估計沒有大的影響,因為樣本本身也有隨機性。)

          「設計意圖」讓學生懂得如何根據頻率分布直方圖估計樣本的平均數、中位數和眾數。使學生明白從直方圖中估計樣本的數字特征雖然會有一些誤差,但直觀、快速、可避免繁瑣的計算和閱讀數據的過程。

         、啤刺岢鰡栴}〉根據樣本的眾數、中位數、平均數估計總體平均數的基本數據,并對上一節的探究問題制定一個合理平價用水量的的標準。

         。◣熒ㄟ^共同交流探討得知僅以平均數或只使用中位數或眾數制定出平價用水標準都是不合理的,必須綜合考慮才能做出合理的選擇)

          「設計意圖」使學生會依據眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇。也為接下來對他們優缺點的總結打下基礎。

         、强偨Y出眾數、中位數、平均數三種數字特征的優缺點。

         。ㄏ扔蓪W生思考,然后再老師的引導下做出總結)

          「設計意圖」使學生能更準確更全面地依據樣本的眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇,使實際問題得到正確的解決。

          3、反思小結、培養能力

          ①學習利用頻率直方圖估計總體的眾數、中位數和平均數的方法。

         、诮榻B眾數、中位數和平均數這三個特征數的優點和缺點。

          ③學習如何利用眾數、中位數和平均數的特征去分析解決實際問題。

          「設計意圖」小節是一堂課的概括和總結,有利于優化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養學生的歸納概括能力

          4、課后作業,自主學習

          課本練習

          [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

          5、板書設計

          略

          高中數學說課稿 5

        各位老師:

          大家好!我叫xx,來自xx。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1、教材所處的地位和作用

          本節課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。

          2、教學的重點和難點

          重點:概率的加法公式及其應用;事件的關系與運算。

          難點:互斥事件與對立事件的區別與聯系

          二、教學目標分析

          1、知識與技能目標

         、帕私怆S機事件間的基本關系與運算;

         、普莆崭怕实膸讉基本性質,并會用其解決簡單的概率問題。

          2、過程與方法:

         、磐ㄟ^觀察、類比、歸納培養學生運用數學知識的綜合能力;

         、仆ㄟ^學生自主探究,合作探究培養學生的動手探索的能力。

          3、情感態度與價值觀:

          通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發學習數學的'情趣。

          三、教法分析

          采用實驗觀察、質疑啟發、類比聯想、探究歸納的教學方法。

          四、教學過程分析

          1、創設情境,引入新課

          在擲骰子的試驗中,我們可以定義許多事件,如:

          c1=﹛出現的點數=1﹜,c2=﹛出現的點數=2﹜

          c3=﹛出現的點數=3﹜,c4=﹛出現的點數=4﹜

          c5=﹛出現的點數=5﹜,c6=﹛出現的點數=6﹜

          D1=﹛出現的點數不大于1﹜D2=﹛出現的點數大于3﹜

          D3=﹛出現的點數小于5﹜,E=﹛出現的點數小于7﹜

          f=﹛出現的點數大于6﹜,G=﹛出現的點數為偶數﹜

          H=﹛出現的點數為奇數﹜

         、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關系和相等關系。

          ⑵從以上兩個關系學生不難發現事件間的關系與集合間的關系相類似。進而引導學生思考,是否可以把事件和集合對應起來。

          「設計意圖」引出我們接下來要學習的主要內容:事件之間的關系與運算

          2、探究新知

         、迨录年P系與運算

         、沤涍^上面的思考,我們得出:

          試驗的可能結果的全體←→全集

          ↓↓

          每一個事件←→子集

          這樣我們就把事件和集合對應起來了,用已有的集合間關系來分析事件間的關系。

          集合的并→兩事件的并事件(和事件)

          集合的交→兩事件的交事件(積事件)

          在此過程中要注意幫助學生區分集合關系與事件關系之間的不同。

         。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發生,表示或者事件A發生,或者事件B發生。)

          「設計意圖」為更好地理解互斥事件和對立事件打下基礎

         、扑伎迹孩偃糁粩S一次骰子,則事件c1和事件c2有可能同時發生么?

          ②在擲骰子實驗中事件G和事件H是否一定有一個會發生?

          「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區別與聯系。

         、强偨Y出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區別與聯系。

         、染毩暎和ㄟ^多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。

         、娓怕实幕拘再|:

         、呕仡櫍侯l率=頻數/試驗的次數

          我們知道當試驗次數足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質、

          (通過對頻率的理解并結合前面投硬幣的實驗來總結出概率的基本性質,師生共同交流得出結果)

          3、典型例題探究

          例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?

          事件A:命中環數大于7環;事件B:命中環數為10環;

          事件c:命中環數小于6環;事件D:命中環數為6、7、8、9、10環

          分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯系與區別弄清楚

          例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:

         。1)取到紅色牌(事件c)的概率是多少?

         。2)取到黑色牌(事件D)的概率是多少?

          分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).

          「設計意圖」通過這兩道例題,進一步鞏固學生對本節課知識的掌握,并將所學知識應用到實際解決問題中去。

          4、課堂小結

         、爬斫馐录年P系和運算

          ⑵掌握概率的基本性質

          「設計意圖」小結是引導學生對問題進行回味與深化,使知識成為系統。讓學生嘗試小結,提高學生的總結能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。

          5、布置作業

          習題3、1A1、3、4

          「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

          五、板書設計

          概率的基本性質

          一)事件間的關系和運算

          二)概率的基本性質

          三)例1的板書區

          例2的板書區

          四)規律性質總結

          高中數學說課稿 6

          一、教材分析

          本節內容是等差數列(第一課時)的內容,屬于數與代數領域的知識。本節是數列課程的新授課,為后面等比數列以及數列求和的知識點作基礎。數列是高中數學重要內容之一,它有著廣泛的實際應用。等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。在數學思想的方面,數列在處理數與數之間的關系中,更多地培養了學生運用函數與函數關系的思想。

          二、教學目標

          根據課程標準的要求和學生的實際水平,確定了本次課的教學目標

         。1)在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想。

         。2)在能力上:培養學生觀察、分析、歸納、推理的能力;以形象的實際例子作為學生理解與練習的模板,使學生在不斷實踐中鞏固學習到的知識;通過階梯性練習,提高學生分析問題和解決問題的'能力。

          (3)在情感上:通過對等差數列在實際問題中的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

          3、教學重點和難點

          根據課程標準的要求我確定本節課的教學重點為:

          ①等差數列的概念。

         、诘炔顢盗械耐椆降耐茖н^程及應用。

          三、教學方法分析:

          對于高中學生,知識經驗比較貧乏,雖然他們的智力發展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以本堂課將從實際中的問題出發,以學生日常生活中較易接觸的一些數學問題,籍此啟發學生對于數列知識點的理解。本節課大多采用啟發式、討論式的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,并學會將數學知識運用到實際問題的解決中。

          四、教學過程

          通過復習上節課數列的定義來引入幾個數列

          1)0,5,10,15,20,25.....

          2)18,15.5,13,10.5,8,4.5

          3)48,53,58,63,68.....

          通過這3個數列,初步認識等差數列的特征,為后面的概念學習建立基礎。由學生觀察第一個數列與第三個數列的特點,并與第二個做對比,引出等差數列的概念。

          新課探究

          1、由引入自然的給出等差數列的概念:

          定義:如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。強調:

          ①“從第二項起”滿足條件;

          ②公差d一定是由后項減前項所得;

         、勖恳豁椗c它的前一項的差必須是同一個常數;

          在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

          an+1-an=d(n≥1)

          同時為了配合概念的理解,引導學生講本不是等差數列的第二組數列修改成等差數列。并由觀察三組數列的不同特點,由此強調:公差可以是正數、負數,并再舉出特例數列1,1,1,1,1,1,1......說明公差也可以是0。

          2、第二個重點部分為等差數列的通項公式

          在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,運用求數列通項公式的辦法------迭加法:整個過程通過互相討論的方式既培養了學生的協作意識又化解了教學難點。

          若一等差數列{an}的首項是a1,公差是d,則據其定義可得:

          a2–a1=da3–a2=da4–a3=d……an–an-1=d將這(n-1)個等式左右兩邊分別相加,就可以得到an–a1=(n-1)d即an=a1+(n-1)d(1)

          當n=1時,(1)也成立,所以對一切n∈N﹡,上面的公式都成立

          因此它就是等差數列{an}的通項公式。對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。

          在這里通過運用迭加法這一數學思想,便于學生從概念理解的過程過渡到運用概念的過程。

          接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)x2,即an=2n-1以此來鞏固等差數列通項公式運用。

          應用舉例

          現實生活中,以學生較為熟悉的iphone手機的數據作為例子。觀察Iphone手機的發布時間,iphone第一代發布于20xx年,第二代發布于20xx年,第三代發布于20xx年,第四代發布于20xx年。現在第六代發布于今年20xx年。首先,讓學生觀察從04年到10年每兩代iphone發布的間隔時間,讓學生自行尋找規律,并在此基礎上讓學生估測第五代iphone的發布時間,并驗證第五代iphone發布于20xx年。同時,再讓學生預測在未來,下一部iphone發布的時間,是學生體驗到將數學知識運用到實際中的方法與步驟。為了加深聯系,再給出了每代iphone的價格:iphone14299;iphone24800;iphone35299;iphone45988;iphone56300。在給出的數據上,將價格隨時間的變化以坐標軸的形式作圖表示出來,讓學生觀察到雖然這些數據非等差,但是可以大致變為等差的直線圖像,讓學生體會到“擬合數據”的思想。在此基礎上,讓學生進行練習,預測14年如今iphone6的上市價格為6888元,并與學生通過數列進行推理的價格進行對比,讓學生對自己在實踐中解決問題的過程中找到一定的認同感。

          五、歸納小結

          提問學生,總結這節課的收獲

          1、等差數列的概念及數學表達式,并強調關鍵字:從第二項開始,它的每一項與前一項之差都等于同一常數。

          2、等差數列的通項公式an=a1+(n-1)d

          3、將讓學生在實踐中了解,將數列知識點運用到實際中的方法。

          4、在課末提出啟發性問題,若是有人將每一部iphone都買入,那他一共花費了多少錢?借此引出了下一節,等差數列求和的知識點。讓學生嘗試自行去思考這樣的問題。

          5、布置作業

          略

          高中數學說課稿 7

          一、地位作用

          數列是高中數學重要的內容之一,等比數列是在學習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個高中數學內容中數列與已學過的函數及后面的數列極限有密切聯系,它也是培養學生數學能力的良好題材,它可以培養學生的.觀察、分析、歸納、猜想及綜合解決問題的能力。

          基于此,設計本節的數學思路上:

          利用類比的思想,聯系等差數列的概念及通項公式的學習方法,采取自學、引導、歸納、猜想、類比總結的教學思路,充分發揮學生主觀能動性,調動學生的主體地位,充分體現教為主導、學為主體、練為主線的教學思想。

          二、教學目標

          知識目標:

          1)理解等比數列的概念

          2)掌握等比數列的通項公式

          3)并能用公式解決一些實際問題

          能力目標:培養學生觀察能力及發現意識,培養學生運用類比思想、解決分析問題的能力。

          三、教學重點

          1)等比數列概念的理解與掌握關鍵:是讓學生理解“等比”的特點

          2)等比數列的通項公式的推導及應用

          四、教學難點

          “等比”的理解及利用通項公式解決一些問題。

          五、教學過程設計

          (一)預習自學環節。(8分鐘)

          首先讓學生重新閱讀課本105頁國際象棋發明者的故事,并出示預習提綱,要求學生閱讀課本P122至P123例1上面。

          回答下列問題

          1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數列的定義。

          2)觀察以下幾個數列,回答下面問題:

          1……

          -1,-2,-4,-8……

          1,2,-4,8……

         。1,-1,-1,-1,……

          1,0,1,0……

         、儆心膸讉是等比數列?若是公比是什么?

         、诠萹為什么不能等于零?首項能為零嗎?

         、酃萹=1時是什么數列?

         、躴>0時數列遞增嗎?q<0時遞減嗎?

          3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?

          4)等比數列通項公式與函數關系怎樣?

         。ǘw納主導與總結環節(15分鐘)

          這一環節主要是通過學生回答為主體,教師引導總結為主線解決本節兩個重點內容。

          通過回答問題(1)(2)給出等比數列的定義并強調以下幾點:

         、俣x關鍵字“第二項起”“常數”;

          ②引導學生用數學語言表達定義:=q(n≥2);

         、踧=1時為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

         、躴>0時等比數列單調性不定,q<0為擺動數列,類比等差數列d>0為遞增數列,d<0為遞減數列。

          通過回答問題(3)回憶等差數列的推導方法,比較兩個數列定義的不同,引導推出等比數列通項公式。

          法一:歸納法,學會從特殊到一般的方法,并從次數中發現規律,培養觀察力。

          法二:迭乘法,聯系等差數列“迭加法”,培養學生類比能力及新舊知識轉化能力。

          高中數學說課稿 8

          一、教學內容分析

          圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁,因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

          二、學生學習情況分析

          我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

          三、設計思想

          由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情,在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。

          四、教學目標

          1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

          2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

          3.借助多媒體輔助教學,激發學習數學的興趣。

          五、教學重點與難點:

          教學重點

          1.對圓錐曲線定義的理解

          2.利用圓錐曲線的`定義求“最值”

          3.“定義法”求軌跡方程

          教學難點:

          巧用圓錐曲線定義解題

          六、教學過程設計

          【設計思路】

          (一)開門見山,提出問題

          一上課,我就直截了當地給出——

          例題1:(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。

          (A)橢圓(B)雙曲線(C)線段(D)不存在

          (2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。

          (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

          【設計意圖】

          定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

          為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

          【學情預設】

          估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

          在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。

          (二)理解定義、解決問題

          例2(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。

          (2)在(1)的條件下,給定點P(-2,2),求|PA|

          七、教學反思

          1.本課將借助于xx,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。

          2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法.循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。

          總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。

          高中數學說課稿 9

        各位老師:

          大家好!

          我叫xx,來自xx。我說課的題目是《簡單隨機抽樣》,內容選自于新課程人教A版必修3第二章第一節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、和教學過程分析等四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1.教材所處的地位和作用

          "簡單隨機抽樣"是"隨機抽樣"的基礎,"隨機抽樣"又是"統計學"的基礎,因此,在"統計學"中,"簡單隨機抽樣"是基礎的基礎。在初中學生已學過相關概念,如"抽樣""總體"、"個體"、"樣本"、"樣本容量"等,具有一定基礎,新教材把"統計"這部分內容編入必修部分,突出了統計在日常生活中的應用,體現它在中學數學中的地位,但同時也給學生學習增加了難度。

          2.教學的重點和難點

          重點:掌握簡單隨機抽樣常見的兩種方法(抽簽法、隨機數表法)

          難點:理解簡單隨機抽樣的科學性,以及由此推斷結論的可靠性

          二、教學目標分析

          1.知識與技能目標:

          正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;

          2.過程與方法目標:

         。1)能夠從現實生活或其他學科中提出具有一定價值的統計問題;

         。2)在解決統計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。

          3.情感,態度和價值觀目標

          通過對現實生活和其他學科中統計問題的提出,體會數學知識與現實世界及各學科知識之間的聯系,認識數學的重要性

          三、教學方法與手段分析

          為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發現法教學,并對學生滲透"從特殊到一般"的學習方法,由于本節課內容實例多,信息容量大,文字多,我采用多媒體輔助教學,節省時間,提高教學效率,另外采用這種形式也可強化學生感觀刺激,也能大大提高學生的學習興趣。

          四、教學過程分析

         。ㄒ唬┰O置情境,提出問題

          例1:請問下列調查是"普查"還是"抽樣"調查?

          A、一鍋水餃的味道B、旅客上飛機前的安全檢查

          c、一批炮彈的殺傷半徑D、一批彩電的質量情況

          E、美國總統的民意支持率

          學生討論后,教師指出生活中處處有"抽樣"

          「設計意圖」生活中處處有"抽樣"調查,明確學習"抽樣"的必要性。

         。ǘ┲鲃犹骄浚瑯嫿ㄐ轮

          例2:語文老師為了了解某班同學對某首詩的.背誦情況,應采用下列哪種抽查方式?為什么?

          A、在班級12名班委名單中逐個抽查5位同學進行背誦

          B、在班級45名同學中逐一抽查10位同學進行背誦

          先讓學生分析、選擇B后,師生一起歸納其特征:

         。1)不放回逐一抽樣,

         。2)抽樣有代表性(個體被抽到可能性相等),學生體驗B種抽樣的科學性后,教師指出這是簡單隨機抽樣,并復習初中講過的有關概念,最后教師補充板書課題--(簡單隨機)抽樣及其定義。

          「設計意圖」例2從正面分析簡單隨機抽樣的科學性、公平性,突出"等可能性"特征。這是突破教學難點的重要環節之一。

          例3:我們班有44名學生,現從中抽出5名學生去參加學生座談會,要使每名學生的機會均等,我們應該怎么做?談談你的想法。

          先讓學生獨立思考,然后分小組合作學習,最后各小組推薦一位同學發言,最后師生一起歸納"抽簽法"步驟:

          (1)編號制簽

         。2)攪拌均勻

          (3)逐個不放回抽取n次。教師板書上面步驟。

          「設計意圖」在自主探究,合作交流中構建新知,體驗"抽簽法"的公平性,從而突破難點,突出重點。

          請一位同學說說例2采用"抽簽法"的實施步驟。

          「設計意圖」

          1、反饋練習,落實知識點,突出重點。

          2、體會"抽簽法"具有"簡單、易行"的優點。

          〈屏幕出示〉

          例4:假設我們要考察某公司生產的500克袋裝牛奶的質量是否達標,現從800袋牛奶中抽取60袋進行檢驗

          提問:這道題適合用抽簽法嗎?

          讓學生進行思考,分析抽簽法的局限性,從而引入隨機數表法。教師出示一份隨機數表,并介紹隨機數表,強調數表上的數字都是隨機的,各個數字出現的可能性均等,結合上例讓學生討論隨機數表法的步驟,最后師生一起歸納步驟:

          (1)編號

         。2)在隨機數表上確定起始位置

         。3)取數。教師板書上面步驟。

          請一位同學說說例2采用"隨機數表法"的實施步驟。

          「設計意圖」

          1、體會隨機數表法的科學性

          2、體會隨機數表法的優越性:避免制簽、攪拌。

          3、反饋練習,落實知識點,突出重點。

         。ㄈ┱n堂小結:

          1.簡單隨機抽樣及其兩種方法

          2.兩種方法的操作步驟

         。ú捎脝柎鹦问剑

          「設計意圖」通過小結使學生們對知識有一個系統的認識,突出重點,抓住關鍵,培養概括能力。

          (四)布置作業

          課本練習2、3

          [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。

          高中數學說課稿 10

          一、教材分析:

          1.教材所處的地位和作用:

          本節內容在全書和章節中的作用是:《1.3.1柱體、錐體、臺體的表面積》是高中數學教材數學2第一章空間幾何體3節內容。在此之前學生已學習了空間幾何體的結構、三視圖和直觀圖為基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在空間幾何中,占據重要的地位。以及為其他學科和今后的學習打下基礎。

          2.教育教學目標:

          根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

          知識與能力:

         。1)了解柱體、錐體、臺體的表面積.

          (2)能用公式求柱體、錐體、臺體的表面積。

          (3)培養學生空間想象能力和思維能力

          過程與方法:

          讓學生經歷幾何體的表面積的實際求法,感知幾何體的形狀,培養學生對數學問題的轉化化歸能力。

          情感、態度與價值觀:

          通過學習,是學生感受到幾何體表面積的求解過程,激發學生探索、創新意識,增強學習積極性。

          3.重點,難點以及確定依據:

          本著新課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點

          教學重點:柱,錐,臺的表面積公式的推導

          教學難點:柱,錐,臺展開圖與空間幾何體的.轉化

          二、教法分析

          1.教學手段:

          如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟澱n的特點:應著重采用合作探究、小組討論的教學方法。

          2.教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的探究式討論教學法。在學生親自動手去給出各種幾何體的表面積的計算方法,特別注重不同解決問題的方法,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。

          三.學情分析

          我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

         。1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散

         。2)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力

          最后我來具體談談這一堂課的教學過程:

          四、教學過程分析

          (1)由一段動畫視頻引入:豐富生動的吸引學生的注意力,調動學生學習積極性

         。2)由引入得出本課新的所要探討的問題——幾何體的表面積的計算。

         。3)探究問題。完全將主動權教給學生,讓學生主動去探究,得到解決問題的思路,鍛煉學生動手能力,解決實際問題能力。

          (4)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。

         。5)例題及練習,見學案。

         。6)布置作業。

          針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

         。7)小結。讓學生總結本節課的收獲。老師適時總結歸納。

          高中數學說課稿 11

          教學目標:

          一、借助單位圓理解任意角的三角函數的定義。

          二、根據三角函數的定義,能夠判斷三角函數值的符號。

          三、通過學生積極參與知識的"發現"與"形成"的過程,培養合情猜測的能力,從中感悟數學概念的嚴謹性與科學性。

          四、讓學生在任意角三角函數概念的形成過程中,體會函數思想,體會數形結合思想。

          教學重點與難點:

          重點:任意角的正弦、余弦、正切的定義;三角函數值的符號。

          難點:任意角的三角函數概念的建構過程。

          授課過程:

          一、引入

          在我們的現實世界中的許多運動變化都有循環往復、周而復始的現象,這種變化規律稱為周期性。如何用數學的方法來刻畫這種變化?從這節課開始,我們要來學習刻畫這種規律的數學模型之一――三角函數。

          二、創設情境

          三角函數是與角有關的函數,在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據角終邊的位置把它們進行歸類,現在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數又可怎樣定義呢?

          學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。

          問題:

          1、銳角三角函數能否表示成第二種比值方式?

          2、點P能否取在終邊上的其它位置?為什么?

          3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個比值,不過其分母為1而已。

          練習:計算的各三角函數值。

          三、任意角的三角函數的定義

          角的概念已經推廣道了任意角,那么三角函數的定義在任意角的`范圍里改怎么定義呢?

          嘗試:根據銳角三角函數的定義,你能嘗試著給出任意角三角函數的定義嗎?

          評價學生給出的定義。給出任意角三角函數的定義。

          四、解析任意角三角函數的定義

          三角函數首先是函數。你能從函數觀點解析三角函數嗎?(定義域)

          對于確定的角a,上面三個函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數值的函數,我們將它們統稱為三角函數。由于角的集合和實數集之間可以建立一一對應的關系,三角函數可以看成是自變量為實數的函數。

          五、三角函數的應用。

          1、已知角,求a的三角函數值。

          2、已知角a終邊上的一點P(-3,-4),求各三角函數值。

          以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:

          1、已知角如何求三角函數值?

          2、利用角a的終邊上任意一點的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

          3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數值。

          4、探究:三角函數的值在各象限的符號。

          六、小結及作業

          教案設計說明:

          新教材的教學理念之一是讓學生去體驗新知識的發生過程,這節《任意角三角函數》的教案,主要圍繞這一點來設計。

          首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過這個問題,讓學生體會到新知識的發生是可能的,自然的。

          其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹的,科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數概念的理解。

          再次,讓學生充分體會在任意角三角函數定義的推廣中,是如何將直角三角形這個"形"的問題,轉換到直角坐標系下點的坐標這個"數"的過程的。培養數形結合的思想。

          高中數學說課稿 12

          一、說設計理念

          《數學課程標準》指出要讓學生感受生活中處處有數學,用數學知識解決生活中的實際問題。

          基于這一理念,我在教學過程中力求聯系學生生活實際和已有的知識經驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數學課富予新的生命力。課堂中力求構建一種自主探究、和諧合作的教學氛圍,讓學生經歷知識的探究過程,培養學生感受生活中的數學和用數學知識解決生活問題的能力,體驗數學的應用價值。

          二、教材分析:

         。ㄒ唬┙滩牡牡匚缓妥饔

          有關統計圖的認識,小學階段主要認識條形統計圖、折線統計圖和扇形統計圖?紤]到扇形統計圖在日常生活中的廣泛應用,《標準》把它作為必學內容安排在本單元。本單元是在前面學習了條形統計圖和折線統計圖的特點和作用的基礎上進行教學的。主要通過熟悉的事例使學生體會到扇形統計圖的實用價值。

          (二)教學目標

          1、聯系生活情境了解扇形統計圖的特點和作用

          2、能讀懂扇形統計圖,從中獲取有效的信息。

          3、讓學生在觀察、比較、討論和交流中體會扇形統計圖反映的是整體和部分的關系。

         。ㄈ┙虒W重點:

          1、能讀懂扇形統計圖,理解扇形統計圖的特點和作用,并能從中獲取有效信息。

          2、認識折線統計圖,了解折線統計圖的特點。

         。ㄋ模┙虒W難點:

          1、能從扇形統計圖中獲得有用信息,并做出合理推斷。

          2、能根據統計圖和數據進行數據變化趨勢的分析。

          三、學情分析

          本單元的教學是在學生已有統計經驗的基礎上,學習新知的。六年級的'學生已經學習了條形統計圖和折線統計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎上,通過新舊知識對比,自然生成新知識點。

          四、設計理念和教法分析

          1、本堂課力爭做到由“關注知識”轉向“關注學生”,由“傳授知識”轉向“引導探索”,“教師是組織者、領導者。”將課堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構建。

          2、運用探究法。探究學習的內容以問題的形式出現在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構建知識體系。引導學生獲取信息并合作交流。

          五、說學法

          《數學課程標準》指出有效的數學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關注身邊的數學,使學生體會到觀察、概括、想象、遷移等數學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養學生學習的主動性和積極性。

          六、說教學程序

          本課分成創設情境,感知特點——分析數據,理解特征——嘗試制圖,看圖分析——實踐應用,全課總結四環節。

          七、說教學過程

         。ㄒ唬⿵土曇

          1、復習舊知

          提問:我們學習過哪些統計方法?其中條形統計圖和折線統計圖各有什么特點?

          2、引入新課

         。ǘ┳灾魈剿鳎瑢W習新知

          新知識教學分二步教學:

          第一步整體感知,看懂統計圖,理解特征,這是本節課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯系,放手讓學生獨立思考,互相合作,進一步了解統計圖的特征。

          第二步實踐應用環節。在教學中,精心地選取了大量的生活素材,使統計知識與生活建立緊密的聯系。根據統計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發現問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數據變化帶來的啟示,并能合理地進行推理與判斷。

          高中數學說課稿 13

          今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

          一、說教材

          1、教材的地位和作用

          本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

          2、學情分析

          本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

          教學目標分析

          基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

          1、知識與技能

         。1)理解函數的單調性和單調函數的意義;

         。2)會判斷和證明簡單函數的單調性。

          2、過程與方法

         。1)培養從概念出發,進一步研究性質的意識及能力;

         。2)體會數形結合、分類討論的數學思想。

          3、情感態度與價值觀

          由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。

          三、教學重難點分析

          通過以上對教材和學生的分析以及教學目標,我將本節課的重難點

          重點:

          函數單調性的概念,判斷和證明簡單函數的單調性。

          難點:

          1、函數單調性概念的認知

          (1)自然語言到符號語言的轉化;

         。2)常量到變量的轉化。

          2、應用定義證明單調性的代數推理論證。

          四、教法與學法分析

          1、教法分析

          基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

          2、學法分析

          新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。

          五、教學過程

          為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。

         。ㄒ唬┲R導入

          溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的`積極主動性。

         。ǘ┲v授新課

          1、問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?

          通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

          2、觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:

         。1)在y軸的右側部分圖象具有什么特點?

         。2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1

          (3)如何用數學符號語言來描述這個規律?

          教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

         。4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

          類似地分析圖象在y軸的左側部分。

          通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞。

          仿照單調增函數定義,由學生說出單調減函數的定義。

          教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。

         。ㄎ覍⒔o出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

         。ㄈ╈柟叹毩

          練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。

          練習2:練習2:判斷下列說法是否正確

         、俣x在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

         、诙x在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

         、垡阎瘮祔=,因為f(-1)

          我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

         。ㄋ模w納總結

          我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。

         。ㄎ澹┎贾米鳂I

          必做題:習題2-3A組第2,4,5題。

          選做題:習題2-3B組第2題。

          新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。

          高中數學說課稿 14

        各位專家、評委:

          大家好!

          今天我說課的題目是xx。下面我將從教材分析、教法分析、學法分析、過程分析四個方面來匯報我對這節課的教學設想。

          一、教材分析

          (一)教材地位與作用

          略

          (二)教學目標

          1.知識與技能目標:掌握xx方法,能較熟練應用xx解決xx問題。

          2.能力與方法目標:在對xx的探究和應用中,使學生體會數形結合的數學方法,體驗從特殊到一般的研究方法,培養學生類比思維能力,提高學生分析問題和解決問題的能力。

          3.情感態度與價值觀目標:

          通過xx,激發學生探究的興趣和欲望,增強學生學習數學的自信心,培養學生嚴謹、科學的態度和勇于提出問題、分析問題的習慣。

          二、教法分析

          “數學是思維的體操”。培養學生的思維能力,一直都是數學教學的基本要求。知識的傳授雖然重要,但學生掌握知識發生和深化的思維過程更加重要。所以在教學過程中,為了更有效地把握重點,更到位的突破難點,我決心在教學中落實“生本教育”理念,以學生獨立自主和合作交流為前提,恰到好處的利用多媒體,注重啟迪學生思維,引導學生嘗試,確保學生在求知中不但要學有所得,更要學有所悟。

          特別的`,為了讓學生xx,我采用了設計了變式題組,通過xx來促進學生新的認知結構的形成。

          三、學法分析

          我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導,F在,新課改已形成由點到面,逐步鋪開的良好態勢。其中,新課改的重點之一就是轉變學生的學習方式,具體目標之一是“改變課程實施過于強調接受學習、死記硬背、機械訓練的現狀,倡導學生主動參與、樂于探究、勤于動手,培養學生搜集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力”。因此,一定要落實“生本教育”理念,在課堂上通過小組討論、展示,促使學生真正做到了動手、動腦、動口,積極參與教學的全過程,充分發揮了他們的思維能力和創造能力,充分發揮了學生在學習過程中的主體作用,讓學生真正成為學習的主人。

          四、過程分析

          (一)創設情景

          設計意圖:從學生的生活經驗(鮮活、實際的知識背景)出發,運用多媒體創設情境,激發學生的學習興趣,誘發學生的求知欲,點燃了學生思維的火花,形成良好的學習氛圍,將有效地提高接下來的學習效率。

          (二)回顧舊知

          設計意圖:為隨后的學習清除障礙,促使舊知識向新知識順暢、有效的過度。

          (三)嘗試學習。

          設計意圖:通過問題的提出激發學生的思維,做到師生互動,生生互助,讓他們用心去觀察、討論、嘗試解決問題,培養學生的觀察能力、邏輯思維能力、歸納分析能力等,同時也能使學生在積極的狀態中接受了新的知識。

          (四)應用提高

          設計意圖:通過對例題的分析與研究,尤其是xx。讓學生體會到xx規律(方法、思想),使學生深刻領悟到分析、解決此類問題的一般途徑和常規方法。

          設計意圖:通過有層次性的、有針對性的題目設置,將所學內容有機的融合成一個整體,使所有學生均有收獲,人人都能掌握最基本的內容,基礎扎實、能力較強的學生也有了充分發展和進行創新思維的空間。

          (五)課堂小結

          略

          (六)作業布置

          略

          高中數學說課稿 15

          今天我說課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時:《棱錐的概念和性質》。下面我就從教材分析、教法、學法和教學程序四個方面對本課的教學設計進行說明。

          一、說教材

          1、本節在教材中的地位和作用:

          本節是棱柱的后續內容,又是學習球的必要基礎。第一課時的教學目的是讓學生掌握棱錐的一些必要的基礎知識,同時培養學生猜想、類比、比較、轉化的能力。著名的生物學家達爾文說:“最有價值的知識是關于方法和能力的知識”,因此,應該利用這節課培養學生學習方法、提高學習能力。

          2、教學目標確定:

          (1)能力訓練要求

         、偈箤W生了解棱錐及其底面、側面、側棱、頂點、高的概念。

          ②使學生掌握截面的性質定理,正棱錐的性質及各元素間的關系式。

          (2)德育滲透目標

         、倥囵B學生善于通過觀察分析實物形狀到歸納其性質的能力。

         、谔岣邔W生對事物的感性認識到理性認識的能力。

         、叟囵B學生“理論源于實踐,用于實踐”的觀點。

          3、教學重點、難點確定:

          重點:

          1.棱錐的截面性質定理

          2.正棱錐的性質。

          難點:培養學生善于比較,從比較中發現事物與事物的區別。

          二、說教學方法和手段

          1、教法:

          “以學生參與為標志,以啟迪學生思維,培養學生創新能力為核心”。

          在教學中根據高中生心理特點和教學進度需要,設置一些啟發性題目,采用啟發式誘導法,講練結合,發揮教師主導作用,體現學生主體地位。

          2、教學手段:

          根據《教學大綱》中“堅持啟發式,反對注入式”的教學要求,針對本節課概念性強,思維量大,整節課以啟發學生觀察思考、分析討論為主,采用“多媒體引導點撥”的教學方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學生沿著積極的思維方向,逐步達到即定的教學目標,發展學生的邏輯思維能力;學生在教師營造的“可探索”的環境里,積極參與,生動活潑地獲取知識,掌握規律、主動發現、積極探索。

          三、說學法:

          這節課的核心是棱錐的截面性質定理,.正棱錐的性質。教學的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發學生反復思考,不斷內化成為自己的認知結構。

          四、學程序:

          [復習引入新課]

          1.棱柱的性質:

         。1)側棱都相等,側面是平行四邊形

          (2)兩個底面與平行于底面的截面是全等的多邊形

         。3)過不相鄰的兩條側棱的截面是平行四邊形

          2.幾個重要的四棱柱:

          平行六面體、直平行六面體、長方體、正方體

          思考:如果將棱柱的.上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?

          [講授新課]

          1、棱錐的基本概念

         。1)棱錐及其底面、側面、側棱、頂點、高、對角面的概念

         。2)棱錐的表示方法、分類

          2、棱錐的性質

         。1)截面性質定理:

          如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

         。2)正棱錐的定義及基本性質:

          正棱錐的定義:

         、俚酌媸钦噙呅

         、陧旤c在底面的射影是底面的中心

          ①各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

         、诶忮F的高、斜高和斜高在底面內的射影組成一個直角三角形;

          棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形

          引申:

         、僬忮F的側棱與底面所成的角都相等;

         、谡忮F的側面與底面所成的二面角相等;

          (3)正棱錐的各元素間的關系

          下面我們結合圖形,進一步探討正棱錐中各元素間的關系,為研究方便將課本圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。

          引申:

         、儆^察圖中三棱錐S-OBM的側面三角形狀有何特點?

         。ǹ勺C得∠SOM=∠SOB=∠SMB=∠OMB=900,所以側面全是直角三角形。)

          ②若分別假設正棱錐的高SO=h,斜高SM=h’,底面邊長的一半BM=a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM=r,側棱SB=L,側面與底面的二面角∠SMO=α,側棱與底面組成的角∠SBO=β,∠BOM=1800/n(n為底面正多邊形的邊數)請試通過三角形得出以上各元素間的關系式。

         。ㄕn后思考題)

          [課堂練習]

          1、知一個正六棱錐的高為h,側棱為L,求它的底面邊長和斜高。

          ﹙解析及圖略﹚

          2、錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。

          ﹙解析及圖略﹚

          [課堂小結]

          一:棱錐的基本概念及表示、分類

          二:棱錐的性質

          截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。

          正棱錐的定義及基本性質

          正棱錐的定義:

          ①底面是正多邊形

         、陧旤c在底面的射影是底面的中心

         。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

         。2)棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形

          引申:①正棱錐的側棱與底面所成的角都相等;

         、谡忮F的側面與底面所成的二面角相等;

         、壅忮F中各元素間的關系

          [課后作業]

          1:課本P52習題9.8:2、4

          2:課時訓練:訓練一

          高中數學說課稿 16

          一、說教材

          1、從在教材中的地位與作用來看

          《等比數列的前n項和》是數列這一章中的一個重要資料,它不僅僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,并且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

          2、從學生認知角度看

          從學生的思維特點看,很容易把本節資料與等差數列前n項和從公式的構成、特點等方面進行類比,這是進取因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不一樣,這對學生的思維是一個突破,另外,對于q=1這一特殊情景,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

          3、學情分析

          教學對象是剛進入高中的學生,雖然具有必須的分析問題和解決問題的能力,邏輯思維能力也初步構成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹。

          4、重點、難點

          教學重點:公式的推導、公式的特點和公式的運用。

          教學難點:公式的推導方法和公式的靈活運用。

          公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

          二、說目標

          知識與技能目標:

          理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

          過程與方法目標:

          經過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

          情感與態度價值觀:

          經過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

          三、說過程

          學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的構成與發展過程,結合本節課的特點,我設計了如下的教學過程:

          1、創設情境,提出問題

          在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

          設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事資料緊扣本節課的'主題與重點。

          此時我問:同學們,你們明白西薩要的是多少粒小麥嗎引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

          設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識構成過程的氛圍,突破學生學習的障礙。同時,構成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。

          2、師生互動,探究問題

          在肯定他們的思路后,我之后問:1,2,22…263是什么數列有何特征應歸結為什么數學問題呢:

          探討1:記為(1)式,注意觀察每一項的特征,有何聯系(學生會發現,后一項都是前一項的2倍)

          探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現

          設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,所以教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

          經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。教師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢

          設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

          3、類比聯想,解決問題

          這時我再順勢引導學生將結論一般化,

          那里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

          設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自我探究公式,從而體驗到學習的愉快和成就感。

          對不對那里的q能不能等于1等比數列中的公比能不能為1q=1時是什么數列此時sn=(那里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

          再次追問:結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(引導學生得出公式的另一形式)

          設計意圖:經過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和理解,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

          4、討論交流,延伸拓展

         。裕

          高中數學說課稿 17

        尊敬的各位評委、各位老師:

          大家好!我說課的題目是《函數的單調性》,我將從四個方面來闡述我對這節課的設計。

          一、教材分析

          1、教材的地位和作用

         。1)本節課主要對函數單調性的學習;

         。2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫)

         。3)它是歷年高考的熱點、難點問題

         。ǜ鶕唧w的課題改變就行了,如果不是熱點難點問題就刪掉)

          2、教材重、難點

          重點:函數單調性的`定義

          難點:函數單調性的證明

          重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)

          二、教學目標

          知識目標:(1)函數單調性的定義

         。2)函數單調性的證明

          能力目標:培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

          情感目標:培養學生勇于探索的精神和善于合作的意識

         。ㄟ@樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)

          三、教法學法分析

          1、教法分析

          “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法

          2、學法分析

          “授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。

         。ㄇ叭糠钟脮r控制在三分鐘以內,可適當刪減)

          四、教學過程

          1、以舊引新,導入新知

          通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

          2、創設問題,探索新知

          緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。

          讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。

          讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。

          3、例題講解,學以致用

          例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式

          例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

          例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

          學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

          4、歸納小結

          本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。

          5、作業布置

          為了讓學生學習不同的數學,我將采用分層布置作業的方式:一組習題1.3A組1、2、3,二組習題1.3A組2、3、B組1、2

          6、板書設計

          我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。

          (這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

          五、教學評價

          本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。

          高中數學說課稿 18

          一、教材分析:

          集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

          二、目標分析:

          教學重點、難點

          重點:集合的含義與表示方法。

          難點:表示法的恰當選擇。

          教學目標

          1.知識與技能

         。1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

         。2)知道常用數集及其專用記號;

         。3)了解集合中元素的確定性。互異性。無序性;

         。4)會用集合語言表示有關數學對象;

          2.過程與方法

          (1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。

          (2)讓學生歸納整理本節所學知識。

          3.情感、態度與價值觀

          使學生感受到學習集合的必要性,增強學習的積極性。

          三、教法分析

          1.教學方法:學生通過閱讀教材,自主學習。思考。交流。討論和概括,從而更好地完成本節課的教學目標。

          2.教學手段:在教學中使用投影儀來輔助教學。

          四、過程分析

         。ㄒ唬﹦撛O情景,揭示課題

          1、教師首先提出問題:

         。1)介紹自己的家庭、原來就讀的學校、現在的班級。

         。2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?

          引導學生互相交流。與此同時,教師對學生的活動給予評價。

          2.活動:

         。1)列舉生活中的集合的例子;

         。2)分析、概括各實例的共同特征

          由此引出這節要學的內容。

          設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊

         。ǘ┭刑叫轮嫺拍

          1.教師利用多媒體設備向學生投影出下面7個實例:

         。1)1-20以內的所有質數;

          (2)我國古代的四大發明;

         。3)所有的安理會常任理事國;

         。4)所有的正方形;

         。5)海南省在2004年9月之前建成的所有立交橋;

          (6)到一個角的兩邊距離相等的所有的點;

          (7)國興中學2004年9月入學的高一學生的全體。

          2.教師組織學生分組討論:這7個實例的共同特征是什么?

          3.每個小組選出--位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義。

          一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。

          4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。

          設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神

         。ㄈ┵|疑答辯,發展思維

          1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難。使學生明確集合元素的三大特性,即:確定性;ギ愋院蜔o序性。只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等。

          2.教師組織引導學生思考以下問題:

          判斷以下元素的全體是否組成集合,并說明理由:

         。1)大于3小于11的偶數;

         。2)我國的小河流。

          讓學生充分發表自己的`建解。

          3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由。教師對學生的學習活動給予及時的評價。

          4.教師提出問題,讓學生思考

          (1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于。

          如果是集合A的元素,就說屬于集合A,記作。

          如果不是集合A的元素,就說不屬于集合A,記作。

          (2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關系分別是什么?請用數學符號分別表示。

          (3)讓學生完成教材第6頁練習第1題。

          5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號。并讓學生完成習題1.1A組第1題。

          6.教師引導學生閱讀教材中的相關內容,并思考。討論下列問題:

         。1)要表示一個集合共有幾種方式?

         。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

         。3)如何根據問題選擇適當的集合表示法?

          使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。

          設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。

         。ㄋ模╈柟躺罨答伋C正

          教師投影學習:

         。1)用自然語言描述集合{1,3,5,7,9};

          (2)用例舉法表示集合

         。3)試選擇適當的方法表示下列集合:教材第6頁練習第2題。

          設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

          (五)歸納小結,布置作業

          小結:在師生互動中,讓學生了解或體會下例問題:

          1.本節課我們學習了哪些知識內容?

          2.你認為學習集合有什么意義?

          3.選擇集合的表示法時應注意些什么?

          設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

          作業:

          1.課后書面作業:第13頁習題1.1A組第4題。

          2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材。

          高中數學說課稿 19

          一、教材分析

          本課時的內容是數列的定義,通項公式及運用;本課是在學習映射、函數知識基礎上研究數列,既對進一步理解數列,又為今后研究等差、等比數列打下基礎,起著承前啟后的重要作用。

          首先,數列,特別是等差數列與等比數列,有著較為廣泛的應用。值得一提的是,數列在產品尺寸標準化方面有著重要作用。例如在我國已頒布的供各種生產部門設計產品尺寸用的國家標準,就是按等比數列對產品尺寸進行分級的。

          其次,數列在整個中學數學教學內容中,處于一個知識匯合點的地位,很多知識都與數列有著密切聯系,過去學過的數、式、方程、函數、簡易邏輯等知識在這一章均得到了較為充分的應用,而學習數列又為后面學習數列與函數的極限等內容作了鋪墊。應該說:新課本采取將代數、幾何打通的混編體系的主要目的是強化數學知識的內在聯系,而數列正是將各知識勾通方面發揮了重要作用。

          最后,由于不少關系恒等變形、解方程(組)以及一些帶有綜合性的數學問題都與等差數列、等比數列有關,從而有助于培養學生綜合運用知識解決問題的能力。因此本節內容起到一個鞏固舊知,熟練方法,拓展新知的承接作用。

          二、學生情況分析

          學習障礙:

          本節課是學習數列的起始課,在學習中會遇到下列障礙:

          1.對數列定義中的關鍵詞"按一定次序"的理解有些模糊。

          2.對數列與函數的關系認識不清。

          3.對數列的表示,特別是通項公式an=f(n)感到困惑,對數列的通項公式可以不只一個覺得不可思議。

          4.由數列的前幾項寫不出數列的通項公式。

          學習策略:

         。1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子等。

          (2)數列中蘊含的`函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系,在教學中強調數列的項是按一定順序排列的,"次序"便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列,函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。

         。3)由數列的通項公式寫出數列的前幾項是簡單的代入法,這一例題為寫通項公式作一些準備,尤其是對程度差的學生,可多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。

         。4)由數列的前幾項寫出數列的一個通項公式是學生學習中的一個難點,要幫助學生分析各項中的結構特征,讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。最后老師與學生共同歸納一些規律性的結論。

          1、并非所有數列都能寫出它的通項公式;

          2、有些數列的通項公式在形式上不一定是唯一的。如數列1,-1,1,-1,1,-1...的通項可寫成或或等

          3、當一個數列出現""、"-"相間時,應先把符號分離出來,用等來控制;

          4、有些數列的通項公式可以用分段的形式來表示;

          5、熟悉常見數列的通項:

          三、教學方法及教學手段分析

          考慮到學生已學過映射、函數的特點,為突破難點,在教學上,我著重從以下幾個方面:

         。1)數列的定義,通項公式;

         。2)歸納通項公式;

         。3)畫出數列的圖像;

          (4)把數列的通項公式理解為一種特殊函數,采取了講解、引導、探索式相結合的教學方法啟發學生積極思考、勇于創新。

         。ㄒ唬﹩l誘導式:舉實例讓學生找規律,得到數列的基本知識。

         。ǘ┳灾鲗W習式:根據數列的定義和前面所學的函數關系,由學生自己通過聯想、類比、對比、歸納的方法遷移到新情境中,將新的知識內化到學生原有的認知結構中去。

         。ㄈ﹩栴}解決式:設計的每一個探究問題的解答過程。

          (四)利用多媒體教學手段,引入課題,能激發學生學習興趣,增加數學人文色彩,同時也闡述了數列來源于實際,化抽象為具體,增強動感與直觀性,同時也提高教學效果和教學質量

          總之:

          1、本節課是數列的起始課,設置情景、激發興趣有利于學生學好本章知識;

          2、把數列與集合、函數對比學習,有利于鞏固舊知識,掌握新知識,使所學知識形成系統化;

          3、教法和學法上突出教材重點、力求突破難點,加深學生對知識的理解。較多地采用提問(包括設問);在教學材料呈現上以多媒體形式給出。例題的配備由淺入深、滲透了思維活動組織上由此及彼的類比推理概括的方法。貫徹"教師為主導、學生為主體、探究為主線、思維為主攻"的教學思想,采取"精講、善導、激趣、引思"的八字方針。

          高中數學說課稿 20

        尊敬的評委老師、各位同仁:

          大家好!今天,我將為大家展示的是高中數學必修一中的《函數的概念及其表示方法》這一章節的教學設計。本節課旨在通過理論講解與實例分析,使學生深刻理解函數的基本概念,掌握函數的多種表示方法,并能夠初步運用函數概念解決實際問題。

          一、教材分析

          教學內容:本節課主要包括函數的概念、函數的三種基本表示方法(解析法、列表法、圖像法)以及函數值域和定義域的確定。

          教材地位:函數是高中數學的核心內容之一,是后續學習導數、微積分等高等數學知識的基礎,也是解決實際問題的重要工具。

          教學目標:

          知識與技能:理解函數的概念,掌握函數的三種表示方法,能準確確定函數的定義域和值域。

          過程與方法:通過實例分析,培養學生抽象思維能力和邏輯推理能力。

          情感態度價值觀:激發學生對數學的興趣,培養嚴謹的數學態度和解決問題的能力。

          二、學情分析

          學生已經學習了初中數學中的變量關系,對函數有初步的認識,但缺乏系統的理解和深入的應用。

          學生思維活躍,喜歡通過實例學習新知識,但抽象思維能力有待提高。

          三、教學重點與難點

          教學重點:函數的概念,函數的三種表示方法。

          教學難點:理解函數定義中的“對應法則”,準確確定函數的定義域和值域。

          四、教學方法

          講授法:通過教師的系統講解,幫助學生建立函數的基本概念。

          討論法:組織小組討論,引導學生分析函數實例,加深對函數表示方法的理解。

          練習法:設計多種形式的練習題,讓學生在實踐中掌握函數的應用。

          五、教學過程

          1、導入新課:

          通過生活中的實例(如氣溫隨時間的變化、汽車行駛距離與時間的關系)引出函數的概念,激發學生的學習興趣。

          2、新知講授:

          詳細講解函數的概念,強調“自變量”、“因變量”、“定義域”、“值域”和“對應法則”的含義。

          介紹函數的三種表示方法:解析法、列表法、圖像法,并通過實例展示每種方法的應用。

          3、鞏固練習:

          設計一系列練習題,包括確定函數的'定義域和值域、根據解析式繪制函數圖像、根據圖像寫出函數解析式等,讓學生在實踐中加深對知識的理解。

          4、總結提升:

          引導學生總結本節課所學內容,強調函數概念的重要性及其在實際問題中的應用。

          鼓勵學生提出疑問,進行師生互動,解決學習中的困惑。

          5、布置作業:

          設計一些具有挑戰性的作業,如尋找生活中的函數實例、分析函數的性質等,以鞏固和拓展所學知識。

          六、教學反思

          本節課注重理論與實踐相結合,通過實例分析幫助學生理解函數的概念和表示方法。

          在教學過程中,應關注學生的個體差異,適時調整教學策略,以滿足不同層次學生的學習需求。

          課后應及時收集學生反饋,反思教學效果,不斷優化教學設計。

        【高中數學說課稿】相關文章:

        高中數學的說課稿04-19

        高中數學經典說課稿11-25

        高中數學說課稿06-12

        高中數學數列說課稿06-07

        高中數學說課稿12-12

        高中數學說課稿06-13

        高中數學優秀說課稿03-08

        高中數學《數列》說課稿01-18

        高中數學優秀說課稿03-03

        高中數學的說課稿范文12-11

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>