• <sub id="h4knl"><ol id="h4knl"></ol></sub>
    <sup id="h4knl"></sup>
      <sub id="h4knl"></sub>

      <sub id="h4knl"><ol id="h4knl"><em id="h4knl"></em></ol></sub><s id="h4knl"></s>
      1. <strong id="h4knl"></strong>

      2. 高中數(shù)學(xué)優(yōu)秀說(shuō)課稿

        時(shí)間:2024-03-08 07:31:02 高中說(shuō)課稿 我要投稿

        高中數(shù)學(xué)優(yōu)秀說(shuō)課稿

          作為一名優(yōu)秀的教育工作者,通常會(huì)被要求編寫說(shuō)課稿,說(shuō)課稿有助于提高教師的語(yǔ)言表達(dá)能力。那么應(yīng)當(dāng)如何寫說(shuō)課稿呢?以下是小編為大家整理的高中數(shù)學(xué)優(yōu)秀說(shuō)課稿,歡迎大家分享。

        高中數(shù)學(xué)優(yōu)秀說(shuō)課稿

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇1

          各位領(lǐng)導(dǎo)、專家、同仁:您們好!

          我說(shuō)課的內(nèi)容是高中數(shù)學(xué)第二冊(cè)(上冊(cè))第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時(shí),下面我的說(shuō)課將從以下幾個(gè)方面進(jìn)行闡述:

          一、教材分析

          教材的地位和作用

          “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對(duì)全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說(shuō)是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識(shí)到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!

          根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。

          二、教學(xué)目標(biāo)

          根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

          知識(shí)目標(biāo):

          1、了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;

          2、初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;

          3、學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;

          4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。

          能力目標(biāo):

          1、通過(guò)直線方程的引入,加強(qiáng)學(xué)生對(duì)方程的解和曲線上的點(diǎn)的一一對(duì)應(yīng)關(guān)系的認(rèn)識(shí);

          2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動(dòng)過(guò)程,探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn);

          3、能用所學(xué)知識(shí)理解新的概念,并能運(yùn)用概念解決實(shí)際問(wèn)題,從中體會(huì)轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識(shí)。

          情感目標(biāo):

          1、通過(guò)概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;

          2、通過(guò)反例辨析和問(wèn)題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。

          三、重難點(diǎn)突破

          “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過(guò)程,學(xué)生容易對(duì)定義中為什么要規(guī)定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識(shí)的基礎(chǔ),所以可用舉反例的方法來(lái)解決困惑,通過(guò)反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對(duì)概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識(shí),又決定用集合相等的概念來(lái)解釋曲線和方程的對(duì)應(yīng)關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

          怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯(cuò)誤,通常在由已知曲線建立方程的.時(shí)候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計(jì)了三種層次的問(wèn)題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過(guò)這些例題讓學(xué)生再一次體會(huì)“二者”缺一不可。

          四、學(xué)情分析

          此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)之間建立了一一對(duì)應(yīng)關(guān)系,已有了用方程(有時(shí)以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(shí)(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個(gè)變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過(guò)程,對(duì)學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時(shí)容易產(chǎn)生的問(wèn)題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時(shí)各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會(huì),要求學(xué)生能答出曲線和方程間必須滿足兩個(gè)關(guān)系時(shí)才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區(qū)別。

          五、教法分析

          新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識(shí)的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡(jiǎn)單的教書匠轉(zhuǎn)變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識(shí)的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個(gè)基本步驟,重點(diǎn)采用了問(wèn)題探究和啟發(fā)式相結(jié)合的教學(xué)方法。

          從實(shí)例、到類比、到推廣的問(wèn)題探究,它對(duì)激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問(wèn)題。在生生合作,師生互動(dòng)中解決問(wèn)題,為提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力打下了基礎(chǔ)。

          利用多媒體輔助教學(xué),節(jié)省了時(shí)間,增大了信息量,增強(qiáng)了直觀形象性。

          六、學(xué)法分析

          基礎(chǔ)教育課程改革要求加強(qiáng)學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過(guò)引導(dǎo)學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識(shí)的能力,分析和解決問(wèn)題的能力,以及交流合作的能力,基于此,本節(jié)課從實(shí)例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問(wèn)題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,與合作探究相結(jié)合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識(shí)的發(fā)現(xiàn)者和知識(shí)的研究者。

          七、教學(xué)過(guò)程分析

          1、感性認(rèn)識(shí)階段——以舊帶新、提出課題

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇2

          1、對(duì)教材地位與作用的認(rèn)識(shí)

          在高中數(shù)學(xué)教學(xué)中,作為數(shù)學(xué)思想應(yīng)向?qū)W生滲透,強(qiáng)化的有:函數(shù)與方程思想;數(shù)形結(jié)合思想;分類討論思想;等價(jià)轉(zhuǎn)化及運(yùn)動(dòng)變化思想。不是所有的課都能把這些思想自然的容納進(jìn)去,但由于“曲線和方程”這一節(jié)在教材中的特殊地位,它把代數(shù)和幾何兩個(gè)單科自然而緊密地結(jié)合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視。“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“依形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,用代數(shù)的方法研究幾何問(wèn)題。”曲線與方程”是解析幾何中最為重要的基本內(nèi)容之一.在理論上它是基礎(chǔ),在應(yīng)用上它是工具,對(duì)全部解析幾何的教學(xué)有著深遠(yuǎn)的影響,另外在高考中也是考察的重點(diǎn)內(nèi)容,尤其是求曲線的方程,學(xué)生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學(xué)習(xí)得入門之路。應(yīng)該認(rèn)識(shí)到這節(jié)“曲線和方程”得開頭課是解析幾何教學(xué)的“重頭戲”!

          2、教學(xué)目標(biāo)的確定及依據(jù)

          (大綱的要求)通過(guò)本小節(jié)的學(xué)習(xí),要使學(xué)生了解解析幾何的基本思想,了解用坐標(biāo)法研究幾何問(wèn)題的初步知識(shí)和觀點(diǎn),理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法.所以第一課我在教學(xué)目標(biāo)上是這樣設(shè)定的:

          1).了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系,領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念及其關(guān)系,并能作簡(jiǎn)單的判斷與推理;

          2).在形成概念的過(guò)程中,培養(yǎng)分析、抽象和概括等思維能力;

          3)會(huì)證明已知曲線的方程。

          本節(jié)課的教學(xué)目標(biāo)定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應(yīng)在學(xué)生的學(xué)習(xí)行為上,即要求學(xué)生能答出曲線與方程間必須滿足的兩個(gè)關(guān)系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實(shí)例進(jìn)一步明確這二者的區(qū)別。知識(shí)的學(xué)習(xí)與能力的培養(yǎng)是同步的,在具體操作上結(jié)合圖形分析與反例,來(lái)辨析“兩個(gè)關(guān)系”之間的區(qū)別,從認(rèn)識(shí)特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過(guò)程中,培養(yǎng)學(xué)生分析、抽象、概括的思維能力.會(huì)證明已知曲線的方程就能更進(jìn)一步的理解曲線和方程概念的含義并為下節(jié)課求曲線的方程打基礎(chǔ).

          3、如何突破重難點(diǎn)

          本小節(jié)的重點(diǎn)是理解曲線與方程的有關(guān)概念與相互聯(lián)系,以及求曲線方程的方法、步驟.只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進(jìn)一步學(xué)好后面的內(nèi)容.曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當(dāng)難度,對(duì)學(xué)生理解上可能遇到的問(wèn)題是學(xué)生不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和”“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系各自所起的作用。有的學(xué)生只從字面上死記硬背;有的學(xué)生甚至誤以為這兩句話是同義反復(fù)。要突破這一點(diǎn),關(guān)鍵在于利用充要條件,函數(shù)圖象,直線和方程,軌跡等知.識(shí),正反兩方面說(shuō)明問(wèn)題.

          本節(jié)課的難點(diǎn)在于對(duì)定義中為什么要規(guī)定兩個(gè)關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個(gè)都將擴(kuò)大概念的外延。

          4、對(duì)教學(xué)過(guò)程的設(shè)計(jì)

          今天要講的“曲線和方程”這部分教材的內(nèi)容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時(shí)安排上分為3個(gè)課時(shí)進(jìn)行教學(xué),具體的課時(shí)分配是:第一課時(shí)講解“曲線與方程”和“方程與曲線”的概念及其關(guān)系;第二課時(shí)講解求曲線的方程一般方法,第三課時(shí)為習(xí)題課,通過(guò)練習(xí)來(lái)總結(jié)、鞏固和深化本節(jié)知識(shí)。如果以為學(xué)生不真正領(lǐng)悟曲線和方程得關(guān)系照樣能求出方程,照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念得教學(xué),這不能不說(shuō)是一種“舍本逐末”得偏見。

          在教材中,曲線和方程這一概念是隨著知識(shí)的講授而不斷深化,逐步為學(xué)生所理解,因而教材中從直線開始,多次,重復(fù)地闡述,這說(shuō)明其重要性.同時(shí)也說(shuō)明理解它,掌握它確實(shí)需要一個(gè)過(guò)程.數(shù)學(xué)本身是很抽象,把數(shù)學(xué)和實(shí)際問(wèn)題相結(jié)合才能激發(fā)學(xué)生的學(xué)習(xí)興趣,真正達(dá)到素質(zhì)教育的要求。根據(jù)以上考慮,確定了這節(jié)課教學(xué)過(guò)程的基本線索是:實(shí)際問(wèn)題引入,提出課題→運(yùn)用反例,揭示內(nèi)涵→討論歸納,得出定義→集合表述,強(qiáng)化理解→知識(shí)應(yīng)用,反復(fù)辨析。

          教材的編寫也往往體現(xiàn)著教法.,例如,本節(jié)一開頭說(shuō)“我們研究過(guò)直線的各種方程,討論了直線和二元一次方程的關(guān)系。”學(xué)生已經(jīng)有了用方程(有時(shí)用函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(shí),在本節(jié)教學(xué)中充分發(fā)揮這些感性認(rèn)識(shí)的作用。從人造地球衛(wèi)星運(yùn)行的軌道等生動(dòng)形象的實(shí)際問(wèn)題引入,引起學(xué)生的興趣和好奇心以及對(duì)數(shù)學(xué)的應(yīng)用有了更高的認(rèn)識(shí),更激發(fā)他們進(jìn)一步學(xué)好數(shù)學(xué)的決心。(具體……)提出課題。運(yùn)用學(xué)生熟知的知識(shí),1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點(diǎn)和方程的解之間的關(guān)系,為形成曲線和方程的概念提供了實(shí)際模型,但是如果就此而由教師直接給出結(jié)論,那就不僅會(huì)失去開發(fā)學(xué)生思維的機(jī)會(huì),影響學(xué)生的理解,而且會(huì)使教學(xué)變得枯燥乏味,抑制了學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,接著用反例來(lái)突破難點(diǎn)。通過(guò)反例1)直線去掉第三象限部分,則方程y=x的解為坐標(biāo)的點(diǎn)不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的`點(diǎn)坐標(biāo)就此揭示“兩者缺一”與直覺的矛盾,通過(guò)舉反例和步步追問(wèn)使我要的答案逐步明了,從而又促使學(xué)生對(duì)概念表述的嚴(yán)格性進(jìn)行探索,學(xué)生自已認(rèn)識(shí)曲線和方程的概念必須要具備的兩個(gè)關(guān)系,培養(yǎng)學(xué)生分析,歸納問(wèn)題的能力,自然得出定義。并且把這個(gè)關(guān)系板書到黑板上,以示這就是這節(jié)課的重點(diǎn)。為了在重難點(diǎn)有所突破后強(qiáng)化其認(rèn)識(shí),又用集合相等的概念來(lái)解釋曲線和方程的對(duì)應(yīng)關(guān)系,并以此為工具來(lái)分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

          然后通過(guò)運(yùn)用與練習(xí),糾正錯(cuò)誤的認(rèn)識(shí),促使對(duì)概念的正確理解,通過(guò)反復(fù)重現(xiàn),可以不斷領(lǐng)悟,加強(qiáng)識(shí)記。所以安排了例1,例2(見課件)目的也在于幫助學(xué)生正確理解概念,通過(guò)解題辨析“兩個(gè)關(guān)系”,實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),為此題目中的“曲線”和“方程”都力求簡(jiǎn)單,由此得出點(diǎn)在曲線上的充要條件。

          曲線是符合某種條件的點(diǎn)的軌跡,為了下節(jié)課“求曲線的方程”的教學(xué),安排了例3(見課件)證明曲線的方程,增加學(xué)生的感性認(rèn)識(shí),由于教材上有嚴(yán)謹(jǐn)?shù)淖C明過(guò)程,讓學(xué)生閱讀并總結(jié)證明已知曲線的方程的方法和步驟,上升到理論上,可以培養(yǎng)學(xué)生獨(dú)立思考,閱讀歸納的能力。為了讓學(xué)生更深入的理解這節(jié)課的主要內(nèi)容,通過(guò)4個(gè)變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個(gè)練習(xí):(略)簡(jiǎn)單評(píng)講后小結(jié)本課的主要內(nèi)容,進(jìn)一步強(qiáng)化“曲線和方程”概念中兩個(gè)關(guān)系缺一不可,只有符合關(guān)系1)2)才能進(jìn)行數(shù)與形的轉(zhuǎn)化。由于下節(jié)課的內(nèi)容是求曲線的方程,特地安排了一個(gè)思考探索題。

          5、對(duì)學(xué)生學(xué)習(xí)活動(dòng)的引導(dǎo)和組織

          教案的設(shè)計(jì)與教案的實(shí)施往往有一定的距離,本節(jié)課有著概念性強(qiáng),思維量大,例題與練習(xí)題不多的特點(diǎn),這就決定了整節(jié)課將以學(xué)生的觀察、思考、討論為主,通過(guò)提問(wèn),舉例,啟發(fā),互動(dòng)完成教學(xué),在具體操作上比較靈活,視學(xué)生的具體情況而定,把握學(xué)生的思維規(guī)律于數(shù)學(xué)思想的基本方法。例如,在概念教學(xué)中引導(dǎo)學(xué)生看反例,通過(guò)正反對(duì)比的方法,當(dāng)學(xué)生觀察了例1回答不清為什么,可以舉出幾個(gè)點(diǎn)的坐標(biāo)作檢驗(yàn),這就是”從特殊到一般“的方法:或引導(dǎo)學(xué)生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發(fā)方法符合學(xué)生的認(rèn)識(shí)規(guī)律,學(xué)生的認(rèn)識(shí)活動(dòng)就會(huì)順利展開,而且在認(rèn)知的過(guò)程中訓(xùn)練了探索的能力。強(qiáng)化數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,完善學(xué)生的數(shù)學(xué)的結(jié)構(gòu),讓學(xué)生動(dòng)手、動(dòng)腦,以及觀察、聯(lián)想、猜測(cè)、歸納等合理推理,鼓勵(lì)學(xué)生多向思維、積極思考,勇于探索,從中培養(yǎng)學(xué)生合情推理能力,數(shù)學(xué)交流與合作能力以及主動(dòng)參與的精神。

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇3

          今天我說(shuō)課的內(nèi)容是高二立體幾何(人教版)第九章第二章節(jié)第八小節(jié)《棱錐》的第一課時(shí):《棱錐的概念和性質(zhì)》。下面我就從教材分析、教法、學(xué)法和教學(xué)程序四個(gè)方面對(duì)本課的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。

          一、說(shuō)教材

          1、本節(jié)在教材中的地位和作用:

          本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說(shuō):“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。

          2. 教學(xué)目標(biāo)確定:

          (1)能力訓(xùn)練要求

          ①使學(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。

          ②使學(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。

          (2)德育滲透目標(biāo)

          ①培養(yǎng)學(xué)生善于通過(guò)觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。

          ②提高學(xué)生對(duì)事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。

          ③培養(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。

          3. 教學(xué)重點(diǎn)、難點(diǎn)確定:

          重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。

          難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。

          二、說(shuō)教學(xué)方法和手段

          1、教法:

          “以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。

          在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。

          2、教學(xué)手段:

          根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)要求,針對(duì)本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的'環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。

          三、說(shuō)學(xué)法:

          這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。

          四、 學(xué)程序:

          [復(fù)習(xí)引入新課]

          1.棱柱的性質(zhì):

          (1)側(cè)棱都相等,側(cè)面是平行四邊形

          (2)兩個(gè)底面與平行于底面的截面是全等的多邊形

          (3)過(guò)不相鄰的兩條側(cè)棱的截面是平行四邊形

          2.幾個(gè)重要的四棱柱:

          平行六面體、直平行六面體、長(zhǎng)方體、正方體

          思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?

          [講授新課]

          1、棱錐的基本概念

          (1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對(duì)角面的概念

          (2).棱錐的表示方法、分類

          2、棱錐的性質(zhì)

          (1). 截面性質(zhì)定理:

          如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。

          證明:(略)

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐

          的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。

          (2).正棱錐的定義及基本性質(zhì):

          正棱錐的定義:

          ①底面是正多邊形

          ②頂點(diǎn)在底面的射影是底面的中心

          ①各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;

          ②棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;

          棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形

          引申:

          ①正棱錐的側(cè)棱與底面所成的角都相等;

          ②正棱錐的側(cè)面與底面所成的二面角相等;

          (3)正棱錐的各元素間的關(guān)系

          下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。

          引申:

          ①觀察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?

          (可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)

          ②若分別假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長(zhǎng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請(qǐng)?jiān)囃ㄟ^(guò)三角形得出以上各元素間的關(guān)系式。

          (課后思考題)

          [例題分析]

          例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是( )

          A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐

          (答案:D)

          例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經(jīng)過(guò)SO的中點(diǎn)且平行于底面的截面△A’B’C’的面積。

          ﹙解析及圖略﹚

          例3.已知正四棱錐的棱長(zhǎng)和底面邊長(zhǎng)均為a,求:

          (1)側(cè)面與底面所成角α的余弦(2)相鄰兩個(gè)側(cè)面所成角β的余弦

          ﹙解析及圖略﹚

          [課堂練習(xí)]

          1、 知一個(gè)正六棱錐的高為h,側(cè)棱為L(zhǎng),求它的底面邊長(zhǎng)和斜高。

          ﹙解析及圖略﹚

          2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點(diǎn)到截面和從截面到底面)之比。

          ﹙解析及圖略﹚

          [課堂小結(jié)]

          一:棱錐的基本概念及表示、分類

          二:棱錐的性質(zhì)

          截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比

          引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。

          2.正棱錐的定義及基本性質(zhì)

          正棱錐的定義:

          ①底面是正多邊形

          ②頂點(diǎn)在底面的射影是底面的中心

          (1)各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高

          相等,它們叫做正棱錐的斜高;

          (2)棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形

          引申: ①正棱錐的側(cè)棱與底面所成的角都相等;

          ②正棱錐的側(cè)面與底面所成的二面角相等;

          ③正棱錐中各元素間的關(guān)系

          [課后作業(yè)]

          1:課本P52 習(xí)題9.8 : 2、 4

          2:課時(shí)訓(xùn)練:訓(xùn)練一

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇4

          本節(jié)課講述的是人教版高一數(shù)學(xué)(上)3.2等差數(shù)列(第一課時(shí))的內(nèi)容。

          一、教材分析

          1、教材的地位和作用:

          數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。

          2、教學(xué)目標(biāo)

          根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

          a在知識(shí)上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。

          b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。

          c在情感上:通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

          3、教學(xué)重點(diǎn)和難點(diǎn)

          根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:

          ①等差數(shù)列的概念。

          ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。

          由于學(xué)生第一次接觸不完全歸納法,對(duì)此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對(duì)“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實(shí)際問(wèn)題是本節(jié)課的另一個(gè)難點(diǎn)。

          二、學(xué)情教法分析:

          對(duì)于三中的高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合

          這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

          針對(duì)高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。

          三、學(xué)法指導(dǎo):

          在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問(wèn)題弄清。

          四、教學(xué)程序

          本節(jié)課的教學(xué)過(guò)程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

          (一)復(fù)習(xí)引入:

          1、從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)閤x對(duì)應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的xxxxxx。(N﹡;解析式)

          通過(guò)練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問(wèn)題作準(zhǔn)備。

          2、小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

          3、 小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

          通過(guò)練習(xí)2和3引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問(wèn)題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

          (二) 新課探究

          1、由引入自然的'給出等差數(shù)列的概念:

          如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):

          ① “從第二項(xiàng)起”滿足條件;

          ②公差d一定是由后項(xiàng)減前項(xiàng)所得;

          ③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

          在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:

          an+1-an=d (n≥1)同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

          1、 9 ,8,7,6,5,4,??;√ d=-1

          2、 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

          3、 0,0,0,0,0,0,??。; √ d=0

          4、 1,2,3,2,3,4,??;×

          5、 1,0,1,0,1,??×

          其中第一個(gè)數(shù)列公差0,第三個(gè)數(shù)列公差=0

          由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

          2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

          在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng),公差d,由學(xué)生研究分組討論a4的通項(xiàng)公式。通過(guò)總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過(guò)程由學(xué)生完成,通過(guò)互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。

          若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:

          a2 - a1 =d 即: a2 =a1 +d

          a3 – a2 =d 即: a3 =a2 +d = a1 +2d

          a4 – a3 =d 即: a4 =a3 +d = a1 +3d

          ??

          猜想: a40 = a1 +39d,進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

          an=a1+(n-1)d

          此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:

          a2 – a1 =d

          a3 – a2 =d

          a4 – a3 =d

          ??

          an – an-1=d

          將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇5

        各位評(píng)委,老師們:

          大家好!

          很高興參加這次說(shuō)課活動(dòng).這對(duì)我來(lái)說(shuō)也是一次難得的學(xué)習(xí)和鍛煉的機(jī)會(huì),感謝各位老師在百忙之中來(lái)此予以指導(dǎo).希望各位評(píng)委和老師們對(duì)我的說(shuō)課內(nèi)容提出寶貴意見.

          我說(shuō)課的內(nèi)容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級(jí)中學(xué)教科書(試驗(yàn)修訂本-必修)<數(shù)學(xué)>第一冊(cè)下,教學(xué)內(nèi)容為第96頁(yè)至98頁(yè)第五章第一節(jié).本校是浙江省一級(jí)重點(diǎn)中學(xué),學(xué)生基礎(chǔ)相對(duì)較好.我在進(jìn)行教學(xué)設(shè)計(jì)時(shí),也充分考慮到了這一點(diǎn).

          下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)四個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想.

          一教材分析

          (1)地位和作用

          向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問(wèn)題的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運(yùn)算(運(yùn)算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系.向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實(shí)際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用.

          平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對(duì)向量的深入學(xué)習(xí).為學(xué)習(xí)向量的知識(shí)體系奠定了知識(shí)和方法基礎(chǔ).

          (2)教學(xué)結(jié)構(gòu)的調(diào)整

          課本在這一部分內(nèi)容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數(shù)量的區(qū)別.然后介紹了向量的幾何表示,向量的長(zhǎng)度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念.為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認(rèn)知過(guò)程和探究過(guò)程.在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過(guò)程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨(dú)立完成.

          (3)重點(diǎn),難點(diǎn),關(guān)鍵

          由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ).為了本章后面知識(shí)的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向.所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點(diǎn).本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計(jì)的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的'學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗(yàn),多數(shù)學(xué)生對(duì)向量的認(rèn)識(shí)還比較單一,僅僅考慮其大小,忽略其方向,這對(duì)學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點(diǎn).而解決這一難點(diǎn)的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對(duì)向量的理解.

          二教學(xué)目標(biāo)的確定

          根據(jù)本課教材的特點(diǎn),新大綱對(duì)本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標(biāo):

          (1)基礎(chǔ)知識(shí)目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會(huì)用字母表示向量,能讀寫已知圖中的向量.會(huì)根據(jù)圖形判定向量是否平行,共線,相等.

          (2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。

          (3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂(lè)趣。

          三教學(xué)方法的選擇

          Ⅰ教學(xué)方法

          本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

          (1)由教材的特點(diǎn)確立類比思維為教學(xué)的主線.

          從教材內(nèi)容看平面向量無(wú)論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似.因此在教學(xué)中運(yùn)用類比作為思維的主線進(jìn)行教學(xué).讓學(xué)生充分體會(huì)數(shù)學(xué)知識(shí)與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程.

          (2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習(xí)方法

          通常學(xué)生對(duì)于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表?yè)P(yáng),多肯定來(lái)激勵(lì)他們的學(xué)習(xí)熱情.考慮到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對(duì)自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識(shí),所以在教學(xué)中我通過(guò)創(chuàng)設(shè)問(wèn)題情境,啟發(fā)引導(dǎo)學(xué)生運(yùn)用科學(xué)的思維方法進(jìn)行自主探究.將學(xué)生的獨(dú)立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用.

          Ⅱ教學(xué)手段

          本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計(jì)算機(jī)來(lái)輔助教學(xué).多媒體投影為師生的交流和討論提供了平臺(tái);計(jì)算機(jī)演示的作圖過(guò)程則有助于滲透數(shù)形結(jié)合思想,更易于對(duì)概念的理解和難點(diǎn)的突破.

          四教學(xué)過(guò)程的設(shè)計(jì)

          Ⅰ知識(shí)引入階段---提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

          (1) 創(chuàng)設(shè)情境——引入概念

          數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。

          由生活中具體的向量的實(shí)例引入:大海中船只的航線,中國(guó)象棋中”馬”,”象”的走法等.這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習(xí)興趣.

          (2) 觀察歸納——形成概念

          由實(shí)例得出有向線段的概念,有向線段的三個(gè)要素:起點(diǎn),方向,長(zhǎng)度.明確知道了有向線段的起點(diǎn),方向和長(zhǎng)度,它的終點(diǎn)就唯一確定.再有目的的進(jìn)行設(shè)計(jì),引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):向量的概念及其幾何表示。

          (3) 討論研究——深化概念

          在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個(gè)問(wèn)題:

          ①向量的要素是什么?

          ②向量之間能否比較大小?

          ③向量與數(shù)量的區(qū)別是什么?

          同時(shí)指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題.

          Ⅱ知識(shí)探索階段---探索平面向量的平行向量.相等向量等概念

          (1) 總結(jié)反思——提高認(rèn)識(shí)

          方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長(zhǎng)度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件.

          (2)即時(shí)訓(xùn)練—鞏固新知

          為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過(guò)學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來(lái)鞏固新知識(shí)。

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇6

          一、教材分析

          1、教材所處的地位和作用

          奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

          奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

          2、學(xué)情分析

          從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡(jiǎn)單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。

          從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來(lái)思考和解決問(wèn)題、

          3、教學(xué)目標(biāo)

          基于以上對(duì)教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):

          【知識(shí)與技能】

          1、能判斷一些簡(jiǎn)單函數(shù)的奇偶性。

          2、能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意xx決一些簡(jiǎn)單的問(wèn)題。

          【過(guò)程與方法】

          經(jīng)歷奇偶性概念的形成過(guò)程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

          【情感、態(tài)度與價(jià)值觀】

          通過(guò)自主探索,體會(huì)數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對(duì)稱美。

          從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

          4、教學(xué)重點(diǎn)和難點(diǎn)

          重點(diǎn):函數(shù)奇偶性的概念和幾何意義。

          幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識(shí)點(diǎn)并不是很難理解,但知識(shí)點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下面的錯(cuò)誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn)成立即可,而忽視了考慮函數(shù)定義域的問(wèn)題。因此,在介紹奇、偶函數(shù)的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強(qiáng)本節(jié)課重點(diǎn)問(wèn)題的講解。

          難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過(guò)程。

          由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對(duì)建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的.數(shù)學(xué)化提煉過(guò)程設(shè)計(jì)為本節(jié)課的難點(diǎn)。

          二、教法與學(xué)法分析

          1、教法

          根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng)設(shè)問(wèn)題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

          2、學(xué)法

          讓學(xué)生在觀察一歸納一檢驗(yàn)一應(yīng)用的學(xué)習(xí)過(guò)程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識(shí)。

          三、教學(xué)過(guò)程

          具體的教學(xué)過(guò)程是師生互動(dòng)交流的過(guò)程,共分六個(gè)環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會(huì)定義;知識(shí)應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對(duì)這六個(gè)環(huán)節(jié)進(jìn)行說(shuō)明。

          (一)設(shè)疑導(dǎo)入、觀圖激趣

          由于本節(jié)內(nèi)容相對(duì)獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點(diǎn)的效果。

          用多媒體展示一組圖片,使學(xué)生感受到生活中的對(duì)稱美。再讓學(xué)生觀察幾個(gè)特殊函數(shù)圖象。通過(guò)讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識(shí)作好鋪墊。

          (二)指導(dǎo)觀察、形成概念

          在這一環(huán)節(jié)中共設(shè)計(jì)了2個(gè)探究活動(dòng)。

          探究1、2數(shù)學(xué)中對(duì)稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說(shuō)出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對(duì)稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現(xiàn)兩個(gè)函數(shù)的對(duì)稱性反應(yīng)到函數(shù)值上具有的特性,()然后通過(guò)解析式給出嚴(yán)格證明,進(jìn)一步說(shuō)明這個(gè)特性對(duì)定義域內(nèi)任意一個(gè)都成立。最后給出偶函數(shù)(奇函數(shù))定義(板書)。

          在這個(gè)過(guò)程中,學(xué)生把對(duì)圖形規(guī)律的感性認(rèn)識(shí),轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識(shí),切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗(yàn)。

          (三)學(xué)生探索、領(lǐng)會(huì)定義

          探究3下列函數(shù)圖象具有奇偶性嗎?

          設(shè)計(jì)意圖:深化對(duì)奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對(duì)稱。(突破了本節(jié)課的難點(diǎn))

          (四)知識(shí)應(yīng)用,鞏固提高

          在這一環(huán)節(jié)我設(shè)計(jì)了4道題

          例1判斷下列函數(shù)的奇偶性

          選例1的第(1)及(3)小題板書來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。

          例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:

          (1)先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱;

          (2)再判斷f(-x)=-f(x)還是f(-x)=f(x)。

          例2判斷下列函數(shù)的奇偶性:

          例3判斷下列函數(shù)的奇偶性:

          例2、3設(shè)計(jì)意圖是探究一個(gè)函數(shù)奇偶性的可能情況有幾種類型?

          例4(1)判斷函數(shù)的奇偶性。

          (2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

          例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

          在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對(duì)函數(shù)的奇偶性認(rèn)識(shí)、理解和應(yīng)用都能提升很大一個(gè)高度,達(dá)到當(dāng)堂消化吸收的效果。

          (五)總結(jié)反饋

          在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問(wèn)題式教學(xué)法的特色。

          在本節(jié)課的最后對(duì)知識(shí)點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識(shí)在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識(shí)的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識(shí)的應(yīng)用能力、增強(qiáng)錯(cuò)誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

          (六)分層作業(yè),學(xué)以致用

          必做題:課本第36頁(yè)練習(xí)第1-2題。

          選做題:課本第39頁(yè)習(xí)題1、3A組第6題。

          思考題:課本第39頁(yè)習(xí)題1、3B組第3題。

          設(shè)計(jì)意圖:面向全體學(xué)生,注重個(gè)人差異,加強(qiáng)作業(yè)的針對(duì)性,對(duì)學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇7

          課題《數(shù)列的概念與簡(jiǎn)單表示方法(一)》選自普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書人教版A版數(shù)學(xué)必修5第二章第一節(jié)的第一課時(shí)。我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過(guò)程這五個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。

          一、教材分析

          1、教材的地位和作用

          數(shù)列是高中數(shù)學(xué)的重要內(nèi)容之一,它的地位作用可以從三個(gè)方面來(lái)看:

          (1)數(shù)列有著廣泛的實(shí)際應(yīng)用。如堆放的物品的總數(shù)計(jì)算要用到數(shù)列的前n項(xiàng)和,又如分期儲(chǔ)蓄、付款公式的有關(guān)計(jì)算也要用到數(shù)列的一些知識(shí)。

          (2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決數(shù)列的某些問(wèn)題中得到了充分運(yùn)用,數(shù)列是前面函數(shù)知識(shí)的延伸及應(yīng)用,可以使學(xué)生加深對(duì)函數(shù)概念的`理解;另一方面,學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項(xiàng)和以及通項(xiàng)公式打好了鋪墊。因此就有必要講好、學(xué)好數(shù)列。

          (3)數(shù)列是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。是進(jìn)行計(jì)算,推理等基本訓(xùn)練,綜合訓(xùn)練的重要教材。學(xué)習(xí)數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運(yùn)用前面的知識(shí)解決數(shù)列中的一些問(wèn)題,這些都有助于學(xué)生數(shù)學(xué)能力的提高。

          二、學(xué)情分析

          從學(xué)生知識(shí)層面看:學(xué)生對(duì)數(shù)列已有初步的認(rèn)識(shí),對(duì)方程、函數(shù)、數(shù)學(xué)公式的運(yùn)用已有一定的基礎(chǔ),對(duì)方程、函數(shù)思想的體會(huì)也逐漸深刻。

          從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開始,我就很注意學(xué)生自主探究習(xí)慣的養(yǎng)成。現(xiàn)階段我的學(xué)生思維活躍,課堂參與意識(shí)較強(qiáng),而且已經(jīng)具有一定的分析、推理能力。

          三、教學(xué)目標(biāo)分析

          根據(jù)上面的教材分析以及學(xué)情分析,確定了本節(jié)課的教學(xué)目標(biāo):

          (1)知識(shí)目標(biāo):認(rèn)識(shí)數(shù)列的特點(diǎn),掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點(diǎn)。了解數(shù)列通項(xiàng)公式的意義及數(shù)列分類。能由數(shù)列的通項(xiàng)公式求出數(shù)列的各項(xiàng),反之,又能由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式。

          (2)能力目標(biāo):通過(guò)對(duì)數(shù)列概念以及通項(xiàng)公式的探究、推導(dǎo)、應(yīng)用等過(guò)程,鍛煉了學(xué)生的觀察、歸納、類比等分析問(wèn)題的能力。同時(shí)更深層次的理解了數(shù)學(xué)知識(shí)之間的相互滲透性思想。

          (3)情感目標(biāo):在教學(xué)中使學(xué)生體會(huì)教學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)熱愛生活的情感。

          四、教學(xué)重點(diǎn)與難點(diǎn)

          根據(jù)教學(xué)目標(biāo)以及學(xué)生的理解能力與認(rèn)知水平,我確定了如下的教學(xué)重難點(diǎn)。

          重點(diǎn):理解數(shù)列的概念,能由函數(shù)的觀點(diǎn)去認(rèn)識(shí)數(shù)列,以及對(duì)通項(xiàng)公式的理解。

          難點(diǎn):根據(jù)數(shù)列的前幾項(xiàng)的特點(diǎn),通過(guò)多角度、多層次的觀察分析歸納出數(shù)列的一個(gè)通項(xiàng)公式。

          五、教法分析

          根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際情況,結(jié)合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導(dǎo)發(fā)現(xiàn)為輔,由老師帶領(lǐng)同學(xué)們發(fā)現(xiàn)問(wèn)題,分析問(wèn)題,并解決問(wèn)題.考慮到學(xué)生的認(rèn)知過(guò)程,本節(jié)課會(huì)采用由易到難的教學(xué)進(jìn)程以及實(shí)例給出與練習(xí)設(shè)置,讓學(xué)生們充分體會(huì)到事物的發(fā)展規(guī)律。同時(shí)為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習(xí)熱情,本節(jié)課還會(huì)采用常規(guī)手段與現(xiàn)代手段相結(jié)合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇8

          一、教材分析

          (一)教材的地位和作用

          “一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

          (二)教學(xué)內(nèi)容

          本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過(guò)二次函數(shù)的圖象探索一元二次不等式的解集。通過(guò)復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的'樂(lè)趣。

          二、教學(xué)目標(biāo)分析

          根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

          知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

          能力目標(biāo)——通過(guò)看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

          情感目標(biāo)——?jiǎng)?chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

          三、重難點(diǎn)分析

          一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問(wèn)題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

          要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過(guò)這類問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

          四、教法與學(xué)法分析

          (一)學(xué)法指導(dǎo)

          教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

          (二)教法分析

          本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

          建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。

          本節(jié)課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說(shuō)、用”。較好地探求一元二次不等式的解法。

          五、課堂設(shè)計(jì)

          本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

          (一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

          本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

          為此,我設(shè)計(jì)了以下幾個(gè)問(wèn)題:

          1、請(qǐng)同學(xué)們解以下方程和不等式:

          ①2x-7=0;②2x-7>0;③2x-7

          學(xué)生回答,我板書

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇9

          教學(xué)指導(dǎo)思想:新的教學(xué)理念下課堂教學(xué)已經(jīng)是一個(gè)多維度多中心的整體。教師學(xué)生都是參與課堂的主體,而教學(xué)設(shè)計(jì)與實(shí)驗(yàn)則是課堂的載體,它將調(diào)度師生共同參與教學(xué)活動(dòng),并在參與中盡量獲取知識(shí)與能力上的探討,共鳴與思維能力的升華與內(nèi)化。教學(xué)應(yīng)該揭示事物發(fā)展規(guī)律的呈現(xiàn),注重學(xué)生把數(shù)學(xué)問(wèn)題取之生活,用之生活。 本案將從現(xiàn)實(shí)中提取生活素材,引導(dǎo)學(xué)生在生活去發(fā)現(xiàn)問(wèn)題,提煉猜想歸納,分析解決,得出事物或者問(wèn)題發(fā)展規(guī)律;在此過(guò)程中學(xué)生得到的是自身發(fā)現(xiàn)能力的挖掘,建構(gòu)模型的開發(fā),問(wèn)題解決能力的提高以及綜合創(chuàng)新與創(chuàng)造力的潛能訓(xùn)練,這將有利于學(xué)生的素質(zhì)和終身學(xué)習(xí)能力的培養(yǎng)。

          一、教材分析

          1、教材的地位和作用

          算術(shù)平均數(shù)與幾何平均數(shù)是不等式這一章的核心,對(duì)于不等式的證明及利用均值不等式求最值等應(yīng)用問(wèn)題都起到工具性作用。通過(guò)本章的學(xué)習(xí)有利于學(xué)生對(duì)后面不等式的證明及前面函數(shù)的一些最值值域進(jìn)一步研究,起到承前啟后的作用。

          2、教學(xué)內(nèi)容

          本節(jié)課的主要教學(xué)內(nèi)容是通過(guò)現(xiàn)實(shí)問(wèn)題進(jìn)行數(shù)學(xué)實(shí)驗(yàn)猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過(guò)在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;與此同時(shí)在推理論證的基礎(chǔ)上學(xué)會(huì)應(yīng)用。

          3、教學(xué)目標(biāo)

          教學(xué)目標(biāo)是基于對(duì)教材,教學(xué)大綱和學(xué)生學(xué)情的分析相應(yīng)制定的。在新課程理念的指導(dǎo)下,更為關(guān)注學(xué)生的合作交流能力的培養(yǎng),關(guān)注學(xué)生探究問(wèn)題的習(xí)慣和意識(shí)的培養(yǎng)。因此,結(jié)合本節(jié)課內(nèi)容與實(shí)驗(yàn),設(shè)計(jì)本節(jié)課教學(xué)目標(biāo)如下:

          知識(shí)與技能:對(duì)于算術(shù)平均數(shù)與幾何平均數(shù)的理解以及定理的掌握;

          過(guò)程與方法:通過(guò)情景設(shè)置提出問(wèn)題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣;引導(dǎo)學(xué)生通過(guò)問(wèn)題設(shè)計(jì),模型轉(zhuǎn)化,類比猜想實(shí)現(xiàn)定理的發(fā)現(xiàn),體驗(yàn)知識(shí)與規(guī)律的形成過(guò)程;通過(guò)模型對(duì)比,多個(gè)角度,多種方法求解,拓寬學(xué)生的思路,優(yōu)化學(xué)生的思維方式,提高學(xué)生綜合創(chuàng)新與創(chuàng)造能力。

          情感態(tài)度價(jià)值觀: 培養(yǎng)學(xué)生生活問(wèn)題數(shù)學(xué)化,并注重運(yùn)用數(shù)學(xué)解決生活中實(shí)際問(wèn)題的習(xí)慣,有利于數(shù)學(xué)生活化,大眾化;同時(shí)通過(guò)學(xué)生自身的探索研究領(lǐng)略獲取新知的喜悅。

          教學(xué)重點(diǎn): 算術(shù)平均數(shù)與幾何平均數(shù)的理解以及定理的掌握;

          教學(xué)難點(diǎn):算術(shù)平均數(shù)與幾何平均數(shù)以及定理發(fā)現(xiàn)探索過(guò)程的構(gòu)建及應(yīng)用;

          教學(xué)關(guān)鍵:學(xué)生對(duì)于實(shí)驗(yàn)的實(shí)踐及函數(shù)模型的構(gòu)建。

          教學(xué)模式:探究式 合作式

          二、學(xué)情分析

          學(xué)生已經(jīng)掌握了不等式的基本性質(zhì),高中的學(xué)生已經(jīng)具有較好的邏輯思維能力,因此他們希望能夠自己探索,發(fā)現(xiàn)問(wèn)題和解決問(wèn)題。現(xiàn)在經(jīng)歷課改的學(xué)生不僅僅停留在接受學(xué)習(xí)的框框內(nèi),他們更需要充滿活力與創(chuàng)造發(fā)現(xiàn)的課堂。課堂實(shí)驗(yàn)可能存在問(wèn)題:對(duì)EXEL軟件不夠熟練。對(duì)于模型構(gòu)造思路不夠清晰。

          三、教法分析

          不同于傳統(tǒng)的講授課,基于數(shù)學(xué)實(shí)驗(yàn)的教學(xué)實(shí)踐課,教師的教應(yīng)有瞻前性,應(yīng)該在實(shí)驗(yàn)課前讓學(xué)生對(duì)于軟件的應(yīng)用有充分的準(zhǔn)備,并進(jìn)行分組討論得到數(shù)學(xué)模型。依據(jù)前蘇聯(lián)教育家贊可夫"問(wèn)題教學(xué)法"確定本堂課所采用的教學(xué)方法是"生活中發(fā)現(xiàn)問(wèn)題,實(shí)驗(yàn)中分析問(wèn)題,設(shè)計(jì)中解決問(wèn)題,總結(jié)問(wèn)題,論證后延拓問(wèn)題"五環(huán)節(jié)教學(xué)方法,運(yùn)用這種教學(xué)方法能更好地使學(xué)生經(jīng)歷實(shí)驗(yàn)的發(fā)生,發(fā)展和"再創(chuàng)造"的全過(guò)程,主動(dòng)地吸收新知識(shí)的精髓。

          四、學(xué)法指導(dǎo)

          新的教學(xué)理念下課堂教學(xué)已經(jīng)是一個(gè)多維度多中心的整體。教師學(xué)生都是參與課堂的主體,而教學(xué)設(shè)計(jì)與實(shí)驗(yàn)則是課堂的載體,它將調(diào)度師生共同參與教學(xué)活動(dòng),并在參與中盡量獲取知識(shí)與能力上的探討,共鳴與思維能力的升華與內(nèi)化。教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)數(shù)學(xué)實(shí)驗(yàn)課的教學(xué)特點(diǎn),這節(jié)課主要是教給學(xué)生"動(dòng)手做,動(dòng)腦想;多訓(xùn)練,多實(shí)踐。"的研討式學(xué)習(xí)方法。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與意識(shí),教給學(xué)生獲取知識(shí)的途徑,思考問(wèn)題的方法,使學(xué)生真正成為教學(xué)的主體。通過(guò)這樣使學(xué)生"學(xué)"有新"思","思"有所"得","練"有所"獲"。學(xué)生才會(huì)學(xué)習(xí)數(shù)學(xué)中體驗(yàn)發(fā)現(xiàn)的.成就感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;在此過(guò)程中,學(xué)生學(xué)會(huì)了交流合作,并學(xué)以致用,才能適應(yīng)素質(zhì)教育下培養(yǎng)"創(chuàng)新型"人才的需要。

          五、實(shí)驗(yàn)內(nèi)容與實(shí)驗(yàn)程序:

          問(wèn)題:元旦晚會(huì)我們學(xué)校即將舉行游園活動(dòng),每個(gè)班級(jí)有一條20米長(zhǎng)的紅絲帶在燈光球場(chǎng)圍成一矩形的場(chǎng)地活動(dòng),請(qǐng)問(wèn)大家應(yīng)該怎么圍才能使我們班級(jí)的場(chǎng)地面積最大

          1問(wèn)題提煉:(用數(shù)學(xué)語(yǔ)言表達(dá))

          2實(shí)驗(yàn)步驟:

          A 請(qǐng)根據(jù)題目要求選擇整數(shù)長(zhǎng)度為邊,按照制圖方法繪制5個(gè)矩形,并比較面積

          B 把上面的矩形按照邊長(zhǎng)與面積的不同列表歸納

          長(zhǎng)度(m)

          寬度 (m)

          面積 ()

          C 根據(jù)以上表格數(shù)據(jù),請(qǐng)用exel軟件作出柱狀圖,并思考以下問(wèn)題:

          (1)在邊長(zhǎng)變化過(guò)程中,面積的大小變化情況與趨勢(shì)

          (2)由這種趨勢(shì)請(qǐng)同學(xué)們自己猜想總結(jié)一個(gè)結(jié)論。

          3 實(shí)驗(yàn)的感言與進(jìn)一步構(gòu)造數(shù)學(xué)模型的思考。

          六、教學(xué)流程

          1,生活問(wèn)題創(chuàng)設(shè)情景:通過(guò)生活問(wèn)題設(shè)置情景并構(gòu)建實(shí)驗(yàn)

          2,構(gòu)建模型解決問(wèn)題:學(xué)生通過(guò)合作討論構(gòu)建函數(shù)及不等式解決問(wèn)題并發(fā)現(xiàn)均值不等式

          3,定理總結(jié)結(jié)論表述:用數(shù)學(xué)語(yǔ)言表達(dá)均值不等式并用文字語(yǔ)言總結(jié)陳述

          4,定理論證課堂練習(xí):用幾何與代數(shù)方法分別論證結(jié)論并進(jìn)行課堂練習(xí)

          5,學(xué)習(xí)感言教學(xué)小結(jié):由學(xué)生發(fā)表學(xué)習(xí)感言,老師總結(jié)本堂課的學(xué)習(xí)過(guò)程與學(xué)習(xí)方法。學(xué)習(xí)過(guò)程:發(fā)現(xiàn)問(wèn)題――實(shí)驗(yàn)猜想――構(gòu)建模型――發(fā)現(xiàn)規(guī)律――論證再運(yùn)用;學(xué)習(xí)方法:協(xié)作探討,自主實(shí)驗(yàn),猜想證明,發(fā)現(xiàn)應(yīng)用。

          七、教學(xué)反饋評(píng)價(jià)

          本節(jié)課利用生活問(wèn)題設(shè)計(jì)數(shù)學(xué)實(shí)驗(yàn),是現(xiàn)階段新課程改革的新試點(diǎn),是學(xué)生進(jìn)行數(shù)學(xué)研究性學(xué)習(xí)與自主學(xué)習(xí)的一重要手段與途徑。

          本節(jié)課通過(guò)生活問(wèn)題的合作交流探討,學(xué)生學(xué)習(xí)方式有了新的改變;在實(shí)驗(yàn)的構(gòu)造過(guò)程,學(xué)生的自主性,實(shí)踐性,創(chuàng)造性得到鍛煉與提高;在實(shí)驗(yàn)過(guò)程中學(xué)生的分工合作精神更是得到充分的考驗(yàn)與體現(xiàn),學(xué)生學(xué)會(huì)了合作與分享;通過(guò)對(duì)數(shù)學(xué)模型的構(gòu)建,學(xué)生更加體會(huì)進(jìn)行自主研究,合作學(xué)習(xí)的樂(lè)趣,同時(shí)培養(yǎng)了學(xué)生創(chuàng)新精神與發(fā)現(xiàn)能力。

          當(dāng)然本節(jié)課的一個(gè)突出點(diǎn)在于從書本某一個(gè)知識(shí)作為切入點(diǎn)構(gòu)造生活問(wèn)題,設(shè)計(jì)數(shù)學(xué)實(shí)驗(yàn),創(chuàng)造性地對(duì)教材進(jìn)行再利用,再編改。使得學(xué)生在課堂,課外自主學(xué)習(xí)與接受知識(shí)的方法途徑更加多樣,參與課堂的方式更加深入,更容易通過(guò)自己探究體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。這是傳統(tǒng)教學(xué)所沒辦法達(dá)到的。

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇10

          一、教材分析

          1、教材所處的地位和作用

          奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

          奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

          2、學(xué)情分析

          從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡(jiǎn)單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。

          從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來(lái)思考和解決問(wèn)題、

          3、教學(xué)目標(biāo)

          基于以上對(duì)教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):

          【知識(shí)與技能】

          a、能判斷一些簡(jiǎn)單函數(shù)的奇偶性。

          b、能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡(jiǎn)單的問(wèn)題。

          【過(guò)程與方法】

          經(jīng)歷奇偶性概念的形成過(guò)程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

          【情感、態(tài)度與價(jià)值觀】

          通過(guò)自主探索,體會(huì)數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對(duì)稱美。

          從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

          4、教學(xué)重點(diǎn)和難點(diǎn)

          重點(diǎn):函數(shù)奇偶性的概念和幾何意義。

          幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識(shí)點(diǎn)并不是很難理解,但知識(shí)點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下面的錯(cuò)誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn)成立即可,而忽視了考慮函數(shù)定義域的問(wèn)題。因此,在介紹奇、偶函數(shù)的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個(gè)問(wèn)題上我除了注意概念的講解,還特意安排了一道例題,來(lái)加強(qiáng)本節(jié)課重點(diǎn)問(wèn)題的講解。

          難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過(guò)程。

          由于,學(xué)生看待問(wèn)題還是靜止的、片面的,抽象概括能力比較薄弱,這對(duì)建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過(guò)程設(shè)計(jì)為本節(jié)課的難點(diǎn)。

          二、教法與學(xué)法分析

          1、教法

          根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問(wèn)題,創(chuàng)設(shè)問(wèn)題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

          2、學(xué)法

          讓學(xué)生在觀察一歸納一檢驗(yàn)一應(yīng)用的學(xué)習(xí)過(guò)程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過(guò)程,從而使學(xué)生掌握知識(shí)。

          三、教學(xué)過(guò)程

          具體的教學(xué)過(guò)程是師生互動(dòng)交流的.過(guò)程,共分六個(gè)環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會(huì)定義;知識(shí)應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對(duì)這六個(gè)環(huán)節(jié)進(jìn)行說(shuō)明。

          (一)設(shè)疑導(dǎo)入、觀圖激趣

          由于本節(jié)內(nèi)容相對(duì)獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點(diǎn)的效果。

          用多媒體展示一組圖片,使學(xué)生感受到生活中的對(duì)稱美。再讓學(xué)生觀察幾個(gè)特殊函數(shù)圖象。通過(guò)讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識(shí)作好鋪墊。

          (二)指導(dǎo)觀察、形成概念

          在這一環(huán)節(jié)中共設(shè)計(jì)了2個(gè)探究活動(dòng)。

          探究1 、2 數(shù)學(xué)中對(duì)稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個(gè)探究主要是通過(guò)學(xué)生的自主探究來(lái)實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說(shuō)出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對(duì)稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個(gè)函數(shù)的對(duì)稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過(guò)解析式給出嚴(yán)格證明,進(jìn)一步說(shuō)明這個(gè)特性對(duì)定義域內(nèi)任意一個(gè) 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。

          在這個(gè)過(guò)程中,學(xué)生把對(duì)圖形規(guī)律的感性認(rèn)識(shí),轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識(shí),切實(shí)經(jīng)歷了一次從特殊歸納出一般的過(guò)程體驗(yàn)。

          (三) 學(xué)生探索、領(lǐng)會(huì)定義

          探究3 下列函數(shù)圖象具有奇偶性嗎?

          設(shè)計(jì)意圖:深化對(duì)奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對(duì)稱。(突破了本節(jié)課的難點(diǎn))

          (四)知識(shí)應(yīng)用,鞏固提高

          在這一環(huán)節(jié)我設(shè)計(jì)了4道題

          例1判斷下列函數(shù)的奇偶性

          選例1的第(1)及(3)小題板書來(lái)示范解題步驟,其他小題讓學(xué)生在下面完成。

          例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:

          (1) 先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱;

          (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

          例2 判斷下列函數(shù)的奇偶性:

          例3 判斷下列函數(shù)的奇偶性:

          例2、3設(shè)計(jì)意圖是探究一個(gè)函數(shù)奇偶性的可能情況有幾種類型?

          例4

          (1)判斷函數(shù)的奇偶性。

          (2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

          例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

          在這個(gè)過(guò)程中,我重點(diǎn)關(guān)注了學(xué)生的推理過(guò)程的表述。通過(guò)這些問(wèn)題的解決,學(xué)生對(duì)函數(shù)的奇偶性認(rèn)識(shí)、理解和應(yīng)用都能提升很大一個(gè)高度,達(dá)到當(dāng)堂消化吸收的效果。

          (五)總結(jié)反饋

          在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問(wèn)題貫穿于探究過(guò)程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問(wèn)題式教學(xué)法的特色。

          在本節(jié)課的最后對(duì)知識(shí)點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識(shí)在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識(shí)的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識(shí)的應(yīng)用能力、增強(qiáng)錯(cuò)誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

          (六)分層作業(yè),學(xué)以致用

          必做題:課本第36頁(yè)練習(xí)第1-2題。

          選做題:課本第39頁(yè)習(xí)題1、3A組第6題。

          思考題:課本第39頁(yè)習(xí)題1、3B組第3題。

          設(shè)計(jì)意圖:面向全體學(xué)生,注重個(gè)人差異,加強(qiáng)作業(yè)的針對(duì)性,對(duì)學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。

          高中數(shù)學(xué)優(yōu)秀說(shuō)課稿 篇11

          今天我說(shuō)課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說(shuō)明。

          一、教材分析

          教材的地位和作用

          本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

          學(xué)情分析

          本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔械臅r(shí)候已經(jīng)學(xué)習(xí)過(guò)有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對(duì)二次函數(shù)的圖像由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問(wèn)題的能力。

          二、教學(xué)目標(biāo)分析

          基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

          1、知識(shí)與技能

          理解二次函數(shù)中參數(shù)a,b,c,h,k對(duì)其圖像的影響;

          2、過(guò)程與方法

          通過(guò)體驗(yàn)對(duì)二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

          3、情感態(tài)度與價(jià)值觀

          通過(guò)本節(jié)的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。

          三、教學(xué)重難點(diǎn)分析

          通過(guò)以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下

          重點(diǎn):

          二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

          難點(diǎn):

          探索平移對(duì)函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

          四、教法與學(xué)法分析

          1、教法分析

          基于以上對(duì)教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

          2、學(xué)法分析

          新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過(guò)合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。

          五、教學(xué)過(guò)程

          為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計(jì)以下五個(gè)環(huán)節(jié)來(lái)進(jìn)行我的教學(xué)。

          (1)知識(shí)導(dǎo)入

          溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的'快樂(lè)體驗(yàn)。

          (2)講授新課

          例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

          讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對(duì)比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

          前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過(guò)程,即a>0開口向上,a

          (3)鞏固練習(xí)

          我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁(yè)1-3題。通過(guò)這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對(duì)圖像的影響。

          (4)歸納總結(jié)

          我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過(guò)程做好準(zhǔn)備。

          (5)布置作業(yè)

          略

        【高中數(shù)學(xué)優(yōu)秀說(shuō)課稿】相關(guān)文章:

        高中數(shù)學(xué)優(yōu)秀說(shuō)課稿03-03

        高中數(shù)學(xué)說(shuō)課稿優(yōu)秀02-28

        高中數(shù)學(xué)優(yōu)秀說(shuō)課稿(通用10篇)09-26

        高中數(shù)學(xué)經(jīng)典說(shuō)課稿11-25

        高中數(shù)學(xué)經(jīng)典優(yōu)秀說(shuō)課稿范文(通用10篇)08-22

        高中數(shù)學(xué)經(jīng)典優(yōu)秀說(shuō)課稿模板(通用15篇)07-13

        高中數(shù)學(xué)說(shuō)課稿06-12

        高中數(shù)學(xué)數(shù)列說(shuō)課稿11-20

        高中數(shù)學(xué)《數(shù)列》說(shuō)課稿01-18

        高中數(shù)學(xué)說(shuō)課稿06-09

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码
      3. <sub id="h4knl"><ol id="h4knl"></ol></sub>
        <sup id="h4knl"></sup>
          <sub id="h4knl"></sub>

          <sub id="h4knl"><ol id="h4knl"><em id="h4knl"></em></ol></sub><s id="h4knl"></s>
          1. <strong id="h4knl"></strong>

          2. 综合色本一道在线 | 亚洲中文字幕5g在线 | 特级精品三级AV | 亚洲一区二区三区在线看 | 亚洲欧美人女户中文字幕 | 日日摸夜夜摸狠狠摸中文字幕 |