精選高中數學說課稿范文錦集7篇
作為一位兢兢業業的人民教師,通常需要準備好一份說課稿,借助說課稿可以更好地組織教學活動。那要怎么寫好說課稿呢?以下是小編為大家收集的高中數學說課稿7篇,希望對大家有所幫助。
高中數學說課稿 篇1
一、教材分析
1· 教材的地位和作用
在學習這節課以前,我們已經學習了振幅變換。本節知識是學習函數圖象變換綜合應用的基礎,在教材地位上顯得十分重要。
y=asin(ωx+φ)圖象變換的學習有助于學生進一步理解正弦函數的圖象和性質,加深學生對函數圖象變換的理解和認識,加深數形結合在數學學習中的應用的認識。同時為相關學科的學習打下扎實的基礎。
、步滩牡闹攸c和難點
重點是對周期變換、相位變換規律的理解和應用。
難點是對周期變換、相位變換先后順序的調整,對圖象變換的影響。
、辰滩膬热莸陌才藕吞幚
函數y=asin(ωx+φ)圖象這部分內容計劃用3課時,本節是第2課時,主要學習周期變換和相位變換,以及兩種變換的綜合應用。
二、目的分析
、敝R目標
掌握相位變換、周期變換的變換規律。
⒉能力目標
培養學生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。
、车掠繕
在教學中努力培養學生的“由簡單到復雜、由特殊到一般”的辯證思想,培養學生的探究能力和協作學習的能力。
⒋情感目標
通過學數學,用數學,進而培養學生對數學的興趣。
三、教具使用
、俦菊n安排在電腦室教學,每個學生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統連接,以實現師生、生生的相互溝通。
、谡n前應先把本課所需要的幾何畫板課件通過多媒體演示系統發送到每一臺學生電腦。
四、教法、學法分析
本節課以“探究——歸納——應用”為主線,通過設置問題情境,引導學生自主探究,總結規律,并能應用規律分析問題、解決問題。
以學生的自主探究為主要方式,把計算機使用的主動權交給學生,讓學生主動去學習新知、探究未知,在活動中學習數學、掌握數學,并能數學地提出問題、解決問題。
五、教學過程
教學過程設計:
預備知識
一、問題探究
、艓熒献魈骄恐芷谧儞Q
⑵學生自主探究相位變換
二、歸納概括
三、實踐應用
教學程序
設計說明
〖預備知識
1我們已經學習了幾種圖象變換?
2這些變換的規律是什么?
幫助學生鞏固、理解和歸納基礎知識,為后面的學習作鋪墊。促使學生學會對知識的歸納梳理。
〖問題探究
。ㄒ唬⿴熒献魈骄恐芷谧儞Q
(1)自己動手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin
x圖象的變換過程,指出變換過程中圖象上每一個點的坐標發生了什么變化。
(2) 在上述變換過程中,橫坐標的伸長和縮短與ω之間存在怎樣的關系?
(二)學生自主探究相位變換
(1)我們初中學過的由y=f(x)→y=f(x+a)的圖象變換規律是怎樣的?
(2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規律呢?請動手用幾何畫板加以驗證。
設計這個問題的主要用意是讓學生通過觀察圖象變換的過程,了解周期變換的基本規律。
設計這個問題意圖是引導學生再次認真觀察圖象變換的過程,以便總結周期變換的規律。
師生合作探究已經讓學生掌握了探究圖象變換的基本方法,在此基礎上,由學生自主探究相位變換規律,提高學生的綜合能力。
〖歸納概括
通過以上探究,你能否總結出周期變換和相位變換的一般規律?
設計這個環節的意圖是通過對上述變換過程的探究,進而引導學生歸納概括,從現象到本質,總結出周期變換和相位變換的一般規律。
〖實踐應用
(一)應用舉例
(1)用五點法作出y=sin(2x+)一個周期內的簡圖。
(2)我們可以通過哪些方法完成y=sinx到y=sin(2x+)的圖象變換
(3)請動手驗證上述方法,把幾何畫板所得圖象與用五點法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯誤的。
(4)歸納總結
從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規律得從y=sin2x →y= sin(2x+)的變換應該是_____.
。ǘ┓謱佑柧
a組題(基礎題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
b組題(中等題)
如何完成下列圖象的變換:
、賧=sin3x→y=sin(3x+1)
、趛=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c組題(拓展題)
、偃绾瓮瓿上铝袌D象的變換:
y=sinx →y=sin(3x+1)
、谖覀冎,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實例加以驗證。
讓學生用五點法作出這個圖象是為了驗證變換方法是否正確。
給出這個問題的用意是開拓學生的思維,讓學生從多角度思考問題。
這個步驟主要目的是培養學生的探究能力和動手能力。
這個問題的解決,是突破本課難點的關鍵。通過問題的解決,讓學生理解如果先進行周期變換,而后進行相位變換,應特別關注x的變化量。
a組題重在基礎知識的掌握,
由基礎較薄弱的同學完成。
b組比a組增加了第③小題,
重在對兩種變換的綜合應用。
c組除了考查知識的綜合應用,
還要求學生對新問題進行探究,
有較大難度,適合基礎較好的
同學完成。
作業:
。1)必做題
。2)選做題
作業分為兩種形式,體現作業的鞏固性和發展性原則。選做題不作統一要求,供學有余力的學生課后研究。
六、評價分析
在本節的教與學活動中,始終體現以學生的發展為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,注意學生的品德、思維和心理等方面的發展。重視動手能力的培養,重視問題探究意識和能力的培養。同時,考慮不同學生的個性差異和發展層次,使不同的學生得到不同的發展,體現因材施教原則。
調節與反饋:
、膨炞C兩種變換的綜合時,可能會出現有些學生無法觀察到兩種變換的區別這種情況,此時,教師除了加以引導外,還需通過教師演示和詳細講解加以解決。
、平虒W中可能出現個別學生無法正確操作課件的情況,這種情況下一定要強調學生的協作意識。
附:板書設計
高中數學說課稿 篇2
高中數學第三冊(選修)Ⅱ第一章第2節第一課時
一、教材分析
教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。
通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。
[情感與態度目標]
通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。
三、教法選擇
引導發現法
四、學法指導
“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。
五、教學的基本流程設計
高中數學第三冊《離散型隨機變量的期望》說課教案.rar
高中數學說課稿 篇3
各位評委老師好:今天我說課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
一、 教材分析
是在學習了基礎上進一步研究 并為后面學習 做準備,在整個
高中數學中起著承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力
3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于
觀察勇于思考的學習習慣和嚴謹 的科學態度
根據教學目標、本節特點和學生實際情況本節重點是 ,由于學生對 缺少感性認識,所以本節課的重點是
二、教法學法
根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的.主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
三、 教學過程
四、 教學程序及設想
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。
五、教學評價
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應
當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。
高中數學說課稿 篇4
一、教材分析:
1、教材的地位與作用:
線性規劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節內容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數學在解決實際問題中的應用,體驗數形結合和轉化的思想方法,培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。
2、教學重點與難點:
重點:畫可行域;在可行域內,用圖解法準確求得線性規劃問題的最優解。
難點:在可行域內,用圖解法準確求得線性規劃問題的最優解。
二、目標分析:
在新課標讓學生經歷“學數學、做數學、用數學”的理念指導下,本節課的教學目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行
域和最優解等概念;
2、理解線性規劃問題的圖解法;
3、會利用圖解法求線性目標函數的最優解.
能力目標:
1、在應用圖解法解題的過程中培養學生的觀察能力、理解能力。
2、在變式訓練的過程中,培養學生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線性規劃的理性認識過程中,培養學生運用數形結合思想解題的能力和化歸能力。
情感目標:
1、讓學生體驗數學來源于生活,服務于生活,體驗數學在建設節約型社會中的作用,品嘗學習數學的樂趣。
2、讓學生體驗數學活動充滿著探索與創造,培養學生勤于思考、勇于探索的精神;
3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。
高中數學說課稿 篇5
今天我說課的內容是高二立體幾何(人教版)第九章第二章節第八小節《棱錐》的第一課時:《棱錐的概念和性質》。下面我就從教材分析、教法、學法和教學程序四個方面對本課的教學設計進行說明。
一、說教材
1、本節在教材中的地位和作用:
本節是棱柱的后續內容,又是學習球的必要基礎。第一課時的教學目的是讓學生掌握棱錐的一些必要的基礎知識,同時培養學生猜想、類比、比較、轉化的能力。著名的生物學家達爾文說:“最有價值的知識是關于方法和能力的知識”,因此,應該利用這節課培養學生學習方法、提高學習能力。
2. 教學目標確定:
(1)能力訓練要求
、偈箤W生了解棱錐及其底面、側面、側棱、頂點、高的概念。
、谑箤W生掌握截面的性質定理,正棱錐的性質及各元素間的關系式。
(2)德育滲透目標
①培養學生善于通過觀察分析實物形狀到歸納其性質的能力。
、谔岣邔W生對事物的感性認識到理性認識的能力。
、叟囵B學生“理論源于實踐,用于實踐”的觀點。
3. 教學重點、難點確定:
重 點:1.棱錐的截面性質定理 2.正棱錐的性質。
難 點:培養學生善于比較,從比較中發現事物與事物的區別。
二、說教學方法和手段
1、教法:
“以學生參與為標志,以啟迪學生思維,培養學生創新能力為核心”。
在教學中根據高中生心理特點和教學進度需要,設置一些啟發性題目,采用啟發式誘導法,講練結合,發揮教師主導作用,體現學生主體地位。
2、教學手段:
根據《教學大綱》中“堅持啟發式,反對注入式”的教學要求,針對本節課概念性強,思維量大,整節課以啟發學生觀察思考、分析討論為主,采用“多媒體引導點撥”的教學方法以多媒體演示為載體,以“引導思考”為核心,設計課件展示,并引導學生沿著積極的思維方向,逐步達到即定的教學目標,發展學生的邏輯思維能力;學生在教師營造的“可探索”的環境里,積極參與,生動活潑地獲取知識,掌握規律、主動發現、積極探索。
三、說學法:
這節課的核心是棱錐的截面性質定理,.正棱錐的性質。教學的指導思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認識規律,啟發學生反復思考,不斷內化成為自己的認知結構。
四、 學程序:
[復習引入新課]
1.棱柱的性質:
。1)側棱都相等,側面是平行四邊形
。2)兩個底面與平行于底面的截面是全等的多邊形
。3)過不相鄰的兩條側棱的截面是平行四邊形
2.幾個重要的四棱柱:
平行六面體、直平行六面體、長方體、正方體
思考:如果將棱柱的上底面給縮小成一個點,那么我們得到的將會是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側面、側棱、頂點、高、對角面的概念
。2).棱錐的表示方法、分類
2、棱錐的性質
(1). 截面性質定理:
如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質:
正棱錐的定義:
①底面是正多邊形
、陧旤c在底面的射影是底面的中心
①各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內的射影組成一個直角三角形;
棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形
引申:
、僬忮F的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
(3)正棱錐的各元素間的關系
下面我們結合圖形,進一步探討正棱錐中各元素間的關系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個圖中拿出來研究。
引申:
、儆^察圖中三棱錐S-OBM的側面三角形狀有何特點?
。ǹ勺C得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側面全是直角三角形。)
、谌舴謩e假設正棱錐的高SO= h,斜高SM= h’,底面邊長的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內切圓半徑OM= r,側棱SB=L,側面與底面的二面角∠SMO= α ,側棱與底面組成的角 ∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數)請試通過三角形得出以上各元素間的關系式。
。ㄕn后思考題)
[例題分析]
例1.若一個正棱錐每一個側面的頂角都是600,則這個棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五棱錐 D.六棱錐
。ù鸢福篋)
例2.如圖已知正三棱錐S-ABC的高SO=h,斜高SM=L,求經過SO的中點且平行于底面的截面△A’B’C’的面積。
﹙解析及圖略﹚
例3.已知正四棱錐的棱長和底面邊長均為a,求:
。1)側面與底面所成角α的余弦(2)相鄰兩個側面所成角β的余弦
﹙解析及圖略﹚
[課堂練習]
1、 知一個正六棱錐的高為h,側棱為L,求它的底面邊長和斜高。
﹙解析及圖略﹚
2、 錐被平行與底面的平面所截,若截面面積與底面面積之比為1∶2,求此棱錐的高被分成的兩段(從頂點到截面和從截面到底面)之比。
﹙解析及圖略﹚
[課堂小結]
一:棱錐的基本概念及表示、分類
二:棱錐的性質
截面性質定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐的側面積比也等于它們對應高的平方比、等于它們的底面積之比。
2.正棱錐的定義及基本性質
正棱錐的定義:
①底面是正多邊形
、陧旤c在底面的射影是底面的中心
。1)各側棱相等,各側面是全等的等腰三角形;各等腰三角形底邊上的高
相等,它們叫做正棱錐的斜高;
。2)棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形;棱錐的高、側棱和側棱在底面內的射影也組成一個直角三角形
引申: ①正棱錐的側棱與底面所成的角都相等;
、谡忮F的側面與底面所成的二面角相等;
、壅忮F中各元素間的關系
[課后作業]
1:課本P52 習題9.8 : 2、 4
2:課時訓練:訓練一
高中數學說課稿 篇6
尊敬的各位專家、評委:
大家好!
我是盧龍縣木井中學數學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。
一、教材分析
“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。
二、學情分析
我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。
三、教學目標
1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。
情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。
2、教學重點、難點
教學重點:正弦定理的發現與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段
為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學過程
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創設情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?
問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。
(二)特殊入手,發現規律
問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?
引導啟發學生發現特殊情形下的正弦定理
(三)類比歸納,嚴格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?
[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。
問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)
[設計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。
問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940-998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。
[設計說明] 通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。
(四)強化理解,簡單應用
下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。
[設計說明] 讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。
我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)
[設計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。
強化練習
讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》
(五)小結歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應用
4、涉及的數學思想和方法。
[設計說明] 師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。
(六)布置作業,鞏固提高
1、教材10頁習題1.1A組第1題。
2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設計說明] 對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。
高中數學說課稿 篇7
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一 教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二 教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三 學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四 教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦撛O情境,布疑激趣
“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
。ǘ┨綄ぬ乩岢霾孪
1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
。ㄋ模w納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
【精選高中數學說課稿范文錦集7篇】相關文章:
精選高中數學說課稿范文錦集五篇08-12
精選高中數學說課稿范文錦集8篇08-07
精選高中數學說課稿范文錦集十篇08-18
高中數學說課稿范文錦集7篇08-01
高中數學說課稿范文錦集七篇08-13
關于高中數學說課稿范文錦集六篇08-11
關于高中數學說課稿范文錦集9篇08-10
有關高中數學說課稿范文錦集五篇08-09
有關高中數學說課稿范文錦集10篇08-09