【熱門】高中數學說課稿3篇
作為一名默默奉獻的教育工作者,總不可避免地需要編寫說課稿,編寫說課稿助于積累教學經驗,不斷提高教學質量。那么問題來了,說課稿應該怎么寫?下面是小編整理的高中數學說課稿3篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學說課稿 篇1
尊敬的各位專家、評委:
大家好!
我是盧龍縣木井中學數學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數學必修5第一章第一節的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。
一、教材分析
“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養學生對數學的學習興趣和“用數學”的意識。
二、學情分析
我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。
三、教學目標
1、知識和技能:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發學生對現實世界的一些數學模型進行思考。
情感、態度、價值觀:培養學生合情合理探索數學規律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。
2、教學重點、難點
教學重點:正弦定理的發現與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段
為了更好的達成上面的教學目標,促進學習方式的轉變,本節課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學過程
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創設情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?
問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發學生學習本章知識的興趣。
(二)特殊入手,發現規律
問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?
引導啟發學生發現特殊情形下的正弦定理
(三)類比歸納,嚴格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?
[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。
問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發引導學生用多種方法加以研究證明,尤其是向量法,在下節余弦定理的證明中還要用,因此務必啟發學生用向量法完成證明。)
[設計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。
問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發﹝940-998﹞首先發現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。
[設計說明] 通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發學生學習科學文化知識的熱情。
(四)強化理解,簡單應用
下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。
[設計說明] 讓學生看看書,放慢節奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養學生養成自覺看書的好習慣。
我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發現的問題給予必要的講評)
[設計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創造條件。
強化練習
讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發現教材8頁得內容:《解三角形的進一步討論》
(五)小結歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應用
4、涉及的數學思想和方法。
[設計說明] 師生共同總結本節課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發展、完善的過程。
(六)布置作業,鞏固提高
1、教材10頁習題1.1A組第1題。
2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設計說明] 對不同水平的學生設計不同梯度的作業,尊重學生的個性差異,有利于因材施教的教學原則的貫徹。
高中數學說課稿 篇2
【一】教學背景分析
1.教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.
2.學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1) 知識目標:①掌握圓的標準方程;
、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
③利用圓的標準方程解決簡單的實際問題.
(2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;
、墼鰪妼W生用數學的意識.
(3) 情感目標:①培養學生主動探究知識、合作交流的意識;
、谠隗w驗數學美的過程中激發學生的學習興趣.
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4. 教學重點與難點
(1)重點:圓的標準方程的求法及其應用.
(2)難點: ①會根據不同的已知條件求圓的標準方程;
、谶x擇恰當的坐標系解決與圓有關的實際問題.
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
好學教育:
【二】教法學法分析
1.教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.
2.學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程. 下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高
反饋訓練 形成方法 小結反思 拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖.
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.
(二)深入探究——獲得新知
問題二 1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
好學教育:
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.
(三)應用舉例——鞏固提高
I.直接應用 內化新知
問題三 1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.
II.靈活應用 提升能力
問題四 1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.
III.實際應用 回歸自然
問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
好學教育:
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.
(四)反饋訓練——形成方法
問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:
圓心在原點時,半徑為r 的圓的標準方程為:.
、谝阎獔A的方程是,經過圓上一點的切線的方程是:.
2.分層作業
(A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.
3.激發新疑
問題七 1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計
(一)突出重點 抓住關鍵 突破難點
好學教育:
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的`同時突破了難點.
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.
(二)學生主體 教師主導 探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.
(三)培養思維 提升能力 激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.
高中數學說課稿 篇3
拋物線焦點性質的探索(說課)
一、教材分析
1 教材的地位與作用 “拋物線焦點的性質”是拋物線的重要性質之一,它是在學生學習拋物線的一般性質的基礎上,學習和研究的拋物線有關問題的基本工具之一;本節教材對于培養學生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。
2 教學目的 全日制普通高級中學《數學教學大綱》第22頁“重視現代教育技術的運用”中明確提出:在數學教學過程中,應有意識地利用計算機網絡等現代信息技術,認識計算機的智能圖形、快速計算、機器證明、自動求解及人機交互等功能在數學教學中的巨大潛力,努力探索在現代信息技術支持下的教學方法、教學模式。設計和組織能吸引學生積極參與的數學活動,支持和鼓勵學生運用信息技術學習數學、開展課題研究,改進學習方式,提高學生的自主學習能力和創新意識。因此本人在現行高中新教材(試驗修訂本·必修)數學第二冊(上)拋物線這一節內容為背景材料,以多媒體網絡教室為場地,以《幾何畫板》為教學工具與學習工具,設計了一堂《拋物線焦點性質的探索》,具體目標如下:
(1) 知識目標:了解焦點的有關性質;并掌握這些性質的證明方法;體會數形結合思想與分類討論思想在解決解析幾何題中的指導作用
。2) 能力目標:使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型;培養辯證唯物主義思想和辯證思維能力(主要包括量變與質變,常量與變量,運動與靜止)培養學生通過計算機來自主學習的能力與創新的能力。
。3) 情感目標:培養學生不畏困難,勇于鉆研、探索、大膽創新的精神,在挫折中成長鍛煉,培養學生良好的心理素質和抗挫折能力,通過拋物線焦點性質的探索及證明,使學生得到數學美和創造美的享受。
3 教學內容、重點、難點及關鍵 本節安排兩節課,
第一節課:主要內容是利用《幾何畫板》探索拋物線的有關性質;
第二節課:證明第一節所得到的有關性質。
重點:
。1)如何利用《幾何畫板》探索、發現拋物線焦點的性質;
(2)如何證明這些性質。
難點;
(1)如何利用《幾何畫板》探索、發現拋物線焦點的性質;
(2)如何證明這些性質。
二、教學策略及教法設計
學生在網絡教室(每人一機),其中裝有《幾何畫板》軟件及上課系統,每個學生的窗口,其他學生及教師都可以通過教師機切換,從而和其他學生交流,也可以通過網上論壇交流研究結果。
三、網絡教學環境設計
學生在網絡教室(每人一機)中有幾何畫板軟件,學生通過教師提供的網絡,自已閱讀,下載有關,利用《幾何畫板》的操作、試驗、猜想,通過自已的研究獲得結論,并互相討論觀察到的現象、交流研究結果。
四、教學過程設計
4.1 使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型 問題1 回顧一下拋物線的定義,并根據拋物線的定義思考用《幾何畫板》如何作出焦點在x軸上的拋物線圖象。 由于創設了一個創作的《幾何畫板》的窗口及網絡窗口,學生通過網絡學習,得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點性質的基本圖形。
【【熱門】高中數學說課稿3篇】相關文章:
【熱門】高中數學說課稿四篇07-11
【熱門】高中數學說課稿4篇06-17
高中數學經典說課稿范文06-24
高中數學說課稿(15篇)11-03
高中數學說課稿15篇10-16
高中數學經典優秀說課稿模板07-14
高中數學說課稿10篇06-13
高中數學說課稿三篇06-09
高中數學《什么是概率》說課稿范文01-27