1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-01 08:51:03 高中說課稿 我要投稿

        關于高中數學說課稿匯總七篇

          在教學工作者開展教學活動前,時常會需要準備好說課稿,借助說課稿可以讓教學工作更科學化。那么問題來了,說課稿應該怎么寫?下面是小編為大家整理的高中數學說課稿7篇,僅供參考,希望能夠幫助到大家。

        關于高中數學說課稿匯總七篇

        高中數學說課稿 篇1

          各位評委老師,大家好!

          我是本科數學**號選手,今天我要進行說課的課題是高中數學必修一第一章第三節第一課時《函數單調性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節課的設計方案。懇請在座的專家評委批評指正。

          一、教材分析

          1、 教材的地位和作用

         。1)本節課主要對函數單調性的學習;

          (2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫)

         。3)它是歷年高考的熱點、難點問題

          (根據具體的課題改變就行了,如果不是熱點難點問題就刪掉)

          2、 教材重、難點

          重點:函數單調性的定義

          難點:函數單調性的證明

          重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)

          3.學情分析

          高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強.

          二、教學目標

          知識目標:

         。1)函數單調性的定義

         。2)函數單調性的證明

          能力目標:

          培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

          情感目標:

          培養學生勇于探索的精神和善于合作的意識

         。ㄟ@樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)

          三、教法學法分析

          1、教法分析

          “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法

          2、學法分析

          “授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。

         。ㄇ叭糠钟脮r控制在三分鐘以內,可適當刪減)

          四、教學過程

          1、以舊引新,導入新知

          通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

          2、創設問題,探索新知

          緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。

          讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。

          讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。

          3、 例題講解,學以致用

          例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式

          例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

          例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

          學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

          4、歸納小結

          本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。

          5、作業布置

          為了讓學生學習不同的數學,我將采用分層布置作業的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

          6、板書設計

          我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。

          (這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

          五、教學評價

          本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。

        高中數學說課稿 篇2

          【一】教學背景分析

          1。教材結構分析

          《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。

          2。學情分析

          圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

          根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

          3。教學目標

         。1) 知識目標:①掌握圓的標準方程;

          ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

         、劾脠A的標準方程解決簡單的實際問題。

         。2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

         、诩由顚敌谓Y合思想的理解和加強對待定系數法的運用;

         、墼鰪妼W生用數學的意識。

         。3) 情感目標:①培養學生主動探究知識、合作交流的意識;

         、谠隗w驗數學美的過程中激發學生的學習興趣。

          根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

          4。 教學重點與難點

         。1)重點:圓的標準方程的求法及其應用。

         。2)難點: ①會根據不同的已知條件求圓的標準方程;

         、谶x擇恰當的坐標系解決與圓有關的實際問題。

          為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

          好學教育:

          【二】教法學法分析

          1。教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。

          2。學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。 下面我就對具體的教學過程和設計加以說明:

          【三】教學過程與設計

          整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

          創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高

          反饋訓練 形成方法 小結反思 拓展引申

          下面我從縱橫兩方面敘述我的教學程序與設計意圖。

          首先:縱向敘述教學過程

          (一)創設情境——啟迪思維

          問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?

          通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

          通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。

          (二)深入探究——獲得新知

          問題二 1。根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

          2。如果圓心在,半徑為時又如何呢?

          好學教育:

          這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

          得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。

         。ㄈ⿷门e例——鞏固提高

          I。直接應用 內化新知

          問題三 1。寫出下列各圓的標準方程:

         。1)圓心在原點,半徑為3;

          (2)經過點,圓心在點。

          2。寫出圓的圓心坐標和半徑。

          我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。

          II。靈活應用 提升能力

          問題四 1。求以點為圓心,并且和直線相切的圓的方程。

          2。求過點,圓心在直線上且與軸相切的圓的方程。

          3。已知圓的方程為,求過圓上一點的切線方程。

          你能歸納出具有一般性的結論嗎?

          已知圓的方程是,經過圓上一點的切線的方程是什么?

          我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。

          III。實際應用 回歸自然

          問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

          好學教育:

          我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。

         。ㄋ模┓答佊柧殹纬煞椒

          問題六 1。求過原點和點,且圓心在直線上的圓的標準方程。

          2。求圓過點的切線方程。

          3。求圓過點的切線方程。

          接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。

         。ㄎ澹┬〗Y反思——拓展引申

          1。課堂小結

          把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為:

          圓心在原點時,半徑為r 的圓的標準方程為:。

         、谝阎獔A的方程是,經過圓上一點的切線的方程是:。

          2。分層作業

         。ˋ)鞏固型作業:教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。

          3。激發新疑

          問題七 1。把圓的標準方程展開后是什么形式?

          2。方程表示什么圖形?

          在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。

          以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計

         。ㄒ唬┩怀鲋攸c 抓住關鍵 突破難點

          好學教育:

          求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。

          第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。

          (二)學生主體 教師主導 探究主線

          本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。

          (三)培養思維 提升能力 激勵創新

          為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。

          以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。

        高中數學說課稿 篇3

        各位老師:

          大家好!

          我叫xxx,來自xx。我說課的題目是《用樣本的數字特征估計總體的數字特征》,內容選自于高中教材新課程人教A版必修3第二章第二節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1、教材所處的地位和作用

          在上一節我們已經學習了用圖、表來組織樣本數據,并且學習了如何通過圖、表所提供的信息,用樣本的頻率分布估計總體的分布情況。本節課是在前面所學內容的基礎上,進一步學習如何通過樣本的情況來估計總體,從而使我們能從整體上更好地把握總體的規律,為現實問題的解決提供更多的幫助。

          2教學的重點和難點

          重點:⑴能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。

         、企w會樣本數字特征具有隨機性

          難點:能應用相關知識解決簡單的實際問題。

          二、教學目標分析

          1、知識與技能目標

         。1)能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。

         。2)能用樣本的眾數,中位數,平均數估計總體的眾數,中位數,平均數,并結合實際,對問題作出合理判斷,制定解決問題的有效方法。

          2、過程與方法目標:

          通過對本節課知識的學習,初步體會、領悟"用數據說話"的統計思想方法。

          3、情感態度與價值觀目標:

          通過對有關數據的搜集、整理、分析、判斷培養學生"實事求是"的科學態度和嚴謹的工作作風。

          三、教學方法與手段分析

          1、教學方法:結合本節課的教學內容和學生的認知水平,在教法上,我采用"問答探究"式的教學方法,層層深入。充分發揮教師的主導作用,讓學生真正成為教學活動的主體。

          2、教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。

          四、教學過程分析

          1、復習回顧,問題引入

          「屏幕顯示」

          〈問題1〉在日常生活中,我們往往并不需要了解總體的分布形態,而是更關心總體的某一數字特征,例如:買燈泡時,我們希望知道燈泡的平均使用壽命,我們怎樣了解燈泡的的使用壽命呢?當然不能把所有燈泡一一測試,因為測試后燈泡則報廢了。于是,需要通過隨機抽樣,把這批燈泡的壽命看作總體,從中隨機取出若干個個體作為樣本,算出樣本的數字特征,用樣本的數字特征來估計總體的數字特征。

          提出問題:什么是平均數,眾數,中位數?

         。ń處熖釂,鋪墊復習,學生思考、積極回答。根據學生回答,給出補充總結,借助用多媒體分別給出他們的定義)

          「設計意圖」使學生對本節課的學習做好知識準備。

         。ㄟM一步提出實例、導入新課。)

          「屏幕顯示」

          〈問題2〉選擇薪水高的職業是人之常情,假如你大學畢業有兩個工作相當的單位可供選擇,現各從甲乙兩單位分別隨機抽取了50名員工的月工資資料如下(單位:元)

          分組計算這兩組50名員工的月工資平均數,眾數,中位數并估計這兩個公司員工的平均工資。你選擇哪一個公司,并說明你的理由。

          (學生分組分別求兩組數據的平均工資。

          學生:甲、乙平均工資分別為:甲:1320元,乙:1530元。

          所以我選乙公司。

          學生乙:甲、乙兩公司的眾數分別為甲:1200,乙:1000,所以我選擇甲公司。

          學生丙:我要根據我的能力選擇。)

          「設計意圖」學生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據并不可靠,從而引導學生進一步深入問題。

          2講授新課,深入認識

          ⑴「屏幕顯示」

          例如,在上一節抽樣調查的100位居民的月均用水量的數據中,我們畫出了這組數據的頻率分布直方圖,F在,觀察這組數據的頻率分布直方圖,能否得出這組數據的眾數、中位數和平均數?

         。ò褜W生分成若干小組,分別計算平均數、中位數、眾數,或估計平均數、中位數、眾數。然后比較結果,會發現通過計算的結果和通過估計的結果出現了一定的誤差。引導學生分析產生誤差的原因。原因是由于樣本數據的頻率分布直方圖把原始的一些數據給遺失了。讓學生明白產生這樣的誤差對總體的估計沒有大的影響,因為樣本本身也有隨機性。)

          「設計意圖」讓學生懂得如何根據頻率分布直方圖估計樣本的平均數、中位數和眾數。使學生明白從直方圖中估計樣本的數字特征雖然會有一些誤差,但直觀、快速、可避免繁瑣的計算和閱讀數據的過程。

         、啤刺岢鰡栴}〉根據樣本的眾數、中位數、平均數估計總體平均數的基本數據,并對上一節的探究問題制定一個合理平價用水量的的標準。

         。◣熒ㄟ^共同交流探討得知僅以平均數或只使用中位數或眾數制定出平價用水標準都是不合理的,必須綜合考慮才能做出合理的選擇)

          「設計意圖」使學生會依據眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇。也為接下來對他們優缺點的總結打下基礎。

         、强偨Y出眾數、中位數、平均數三種數字特征的優缺點。

         。ㄏ扔蓪W生思考,然后再老師的引導下做出總結)

          「設計意圖」使學生能更準確更全面地依據樣本的眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇,使實際問題得到正確的解決。

          3、反思小結、培養能力

         、賹W習利用頻率直方圖估計總體的眾數、中位數和平均數的方法。

         、诮榻B眾數、中位數和平均數這三個特征數的優點和缺點。

         、蹖W習如何利用眾數、中位數和平均數的特征去分析解決實際問題。

          「設計意圖」小節是一堂課的概括和總結,有利于優化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養學生的歸納概括能力

          4、課后作業,自主學習

          課本練習

          [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

          5、板書設計

        高中數學說課稿 篇4

          一、教學目標

         。ㄒ唬┲R與技能

          1、進一步熟練掌握求動點軌跡方程的基本方法。

          2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。

         。ǘ┻^程與方法

          1、培養學生觀察能力、抽象概括能力及創新能力。

          2、體會感性到理性、形象到抽象的思維過程。

          3、強化類比、聯想的方法,領會方程、數形結合等思想。

         。ㄈ┣楦袘B度價值觀

          1、感受動點軌跡的動態美、和諧美、對稱美。

          2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣。

          二、教學重點與難點

          教學重點:運用類比、聯想的方法探究不同條件下的'軌跡。

          教學難點:圖形、文字、符號三種語言之間的過渡。

          三、、教學方法和手段

          教學方法:觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。

          教學手段:利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。

          教學模式:重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。

          四、教學過程

          1、創設情景,引入課題

          生活中我們四處可見軌跡曲線的影子。

          演示:這是美麗的城市夜景圖。

          演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多。

          演示建筑中也有許多美麗的軌跡曲線。

          設計意圖:讓學生感受數學就在我們身邊,感受軌跡,曲線的動態美、和諧美、對稱美,激發學習興趣。

          2、激發情感,引導探索

          靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1。

        高中數學說課稿 篇5

          教學目標

          A、知識目標:

          掌握等差數列前n項和公式的推導方法;掌握公式的運用。

          B、能力目標:

         。1)通過公式的探索、發現,在知識發生、發展以及形成過程中培養學生觀察、聯想、歸納、分析、綜合和邏輯推理的能力。

          (2)利用以退求進的思維策略,遵循從特殊到一般的認知規律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數列的求和公式,培養學生類比思維能力。

         。3)通過對公式從不同角度、不同側面的剖析,培養學生思維的靈活性,提高學生分析問題和解決問題的能力。

          C、情感目標:(數學文化價值)

         。1)公式的發現反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

         。2)通過公式的運用,樹立學生"大眾教學"的思想意識。

          (3)通過生動具體的現實問題,令人著迷的數學史,激發學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數學的心理體驗,產生熱愛數學的情感。

          教學重點:

          等差數列前n項和的公式。

          教學難點:

          等差數列前n項和的公式的靈活運用。

          教學方法

          啟發、討論、引導式。

          教具:

          現代教育多媒體技術。

          教學過程

          一、創設情景,導入新課。

          師:上幾節,我們已經掌握了等差數列的概念、通項公式及其有關性質,今天要進一步研究等差數列的前n項和公式。提起數列求和,我們自然會想到德國偉大的數學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數學習題:"把從1到100的自然數加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

          例1,計算:1+2+3+4+5+6+7+8+9+10。

          這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發言解答。

          生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

          生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

          上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

          10個

          所以我們得到S=55,

          即1+2+3+4+5+6+7+8+9+10=55

          師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學的方法相類似。

          理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學們想一下,上面的方法用到等差數列的哪一個性質呢?

          生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。

          二、教授新課(嘗試推導)

          師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。

          生4:Sn=a1+a2+。。。。。。an—1+an也可寫成

          Sn=an+an—1+。。。。。。a2+a1

          兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

          n個

          =n(a1+an)

          所以Sn=(I)

          師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得

          Sn=na1+ d(II)

          上面(I)、(II)兩個式子稱為等差數列的前n項和公式。公式(I)是基本的,我們可以發現,它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學生總結:這些公式中出現了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。

          三、公式的應用(通過實例演練,形成技能)。

          1、直接代公式(讓學生迅速熟悉公式,即用基本量例2、計算:

         。1)1+2+3+。。。。。。+n

         。2)1+3+5+。。。。。。+(2n—1)

         。3)2+4+6+。。。。。。+2n

          (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

          請同學們先完成(1)—(3),并請一位同學回答。

          生5:直接利用等差數列求和公式(I),得

         。1)1+2+3+。。。。。。+n=

          (2)1+3+5+。。。。。。+(2n—1)=

          (3)2+4+6+。。。。。。+2n==n(n+1)

          師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發言解答。

          生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開,可看成兩個等差數列,所以

          原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

          =n2—n(n+1)=—n

          生7:上題雖然不是等差數列,但有一個規律,兩項結合都為—1,故可得另一解法:

          原式=—1—1—。。。。。。—1=—n

          n個

          師:很好!在解題時我們應仔細觀察,尋找規律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數列的項數,否則會引起錯解。

          例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

          生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

          又∵d=—2,∴a1=6

          ∴S12=12 a1+66×(—2)=—60

          生9:(2)由a1+a2+a3=12,a1+d=4

          a8+a9+a10=75,a1+8d=25

          解得a1=1,d=3 ∴S10=10a1+=145

          師:通過上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據例3自己編題,作為本節的課外練習題,以便下節課交流。

          師:(繼續引導學生,將第(2)小題改編)

         、贁盗衶an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

          ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數列性質,用整體思想考慮求a1+a10的值。

          2、用整體觀點認識Sn公式。

          例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發學生解)

          師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發現了什么?

          生10:根據等差數列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

          師:對!(簡單小結)這個題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數學問題的體現。

          師:由于時間關系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數,那么從二次(或一次)的函數的觀點如何來認識Sn公式后,這留給同學們課外繼續思考。

          最后請大家課外思考Sn公式(1)的逆命題:

          已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說明理由。

          四、小結與作業。

          師:接下來請同學們一起來小結本節課所講的內容。

          生11:1、用倒序相加法推導等差數列前n項和公式。

          2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。

          生12:1、運用Sn公式要注意此等差數列的項數n的值。

          2、具體用Sn公式時,要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

          3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數列的有關性質,看能否用整體思想的方法求a1+an的值。

          師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發現更多的性質,主動積極地去學習。

          本節所滲透的數學方法;觀察、嘗試、分析、歸納、類比、特定系數等。

          數學思想:類比思想、整體思想、方程思想、函數思想等。

          作業:P49:13、14、15、17

        高中數學說課稿 篇6

          各位老師:

          今天我說課的題目是《條件語句》,內容選自于新課程人教A版必修3第一章第二節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1.教材所處的地位和作用

          在此之前,學生已學習了算法的概念、程序框圖與算法的基本邏輯結構、輸入語句、輸出語句和賦值語句,這為過渡到本節的學習起著鋪墊作用。這一節課主要的內容為條件語句表示方法、結構以及用法。條件語句與程序圖中的條件結構相對應,它是五種基本算法語句中的一種,。通過本節課的學習,學生將更加了解算法語句,并能用更全面的眼光看待前面學過的語句,并為以后的學習作好必要的準備。本節課對學生算法語言能力、有條理的思考與清晰地表達的能力,邏輯思維能力的綜合提升具有重要作用。

          2.教學的重點和難點

          重點:條件語句的表示方法、結構和用法;用條件語句表示算法。

          難點:理解條件語句的表示方法、結構和用法。

          二、教學目標分析

          1.知識與技能目標:

          ⑴正確理解條件語句的概念,并掌握其結構。

         、茣脳l件語句編寫程序。

          2.過程與方法目標:

          ⑴通過實例,發展對解決具體問題的過程與步驟進行分析的能力。

         、仆ㄟ^模仿,操作、探索、經歷設計算法、設計框圖、編寫程序以解決具體問題的過程,發展應用算法的能力。

         、窃诮鉀Q具體問題的過程中學習條件語句,感受算法的重要意義。

          3.情感,態度和價值觀目標

         、拍芡ㄟ^具體實例,感受和體會算法思想在解決具體問題中的意義,進一步體會算法思想的重要性,體驗算法的有效性,增進對數學的了解,形成良好的數學學習情感,增強學習數學的樂趣。

         、仆ㄟ^感受和認識現代信息技術在解決數學問題中的重要作用和威力,形成自覺地將數學理論和現代信息技術結合的思想。

         、窃诰帉懗绦蚪鉀Q問題的過程中,逐步養成扎實嚴謹的科學態度。

          三、教學方法與手段分析

          1.教學方法:根據本節內容邏輯性強,學生不易理解的特點,本節教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這種方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

          2.教學手段:運用計算機、圖形計算器輔助教學

          四、教學過程分析

          1.創設情境(約4分鐘)

          首先,我要求學生們編寫程序,輸入一元二次方程

          的系數,輸出它的實數根。這樣可以把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,因為要解決這一問題,根據我們之前所學的三種算法語句是無法解決的,這樣就引出今天我們所要學習的內容。

          2.探究新知(約8分鐘)

          為了引入概念,我首先給出了一個基本的應用條件語句能夠解決的例題:

          例1 編寫一個程序,求實數x的絕對值。

          整個過程由師生共同分析完成。老師要引導學生分析、研究例題中的兩個程序,既要讓學生們看到已知的三種語句,更要注意到未知的語句,即條件語句。總結上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進行研究.

          3.知識應用(約15分鐘)

          此環節有兩個例題

          例2 編寫程序,寫出輸入兩個數a和b,將較大的數打印出來

          例3 編寫程序,使任意輸入的3個整數按從大到小的順序輸出.

          先把解決問題的思路用程序框圖表示出來,然后再根據程序框圖給出的算法步驟,逐步把算法用對應的程序語句表達出來。(程序框圖先由學生討論,再統一,然后利用圖形計算器演示,學生會驚喜的發現:自己也是個編程高手了!這樣可以激發學生們的學習興趣)

          4.練習鞏固(約4分鐘)

          課本第30頁第3題

          練習可鞏固學生對知識的理解,也可在練習中發現問題,使問題得到及時的解決。

          5.課堂小結(約5分鐘)

          條件語句的步驟、結構及功能.

          知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用

          6.布置作業

          課本練習第3、4題

          [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。

          7.板書設計

          1.2.2條件語句

          1、條件語句的一般格式

          (1)IF-THEN-ELSE語句

          格式: 框圖:

          (2)IF-THEN語句

          格式: 框圖:

          2、小結

          (1)

         。2)

          (3)

          2、例1 引例

          例2 例4

          例3

          

        高中數學說課稿 篇7

          我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:

          一、教材分析

          教材的地位和作用

          “曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!

          根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

          二、教學目標

          根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:

          知識目標:

          1、了解曲線上的點與方程的解之間的一一對應關系;

          2、初步領會“曲線的方程”與“方程的曲線”的概念;

          3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;

          4、強化“形”與“數”一致并相互轉化的思想方法。

          能力目標:

          1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;

          2、在形成曲線和方程的概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;

          3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。

          情感目標:

          1、通過概念的引入,讓學生感受從特殊到一般的認知規律;

          2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的科學精神。

          三、重難點突破

          “曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

          怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。

          四、學情分析

          此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。

        【關于高中數學說課稿匯總七篇】相關文章:

        關于高中數學說課稿模板匯總七篇08-08

        關于高中數學說課稿范文匯總七篇08-20

        高中數學說課稿模板匯總七篇07-24

        關于高中數學說課稿范文七篇07-29

        高中數學說課稿范文匯總七篇08-13

        有關高中數學說課稿模板匯總七篇08-12

        關于高中數學說課稿模板匯總6篇07-26

        關于高中數學說課稿模板集錦七篇08-12

        關于高中數學說課稿模板集合七篇08-12

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>