1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 數學建模畢業論文

        時間:2024-06-03 21:47:08 數學畢業論文 我要投稿

        數學建模畢業論文

          然數學建模思想遍布國內外,但是真正將數學建模融入教學,從生活事件中抽取數學素材卻很難,F在是小編為您整理的數學建模畢業論文,希望對您有所幫助。

        數學建模畢業論文

          摘要:數學建模即為解決現實生活中的實際問題而建立的數學模型,它是數學與現實世界的紐帶。結合教學案例,利用認知心理學知識,提出促進學生建立良好數學認知結構以及數學學習觀的原則和方法,幫助學生由知識型向能力型轉變,推進素質教育發展。

          關鍵詞:認知心理學;思想;數學建模;認知結構;學習觀

          認知心理學(CognitivePsychology)興起于20世紀60年代,是以信息加工理論為核心,研究人的心智活動為機制的心理學,又被稱為信息加工心理學。它是認知科學和心理學的一個重要分支,它對一切認知或認知過程進行研究,包括感知覺、注意、記憶、思維和言語等[1]。當代認知心理學主要用來探究新知識的識記、保持、再認或再現的信息加工過程中關于學習的認識觀。而這一認識觀在學習中體現較突出的即為數學建模,它是通過信息加工理論對現實問題運用數學思想加以簡化和假設而得到的數學結構。本文通過構建數學模型將“認知心理學”的思想融入現實問題的處理,結合教學案例,并提出建立良好數學認知結構以及數學學習觀的原則和方法,進一步證實認知心理學思想在數學建模中的重要性。

          一、案例分析

          2011年微軟公司在招聘畢業大學生時,給面試人員出了這樣一道題:假如有800個形狀、大小相同的球,其中有一個球比其他球重,給你一個天平,請問你可以至少用幾次就可以保證找出這個較重的球?面試者中不乏名牌大學的本科、碩士甚至博士,可竟無一人能在有限的時間內回答上來。其實,后來他們知道這只是一道小學六年級“找次品”題目的變形。

          (一)問題轉化,認知策略

          我們知道,要從800個球中找到較重的一個球這一問題如果直接運用推理思想應該會很困難,如果我們運用“使復雜問題簡單化”這一認知策略,問題就會變得具體可行。于是,提出如下分解問題。問題1.對3個球進行實驗操作[2]。問題2.對5個球進行實驗操作。問題3.對9個球進行實驗操作。問題4.對4、6、7、8個球進行實驗操作。問題5.如何得到最佳分配方法。

         。ǘ┠P头治,優化策略

          通過問題1和問題2,我們知道從3個球和5個球中找次品,最少并且保證找到次品的分配方法是將球分成3份。但這一結論只是我們對實驗操作的感知策略。為了尋找策略,我們設計了問題3,對于9個球的最佳分配方法也是分為3份。因此我們得到結論:在“找次品”過程中,結合天平每次只能比較2份這一特點,重球只可能在天平一端或者第3份中,同時,為了保證最少找到,9個球均分3份是最好的方法。能被3除盡的球我們得到均分這一優化策略,對于不能均分的球怎么分配?于是我們設計了問題4,通過問題4我們得到結論:找次品時,盡量均分為3份,若不能均分要求每份盡量一樣,可以多1個或少1個。通過問題解決,我們建立新的認知結構:2~3個球,1次;3+1~32個球,2次;32+1~33個球,3次;……

         。ㄈ┠P娃D化,歸納策略

          通過將新的認知結構運用到生活實踐,我們知道800在36~37之間,所以我們得到800個球若要保證最少分配次數是7次。在認知心理學中,信息的具體表征和加工過程即為編碼。編碼并不被人們所覺察,它往往以“刺激”的形式表現為知覺以及思想。在信息加工過程中,固有的知識經驗、嚴密的邏輯思維能力以及抽象概況能力將為數學建模中能力的提高產生重要的意義。

          二、數學建模中認知心理學思想融入

          知識結構和認知結構是認知心理學的兩個基本概念[3]。數學是人類在認識社會實踐中積累的經驗成果,它起源于現實生活,以數字化的形式呈現并用來解決現實問題。它要求人們具有嚴密的邏輯思維以及空間思維能力,并通過感知、記憶、理解數形關系的過程中形成一種認知模型或者思維模式。這種認知模型通常以“圖式”的形式存在于客體的頭腦,并且可以根據需要隨時提取支配。

         。ㄒ唬┪覈鴶祵W建模的現狀

          《課程標準(2011年版)》將模型思想這一核心概念的引入成為數學學習的主要方向。其實,數學建模方面的文章最早出自1982年張景中教授論文“洗衣服的數學”以及“壘磚問題”。雖然數學建模思想遍布國內外,但是真正將數學建模融入教學,從生活事件中抽取數學素材卻很難。數學建模思想注重知識應用,通過提取已有“圖式”→加工信息→形成新的認知結構的方式內化形成客體自身的“事物結構”,其不僅具有解釋、判斷、預見功能,而且能夠提高學生學習數學的興趣和應用意識[4]。

          (二)結合認知心理學思想,如何形成有效的數學認知結構

          知識結構與智力活動相結合,形成有效認知結構。我們知道,數學的知識結構是前人在總結的基礎上,通過教學大綱、教材的形式呈現,并通過語言、數字、符號等形式詳細記述的。學生在學習時,通過將教材中的知識簡約化為特定的語言文字符號的過程叫作客體的認知結構,這一過程中,智力活動起了重要作用。復雜的知識結構體系、內心體驗以及有限的信息加工容量讓我們不得不針對內外部的有效信息進行篩選。這一過程中,“注意”起到重要作用,我們在進行信息加工時,只有將知識結構與智力活動相結合,增加“有意注意”和“有意后注意”,才能夠形成有效的數學認知結構。根據不同構造方式,形成有利認知結構。數學的知識結構遵循循序漸進規律,并具有嚴密的邏輯性和準確性,它是形成不同認知結構的基礎。學生頭腦中的認知結構則是通過積累和加工而來,即使數學的知識結構一樣,不同的人仍然會形成不同的認知結構。這一特點取決于客體的智力水平、學習能力。因此若要形成有利認知結構,必須遵循知識發展一般規律,注重知識的連貫性和順序性,考慮知識的積累,注重邏輯思維能力的提高。

          三、認知心理學思想下的數學學習觀

          學習是學習者已知的、所碰到的信息和他們在學習時所做的之間相互作用的結果[5]。如何將數學知識變為個體的知識,從認知心理學角度分析,即如何將數學的認知結構吸收為個體的認知結構,即建立良好的數學學習觀,這一課題成為許多研究者關注的對象。那么怎樣學習才能夠提高解決數學問題的能力?或者怎樣才能構建有效的數學模型,接下來我們將根據認知心理學知識,提出數學學習觀的構建原則和方法。

         。ㄒ唬┝己脭祵W學習觀應該是“雙向產生式”的信息

          加工過程學習是新舊知識相互作用的結果,是人們在信息加工過程中,通過提取已有“圖式”將新輸入的信息與頭腦中已存儲的信息進行有效聯系而形成新的認知結構的過程[6]。可是,當客體對于已有“圖式”不知如何使用,或者當遇到可以利用“圖式”去解決的問題時不知道去提取相應的知識,學習過程便變得僵化、不知變通。譬如,案例中,即使大部分學生都學習了“找次品”這部分內容,卻只能用來解決比較明確的教材性問題,對于實際生活問題卻很難解決。學習應該是“雙向產生式”的信息加工過程,數學的靈活性在這方面得到了較好的體現。學習時應遵循有效記憶策略,將所學知識與該知識有聯系的其他知識結合記憶,形成“流動”的知識結構。例如在案例中,求800個球中較重球的最少次數,可以先從簡單問題出發,對3個球和5個球進行分析,猜測并驗證出一般分配方法。這一過程需要有效提取已有知識經驗,通過擬合構造,不僅可以提高學生學習興趣,而且能夠增強知識認識水平和思維能力。

         。ǘ┝己脭祵W學習觀應該具有層次化、條理化的認知結構

          如果頭腦中僅有“雙向產生式”的認知結構,當遇到問題時,很難快速找到解決問題的有效條件。頭腦中數以萬計“知識組塊”必須形成一個系統,一個可以大大提高檢索、提取效率的層次結構網絡。如案例,在尋找最佳分配方案時,我們可以把8個球中找次品的所有分配情況都羅列出來。這樣做,打破了“定勢”的限制,而以最少稱量次數為線索來重新構造知識,有助于提高學生發散思維水平,使知識結構更加具有層次化、條理化。在學習過程中,隨著頭腦中信息量的增多,層次結構網絡也會越來越復雜。因此,必須加強記憶的有效保持,鞏固抽象知識與具體知識之間的聯系,能夠使思維在抽象和現實之間靈活轉化。而這一過程的優化策略是有效練習。

         。ㄈ┝己脭祵W學習觀應該具有有效的思維策略

          要想形成有效的數學學習觀,提高解決實際問題的能力,頭腦中還必須要形成有層次的思維策略,以便大腦在學習和信息加工過程中,策略性思維能夠有效加以引導和把控。通過調節高層策略知識與底層描述性及程序性知識之間的轉換,不斷反思頭腦思維策略是否恰當進而做出調整和優化。譬如,在案例中,思維經過轉化策略、尋找策略、優化策略、歸納總結四個過程,由一般→特殊→一般問題的求解也是思維由高層向底層再向高層轉換的層次性的體現。

          在思維策略訓練時,我們應重視與學科知識之間的聯系度。底層思維策略主要以學科知識的形式存在于頭腦,它的遷移性較強,能夠與各種同學科問題緊密結合。因此可以通過訓練學生如何審題,如何利用已有條件和問題明確思維方向,提取并調用相關知識來解決現實問題。

          另外,有效思維訓練還必須做到“熟練”,對于課堂需要識記的東西要提前預習并及時復習,對于同類型題目,找出知識之間的關聯性組建知識層次結構,有效練習同類型題目,提高解難題能力,做到“熟能生巧”。

          總之,認知心理學思想融入數學建模是非常有必要和有意義的。數學建模的最終目標是培養學生用數學的眼光觀察問題,用數學的思維思考問題,用數學的方法解決問題的能力[4]。數學建模的過程即為已有信息經過智力加工→編碼而形成心理產物,這一過程需要運用到數學知識系統和思維操作系統。因此,要想提高學生數學建模能力、搭建理論與實踐的橋梁、促進學生由知識型向能力型轉變、推進素質教育發展,除了教師的引導、學校的重視外,學生自身在認知結構、信息構建、思維策略、訓練方式等方面也應提出新的思考。

          參考文獻:

          [1]劉勛,吳艷紅,李興珊,蔣毅.認知心理學:理解腦、心智和行為的基石[J].學科發展,2011,26(6):620-621.

          [2]陳曉虎.淺談在找次品教學中優化數學思想方法的滲透[J].教研爭鳴,2014,12(1):151.

          [3]管鵬.形成良好數學認知結構的認知心理學原則[J].教育理論與實踐,1998,18(2):40-45.

          [4]羅苗.認知心理學在教學中的應用———C語言程序設計為例[J].科技教育創新,2010,121(19):250.

          [5]周燕.小學數學教學中數學模型思想的融入[D].上海:上海師范大學,2013.

          [6]傅小蘭,劉超.認知心理學研究心智問題的途徑和方法[J].自然辯證法通訊,2003,147(5):96-97.

        【數學建模畢業論文】相關文章:

        關于數學建模專業畢業論文致謝詞08-31

        數學建模思想與數學教學改革研究畢業論文08-10

        數學建模論文07-06

        數學建模的理念及建模論文結構解析06-10

        數學建模論文模板07-22

        數學建模論文范本10-22

        數學建模論文模板07-03

        應用數學及其數學建模思想05-06

        數學建模課題開題報告07-31

        數學建模論文格式07-29

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>