1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 閉區(qū)間上連續(xù)函數(shù)基本性質(zhì)證明的討論

        時間:2024-08-19 18:29:42 數(shù)學畢業(yè)論文 我要投稿
        • 相關推薦

        閉區(qū)間上連續(xù)函數(shù)基本性質(zhì)證明的討論

        閉區(qū)間上連續(xù)函數(shù)基本性質(zhì)證明的討論

        摘  要

        閉區(qū)間上連續(xù)函數(shù)的整體性質(zhì)是建立在實數(shù)完備性理論的基礎之上的,而實數(shù)的完備性可以從不同的角度去刻劃和描述,因此就產(chǎn)生了多種不同的證明閉區(qū)間上連續(xù)函數(shù)性質(zhì)的方法。本文分別應用實數(shù)完備性基本定理如確界原理,區(qū)間套定理,聚點定理,有限覆蓋定理和單調(diào)有界定理證明了閉區(qū)間上連續(xù)函數(shù)的3個基本性質(zhì),在應用某1實數(shù)完備性定理進行證明時,基本上沒有直接應用其他完備性定理,這是本文證明的1個特點。

        關鍵詞:連續(xù)函數(shù),閉區(qū)間,最大、最小值定理,介值性定理,1致連續(xù)性定理,完備性定理。


        Abstract

            Continuous function at closed interval’s global properties was based on real number’s completeness theory, which can describe in many kinds. So there are several methods to prove it. Letterpress was introduce real number’s completeness theory such as mum principle, theorem of nested interval, theorem of accumulation, theorem of finite covering and theorem of monotonic bounded to prove it. We use only one theory to prove it.

        Key words: Continuous function, closed interval, maximum-minimum theorem, intermediate value theorem, uniform continuity theorem, completeness theorem.

        閉區(qū)間上連續(xù)函數(shù)基本性質(zhì)證明的討論

        【閉區(qū)間上連續(xù)函數(shù)基本性質(zhì)證明的討論】相關文章:

        凸函數(shù)的基本性質(zhì)及應用論文07-04

        票據(jù)上所作記載的性質(zhì)及效力分析10-18

        上博三《彭祖》篇的性質(zhì)探析09-18

        試論灘涂在法律上的性質(zhì)06-23

        不等式證明方法的綜合討論08-17

        教育基本理論的性質(zhì)及研究方法論文07-30

        杜預的“經(jīng)承舊史”說及其影響—《春秋》性質(zhì)討論10-10

        企業(yè)營銷科學管理的基本要求及策略研討論文07-13

        石灰改良膨脹土基本物理性質(zhì)試驗研究09-22

        對從基本原則討論破產(chǎn)重整制度的經(jīng)濟法屬性分析08-30

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>