- 相關推薦
物流配送中心選址方法研究綜述
內容摘要:物流配送中心的選址決策在物流運作中有著重要的地位。本文對近年來國內外有關配送中心選址方法的文獻進行梳理和研究。研究結果發現:各種選址方法有著各自的優缺點和一定的適用范圍,各種方法的組合是未來該領域研究的趨勢! £P鍵詞:物流配送中心 選址 文獻綜述在物流系統的運作中,配送中心的選址決策發揮著重要的影響。配送中心是連接工廠與客戶的中間橋梁,其選址方式往往決定著物流的配送間隔和配送模式,進而影響著物流系統的運作效率。因此,研究物流配送中心的選址具有重要的理論和現實應用意義。
本文對近年來國內外有關物流配送中心選址方法的文獻進行了梳理和研究,并對各種方法進行了比較。選址方法主要有定性和定量的兩種方法。定性方法有專家打分法、Delphi法等,定量方法有重心法、P中值法、數學規劃方法、多準則決策方法、解決NP hard題目(多項式復雜程度的非確定性題目)的各種啟發式算法、仿真法以及這幾種方法相結合的方法等。由于定性研究方法及重心法、P中值法相對比較成熟,因此,本文將主要分析定量方法中的數學規劃、多準則決策、解決NP hard題目的各種啟發式算法、仿真在配送中心選址中應用的研究狀況。
數學規劃方法
數學規劃算法包括線性規劃、非線性規劃、整數規劃、混合整數規劃和動態規劃、網絡規劃算法等。在近年來的研究中,規劃論中經常引進了不確定性的概念,由此進一步產生了模糊規劃、隨機規劃、模糊隨機規劃、隨機模糊規劃等等。不確定性規劃主要是在規劃中的C(價值向量)、A(資源消耗向量)、b(資源約束向量)和決策變量中引進不確定性,從而使得不確定規劃更加貼近于實際情況,得到廣泛地實際應用。
國內外學者對于數學規劃方法應用于配送中心的選址題目進行了比較深進的研究。姜大元(2005)應用Baumol-wolf模型,對多物流節點的選址題目進行研究,并通過舉例對模型的應用進行了說明,該模型屬于整數規劃和非參數規劃結合的模型。各種規劃的方法在具體的現實使用中,經常出現NP hard題目。因此,目前的進一步研究趨勢是各種規劃方法和啟發式算法的結合,對配送中心的選址進行一個綜合的規劃與計算。
多準則決策方法
在物流系統的研究中,人們經常會碰到大量多準則決策題目,如配送中心的選址、運輸方式及路線選擇、供給商選擇等等。這些題目的典型特征是涉及到多個選擇方案(對象),每個方案都有若干個不同的準則,要通過多個準則對于方案(對象)做出綜合性的選擇。對于物流配送中心的選址題目,人們經常以運輸本錢及配送中心建設、運作本錢的總本錢最小化,滿足顧客需求,以及滿足社會、環境要求等為準則進行決策。多準則決策的方法包括多指標決策方法與多屬性決策方法兩種,比較常用的有層次分析法(AHP)、模糊綜合評判、數據包絡分析(DEA),TOPSIS、優序法等等。
多準則決策提供了一套良好的決策方法體系,對于配送中心的選址不管在實務界還是理論方面的研究均有廣泛的應用與研究。關志民等(2005)提出了基于模糊多指標評價方法的配送中心選址優化決策。從供給鏈治理的實際需要分析了影響配送中心選址的主要因素,并建立相應的評價指標體系,由此給出了一種使定性和定量的方法有機結合的模糊多指標評價方法。Chen-Tung Chen(2001)運用了基于三角模糊數的模糊多準則決策對物流配送中心的選址題目進行了研究。文章以投資本錢、擴展的可能性、獲取原材料的便利性、人力資源、顧客市場的接近性為決策準則,并對各個準則采用語義模糊判定的方式進行了權重上的集結。
有關多準則決策方法,特別是層次分析法和模糊綜合評判的方法,在配送中心的選址研究中有著廣泛的應用。但是,這兩種方法都是基于線性的決策思想,在當今復雜多變的環境下,線性的決策思想逐漸地暴露出其固有的局限性,非線性的決策方法是今后進一步的研究的重點和趨勢。
啟發式算法
啟發式算法是尋求解決題目的一種方法和策略,是建立在經驗和判定的基礎上,體現人的主觀能動作用和創造力。啟發式算法經常能夠比較有效地處理NP hard題目,因此,啟發式算法經常與其它優化算法結合在一起使用,使兩者的優點進一步得到發揮。目前,比較常用的啟發式算法包括:遺傳算法;神經網絡算法;模擬退火算法。
。ㄒ唬┻z傳算法
遺傳算法(genetic algorithm, GA)是在 20 世紀 60 年代提出來的,是受遺傳學中自然選擇和遺傳機制啟發而發展起來的一種搜索算法。它的基本思想是使用模擬生物和人類進化的方法求解復雜的優化題目,因而也稱為模擬進化優化算法。遺傳算法主要有三個算子:選擇;交叉;變異。通過這三個算子,題目得到了逐步的優化,終極達到滿足的優化解。
對于物流配送中心的選址研究,國內外有不少學者將遺傳算法同一般的規劃方法結合起來對其進行了研究。蔣忠中等(2005)在考慮各種本錢(包括運輸本錢等)的基礎上,結合具體的應用背景,建立的數學規劃模型(混合整數規劃或是一般的線性規劃)。由于該模型是一個組合優化題目,具有NP hard題目,因此,結合了遺傳算法對模型進行求解。通過選擇恰當的編碼方法和遺傳算子,求得了模型的最優解。
遺傳算法作為一種隨機搜索的、啟發式的算法,具有較強的全局搜索能力,但是,往往比較輕易陷進局部最優情況。因此,在研究和應用中,為避免這一缺點,遺傳算法經常和其它算法結合應用,使得這一算法更具有應用價值。
。ǘ┤斯ど窠浘W絡
人工神經網絡(artificial neural- network, ANN)是由大量處理單元(神經元)廣泛互連而成的網絡,是對人腦的抽象、簡化和模擬,反應人腦的基本特征。可以通過對樣本練習數據的學習,形成一定的網絡參數結構,從而可以對復雜的系統進行有效的模型識別。經過大量樣本學習和練習的神經網絡在分類和評價中,往往要比一般的分類評價方法有效。
對于神經網絡如何應用于物流配送中心的選址,國內外不少學者進行了各種有益的嘗試。韓慶蘭等(2004)用BP網絡對物流配送中心的選址題目進行了嘗試性地研究,顯示出神經網絡對于解決配送中心選址題目具有一定的可行性和可操縱性。
這一研究的不足是神經網絡的練習需要大量的數據,在對數據的獲取有一定的困難的情況下,用神經網絡來研究是不恰當的。在應用ANN時,我們應當留意網絡的學習速度、是否陷進局部最優解、數據的前期預備、網絡的結構解釋等題目,這樣才能有效及可靠地應用ANN解決實際存在的題目。
。ㄈ┠M退火算法
模擬退火算法(Simulated Annealing, SA)又稱模擬冷卻法、概率爬山法等,于1982年由Kirpatrick提出的另一種啟發式的、隨機優化算法。模擬退火算法的基本思想由一個初始的解出發,不斷重復產生迭代解,逐步判定、舍棄,終極取得滿足解的過程。模擬退火算法不但可以往好的方向發展,也可以往差的方向發展,從而使算法跳出局部最優解,達到全局最優解。
對于模擬退火算法應用于物流配送中心選址的研究,大量的文獻結合其它方法(如多準則決策、數學規劃等)進行了研究。任春玉(2006)提出了定量化的模擬退火遺傳算法與層次分析法相結合來確定配送中心地址的方法。該方法確?傮w中個體多樣性以及防止遺傳算法的提前收斂,運用層次分析法確定 物流配送中心選址評價指標權重,并與專家評分相結合進行了綜合評價。該算法對于解決物流配送中心的選址具有較好的有效性和可靠性。
除以上三種比較常用的方法之外,啟發式算法還包括蟻群算法、禁忌搜索算法、進化算法等。各種算法在全局搜索能力、優缺點、參數、解情況存在著一定的差異。各種啟發式算法基本上帶有隨機搜索的特點,已廣泛地應用于解決NP hard題目,同時也為物流配送中心選址的智能化處理提供了可能。用解析的方法(包括線性規劃等)建立數學模型,然后運用啟發式算法進行求解是目前以及未來研究物流配送中心選址的一種較為可行和可操縱的研究方法。
仿真方法
仿真是利用計算機來運行仿真模型,模擬時間系統的運行狀態及其隨時間變化的過程,并通過對仿真運行過程的觀察和統計,得到被仿真系統的仿真輸出參數和基本特征,以此來估計和推斷實際系統的真實參數和真實性能。國內外已經不少文獻將仿真的方法運用于物流配送中心選址或是一般的設施選址的研究,研究結果相對解析方法更接近于實際的情況。
張云鳳等(2005)對汽車團體企業的配送中心選址運用了仿真的方法進行了研究。先確定了配送中心選址的幾種方案,應用了Flexim軟件對各方案建立了仿真模型,根據仿真結果進行了分析和方案的選擇。該方法為團體企業配送中心選址題目提供了一種較為理想的解決方法。薛永吉等(2005)通過建立數學模型對物流中心的最優站臺數題目進行研究,在一定假設和一系列限制條件下,求解最優站臺數目,并針對數學模型的復雜性和求解的種種不足,以ARENA仿真軟件為平臺,建立仿真模型確定了最優化方案。Kazuyoshi Hidaka等(97)運用仿真對大規模的倉庫選址進行了研究。該研究對倉庫的固定本錢、運輸本錢,和同時滿足6800名顧客進行了仿真,以求得鄰近的最優解(near-optimal solution)。在求解的過程中,結合了貪婪-互換啟發式算法(Greedy-Interchange heuristics)和氣球搜索算法(Balloon Search)兩種啟發式算法進行求解。該算法能比較有效地避免陷進局部最優解和得到比較滿足的選址方案。但是,研究的結果輕易受到運輸車輛的均勻速度變化的影響。
仿真方法相對解析的方法在實際應用中具有一定的優點,但是,也存在一定的局限性。如仿真需要進行相對比較嚴格的模型的可信性和有效性的檢驗。有些仿真系統對初始偏差比較敏感,往往使得仿真結果與實際結果有較大的偏差。同時,仿真對人和機器要求往往比較高,要求設計職員必須具備豐富的經驗和較高的分析能力,而相對復雜的仿真系統,對計算機硬件的相應要求是比較高的。關于未來的研究,各種解析方法、啟發式算法、多準則決策方法與仿真方法的結合,是一種必然的趨勢。各種方法的結合可以彌補各自的不足,而充分發揮各自的優點,從而進步選址的正確性和可靠性。
物流配送中心的選址決策對于整個物流系統運作和客戶滿足情況有著重要的影響。本文在對國內外有關物流配送中心選址方法文獻研究的基礎上,對比分析了數學規劃方法、多準則決策、啟發式算法、仿真方法在配送中心選址中的應用。研究發現數學規劃方法、多屬性決策方法、啟發式算法、仿真方法各自有自己的優缺點和一定的適用范圍,各種方法的組合研究是未來研究的一種趨勢。同時,由于選址題目本身具有的動態性、復雜性、不確定性等特性,因此,開發和研究新的模型與方法也是進一步解決配送中心選址題目的必須途徑。
參考文獻:
1.蔣忠中,汪定偉.B2C電子商務中配送中心選址優化的模型與算法(J).控制與決策,2005
2.韓慶蘭,梅運先.基于BP人工神經網絡的物流配送中心選址決策(J).中國軟科學,2004
【物流配送中心選址方法研究綜述】相關文章:
人力資源管理效能評價方法研究綜述05-08
醫學綜述的寫作方法12-06
戰略聯盟理論研究綜述05-11
綜述論文寫作步驟與方法02-23
關于公司治理與股利政策的關系研究綜述06-08
企業壓力管理中壓力源的研究綜述論文06-11
論文綜述的格式12-20
文獻綜述格式09-27
本科論文開題范文研究方法10-28
成本核算方法的比較研究06-02