簡析采用液相工藝獲取的復合材料及其釬焊接頭性能論文
研究提高復合材料及其焊接結(jié)構(gòu)的機械性能、物理性能和耐蝕性能的方法可以大幅改善此類材料的綜合運用性能。分析表明,用粉末浸滲法或多孔骨架材料的熔融法制成的復合材料,其形成的焊接區(qū)的許多物理化學規(guī)律各不相同。有關(guān)文獻除了記載了化學成分的作用外,還分析了5種有前景的提高接頭物理一化學性能和機械性能的方法:
一毛細間隙的最佳化和使固相原子在細小的毛細隙中實現(xiàn)反常的溶解機制;
一消除焊縫圓角部位的化學非均質(zhì)性;
一用具有較高彈性模量的金屬元素對接頭材料的表面層進行合金化處理;
一在焊縫中使用合成釬料,在分散過程中形成復合結(jié)構(gòu);
一在激光釬焊中獲得粘合結(jié)構(gòu)以及形成焊縫的最佳組織。
除此之外,第六種調(diào)控微隙中金屬的物理一化學和機械性能的方法是:發(fā)揮材料自身組織的作用,利用在固態(tài)下具有最佳原始組織的材料,以便在熔化后的微隙中形成更加均勻的組織。這種效果與材料本身的加工工藝(如鑄造、鍛造、熱處理、混合粉料、非晶型材料等)有關(guān)。
對于釬焊,接頭形成時的主要運動階段可作為其特征:
·通過熔化使毛細微隙得到潤濕、流展和充填;
·對運動中的相間邊界進行質(zhì)量轉(zhuǎn)換;在移動的相間發(fā)生傳質(zhì)過程(熔融物溶解,其原子向固相擴散)。
·在偏析過程中進行結(jié)晶時,發(fā)生化學成分的變化。
在使用液相反應(yīng)的工藝中,復合材料的制備方法及工藝過程的進行速度如同釬焊一樣決定著產(chǎn)品的綜合性能。釬焊接頭的許多性能,如抗拉強度、疲勞強度和耐腐蝕性等,在其它條件相同的情況下取決于微隙的大小,其組織、圓角的尺寸和形狀及化學不均勻性在此處的發(fā)展速度。因此,決定接頭性能的一般因素有:毛細間隙的大小和是否消除焊縫圓角部位的化學不均勻性。這些因素對釬焊以及對用粉末浸滲法和球狀顆粒熔化法獲取的復合材料的影響都將予以研究。
在對所制備的復合材料的強化粉料的工藝特性進行模擬和分析時,最好使用球狀粉料。這對于用同一尺寸的球狀顆粒(浸滲時在壓型中可以有最緊密的顆粒排列)的浸滲法制備復合材料而言,具有獨創(chuàng)的現(xiàn)實意義,因為在此情況下,可以獲得最佳的由強化顆粒組成的單一組織。這些強化顆粒形成了可變截面通道(溝道里填滿了熔化的基體材料)的規(guī)律系統(tǒng)。因顆粒排列形式和顆粒半徑的不同,在熔化物質(zhì)充滿溝道之前,最大和最小空隙的尺寸是會變化的。
若根據(jù)現(xiàn)有的球形物體排列模型來研究充填排列的參數(shù),排列形式可以分為最不緊密的充填排列(正立方,V二900)和最緊密的充填排列(六邊形,v二600)。此類物質(zhì)的空隙度II,與顆粒尺寸沒有關(guān)系,而與排列方式,即與v角有關(guān)在正立方排列下,IIv =47. 64%,而在六邊形排列下,Ilv = 25. 95 %。在前一種情況下,連接相鄰氣孔的最窄通路的半徑:,即4個相鄰顆粒之間的內(nèi)接圓半徑,等于0.41R(R一球形顆粒的半徑)。而在最寬部位處的氣孔半徑等于0. 73R。在六邊形排列下,每一顆粒與12個相鄰的顆粒相接。氣孔具有2種形狀,即四面體形狀和菱形體形狀,后者的氣孔數(shù)量要比前者的數(shù)量多一倍。四面體氣孔最寬通路處的半徑為0. 288 R,而菱形體的氣孔通路半徑為0. 414R。四面體氣孔占總體積的比例為7. 37%,而菱形體的氣孔則占18. 58% o毛細間隙的最佳數(shù)值和固相原子在焊縫中反常溶解機理的實現(xiàn)。
間隙對焊縫的化學成分影響的研究結(jié)果表明,隨著間隙的增大,焊縫中固相原子質(zhì)量濃度會發(fā)生非正常的增加。并且由于系統(tǒng)的不同,過飽和度可達到14%a -30%(在小間隙中溶解度的反常效應(yīng))不等。然而,隨著間隙的減小(從100到1w),就不再存在改變?nèi)芙舛绕胶獾臒崃W因素。因此,反常的溶解度效應(yīng)只可能是由動力學因素造成的。
非均衡結(jié)晶方向動力學的模擬表明,提高間隙中固相成分含量的前提是提高結(jié)晶鋒面上的易熔組份再分配的動力學特性。與相間界面相反,根據(jù)相界對面的溫度梯度進行的結(jié)晶鋒面的移動會導致間隙中同相結(jié)晶內(nèi)的難熔組份的富集以及相應(yīng)的在液相熔融物中易熔組份的增加。第二相間界面(其殘缺的表面層對于偏析的易熔組分來說是有效的流失)的出現(xiàn),以及由于集中過冷度的原因,結(jié)晶前進面的前行速度的下降會導致在已結(jié)晶間隙中的固態(tài)相的質(zhì)量濃度進一步增加。顯然,間隙中易熔組分質(zhì)量濃度的下降以及偏析過程受到的抑制能夠確保機械性能和耐腐蝕性能的提高。
根據(jù)設(shè)計的模型可以看出,為強化異常溶解過程就必須降低結(jié)晶速度和增加相間表層的擴散滲透能力。其中必須指出,隨著間隙的減小,殘缺層(這對偏析元素的原子來說是流失)就會增加。顯然,隨著間隙的減小,如下因素會影響到強度的增加:相間界面(接觸強化效應(yīng))的彈性應(yīng)力水平,在焊縫和圓角處不存在偏析區(qū)以及焊縫中難熔元素的質(zhì)量濃度過高。根據(jù)顯微組織可以發(fā)現(xiàn),由球形顆粒形成的復合材料球粒之間,會有從0到s的'小間隙區(qū)域以及間隙變化區(qū)域。因此,在小間隙的區(qū)域里能保證實現(xiàn)高機械性能和耐腐蝕性能的整個過程。在這個具有大量液體的區(qū)域里,會不可避免地發(fā)生偏析過程。這是釬焊接頭的圓角部位所獨有的特性。在現(xiàn)實的工藝過程中,這些現(xiàn)象的產(chǎn)生不會受到結(jié)晶速度的影響。因此,研究熱處理過程中變化斷面的大間隙里粗大組織結(jié)構(gòu)的調(diào)質(zhì)問題是有必要的。
在焊縫的圓角部位消除化學成分不均勻性
在圓角部位出現(xiàn)化學不均勻性(由于偏析過程所造成)將導致機械性能和耐腐蝕性能的劇烈下降。特別是在疲勞載荷下,情況更是如此。沿晶粒邊界存在的分隔開的化合物和夾雜物會在循環(huán)載荷作用下發(fā)生過早的損壞。在試驗的開始階段,裂紋就會在圓角表面處萌發(fā),而腐蝕也會開始發(fā)生,從而加速損壞的過程。通過結(jié)晶過程的數(shù)學模擬可以開發(fā)出抑制焊縫圓角部位化學成分不均勻性的方法。為此,必須在固態(tài)且低于焊縫元素的共晶組分的最低熔點5℃一50℃的溫度下作40 min一60 min的均勻化退火。金相分析、循環(huán)試驗和腐蝕試驗的結(jié)果都證實了這個分析結(jié)果。由于擴散過程,均勻化退火能夠使化合物和偏析區(qū)溶解到固態(tài)相中。這些偏析區(qū)是結(jié)晶時沿晶界和晶間區(qū)域里形成的。
如果在球形顆粒表面上涂覆了涂層(在形成復合材料時該涂層會形成脆性化合物層),則涂層會溶解在大量的熔融物里。在此情況下,均勻化退火可確保獲得具有高物理一化學和機械性能的復合材料。從另一方面來看,當熔液中出現(xiàn)化學活性元素時,在氣孔和空穴中的大量液體相會有助于在球形顆粒的表面上形成金屬間化合物。
結(jié)論
1在釬焊時所發(fā)生的物理一化學過程以及用浸滲的方法(熔化粉末基體和球形顆粒)來獲取復合材料具有許多共同的規(guī)律。
2使用同一尺寸和形狀的球形顆?梢员WC獲得具有性能穩(wěn)定的高物理一化學和機械性能的復合材料。
3模擬復合材料的浸滲過程表明:在球形顆粒的尺寸為1 mm時,最大和最小的通道寬度因排列方式的不同而為0. 365和0. 0775 mm,但是它們均處在毛細間隙的范圍里。
41 mm粒徑的顆粒在與顆粒的尺寸不成倍數(shù)的壓型中充填排列時,有可能形成寬度達1. 5 mm的空穴。
5粒徑為1 m。的球形顆粒與熔融物接觸(此時與排列方式無關(guān)),可以視為是具有可變化間隙的毛細釬焊。
6業(yè)已確定,在釬焊過程中,以及在獲取固體相之間具有最小間隙的復合材料時,組織結(jié)構(gòu)和化學成分都會發(fā)生變化。這會導致機械性能和耐腐蝕性能的提高。
7在釬焊和獲取復合材料時,保溫時間為60min,退火溫度低于最低共晶熔化溫度5℃一50 ℃的均勻化退火可確保獲得具有高耐腐蝕性和循環(huán)強度(與基本材料強度水平相當)的接頭。
【簡析采用液相工藝獲取的復合材料及其釬焊接頭性能論文】相關(guān)文章: