數學學習方法總結15篇(精選)
總結是對某一階段的工作、學習或思想中的經驗或情況進行分析研究的書面材料,它能使我們及時找出錯誤并改正,因此好好準備一份總結吧。那么你真的懂得怎么寫總結嗎?以下是小編為大家收集的數學學習方法總結,歡迎閱讀與收藏。
數學學習方法總結1
數學是高考科目之一,故從初一開始就要認真地學習數學。進入高中以后,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由于同學們不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點和高中教學經驗,談一談高中數學學習方法,供同學參考。
一:先注意以下三點。
一)、課內重視聽講,課后及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二)、適當多做題,養成良好的解題習慣。
要想學好數學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三)、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
二:初中數學與高中數學的比較。
一)、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是“00—1800”范圍內的,但實際當中也有7200和“--3000”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習“排列組合”知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2= -1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以后的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業,然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(如:高一有八門課同時學習),每天至少上八節課,自習時間四節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,高中數學教師將不能向初中那樣監督每個學生的作業和課外練習,就不能向初中那樣把知識讓每個學生掌握后再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理較多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即使就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度,F在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的`發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由于學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變量的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數學思想。
二)高中數學與初中數學特點的變化。
1、數學語言在抽象程度上突變
初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么等。因此,初中學習中習慣于這種機械的,便于操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。
3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的“量”上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。
4、知識的獨立性大
初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便于記憶,又適合于知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。
三、如何學好高中數學。
一)、培養良好的學習興趣。
兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者!币馑颊f,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中!昂谩焙汀皹贰本褪窃敢鈱W,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?
1、課前預習,對所學知識產生疑問,產生好奇心。
2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
3、思考問題注意歸納,挖掘你學習的潛力。
4、聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?
5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。
二)、建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
三)、有意識培養自己的各方面能力。
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四)、及時了解、掌握常用的數學思想和方法。
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
五)、逐步形成 “以我為主”的學習模式。
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇于探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足于現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鉆進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
六)、針對自己的學習情況,采取一些具體的措施。
記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中擴展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目了然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納于同一知識方法。
閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學后忘。學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網絡化。
經常在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。
無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。
七)、認真聽好每一節棵。
在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。
概念課
要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習題課
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進”,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然后再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。
復習課
在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家準備一本數學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到高考時你的數學就沒有什么“病例”了。并且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以“練”代“復”的題海戰術。
四、其它注意事項
1.注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2.學會數學教材的數學思想方法。
數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是_____(符號相反的數)。.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的(相等)。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學好數學的幾個建議。
1.記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。如:我在講課時的注解。
2.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
3.記憶數學規律和數學小結論。
4.與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。
5.爭做數學課外題,加大自學力度。
6.反復鞏固,消滅前學后忘。
7.學會總結歸類。①從數學思想分類②從解題方法歸類③從知識應用上分類。
總之,對高一新生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。
其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會采用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。
最后,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恒心,更要有一顆平常心。
數學學習方法總結2
難!有人說數學難!是否難于上青天?但時至今日,人們已能在月上徘徊,空間漫步。人類是不滿足于現在,從“難”走向更難,要向宇宙空間飛去!實則上,有志者天下無難事,畏難者寸步不敢移,就登天來說:九十九難中,數學僅算其一難,但卻是必不可少的工具之一。從牛頓力學開始就為計算衛星軌道寫下了方程。牛頓以前,算星球軌道知其然,而不知其所以然,的確很難。有了萬有引力定律,至今人造衛星的計算早已不在話下。時代發展了,難的不難了,人類總是不畏攀登,一步一個腳印,后人踏著前人的腳印前進。當然一步登天難,三百年來一步一步,一代一代地前進,今天不是已初見成效了嗎?就數學來說,也是如此。要想一步登天萬難,但步步踏實,何難之有,君不見,自古失足墜崖者,都是一步落空人。
煩!有人說數學煩!是否煩過千頭萬緒、相關相聯的人類經濟活動。要鋼!練鋼要礦石,要煤要焦要電力,建煉鋼爐本身還要鋼,一要爐磚,即使有了原料,還要運得來,成品還要出得去,銷得了。在生產礦石的時候又要挖掘機(鋼做的),電力(燒煤的),木材(支撐壙道用的),修鐵路又要鋼軌、枕木、機車頭,等等。一著出錯,全盤牽連,一步落后,全隊窩工。這么復雜的系統,豈是說空話就可以找得出頭緒來的。不!一個不小心的決策,就會使比例失調,顧此失彼,捉襟見肘,甚至于造成災難,但不怕煩,善御煩,搞得得法,便能收其左右逢源,穩步速見之率。這樣的煩,是否比數學的習題要煩些?煩得多了!但御煩之道也少不了數學這一個助手,特別是有了近代的電子技術,助手更能發揮作用。但機器畢竟是機器,它們會的,都是人類已經會的。真正的主人還是有創造性的善駕馭這些機器的人,學好數學是其一個重要的環節。
板,死板 高中生物!有人說數學太死板了!一點兒趣味都沒有!然!把數學看成是公式的堆積,把定理作為該背誦的教條,把講解說成為形式邏輯的推演,把考試弄成為死記硬背按標準答案不敢越雷池一步地生搬硬套,這樣的情況豈能不死不板不僵化!僵化是科學的大敵,是社會發展的大敵。
但實質上完全是另外一回事:數學是自然科學中容易聯系不同實際的學科之一,也是自然科學和社會科學的得力的助手,西方有些學者指出:西方現代科學突飛猛進發展的兩大支柱:歐幾里德幾何的推理方法,還有培根科學實驗的倡導(當然他們可能漏掉了更重要的一點:生產力的發展,社會制度的'變革)?茖W實驗方法的優選和結果的處理也少不了數學,數學是同科學發展而發展的,它怎么會死會僵呢。就數學本身說,也是壯麗多彩,千姿百態,引人入勝的。一個問題想不出時,固然有些苦惱,若一旦豁然想通,那滋味難道不是甜蜜蜜的,這和音樂,舞蹈藝術的享受有何不同。如果在成法之外,別開生面地想出一些新法來,那就更是其樂無比了。我們在銀幕上看到過體育奪得錦標、高奏國歌的激動場面,科學中也有同樣的感受,實質上,科學是前進的,任何一個有創造發明的科學家都不會是墨守成規的死板人,而是能夠想前人所未想的、思想活躍的人。
更重要的是:社會的需要,祖國的需要,新長征的需要,這是我們最大動力之所在。興趣是可以培養的,難何足怕,煩何足慮,死板更是嚇唬不了人,何況事實并非如此,謂予不信,請下些功夫,試上一試。認清了道路,信心自來,干勁隨至。為了祖國,學習好祖國最需要的一切。當然,數學只不過是其中之一。
數學學習方法總結3
數學分析是基礎課、基礎課學不好,不可能學好其他專業課。工欲善其事,必先利其器。這門課就是器。學好它對計算科學專業的學生都是極為重要的。這里,就學好這門課的學習方法提一點建議供同學們參考。
1.提高學習數學的興趣
首先要有學習數學的興趣。兩千多年前的孔子就說過:“知之者不如好之者,好之者不如樂之者。”這里的“好”與“樂”就是愿意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:“在學校里和生活中,工作的最重要動機是工作中的樂趣!睂W習的樂趣是學習的主動性和積極性,我們經?吹揭恍┩瑢W,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想象,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇后,它是學習科學知識和應用科學知識必須的工具?梢哉f,沒有數學,也就不可能學好其他學科;其次必須有鉆研的精神,有非學好不可的韌勁,在深入鉆研的過程中,就可以領略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,并激發出學好數學的高度自覺性和積極性。用興趣推動學習,而不是用任務觀點強迫自己被動地學習數學。
2.知難而進,迂回式學習
首先要培養學習數學分析的興趣和積極性,還要不怕挫折,有勇氣面對遇到的困難,有毅力堅持繼續學習,這一點在剛開始進入大學學習數學分析時尤為重要。
中學數學和大學數學,由于理論體系的截然不同,使得同學們會在學習該課程開始階段遇到不小的麻煩,這時就一定得堅持住,能夠知難而進,繼續跟隨老師學習。
學習數學分析時要注意數學分析和高等數學要求不同的地方,否則你學習數學分析就與高等數學沒有什么區別了;而且高等數學強調的是計算能力,數學分析強調的是分析的能力,分析的能力沒有學到,就談不上學好了數學分析。學好數學分析課程還有一個重要的原因是新生們體會不到的,數學分析的知識結構系統性和連續性很強,這些知識學得不扎實,肯定要影響后面知識的學習。同時將來考碩士,還是要考這門課程。如果大學第一年不把這門課程學好,將來可就難了。剛開始學習數學分析,會感覺很暈。對于老師所講的知識,雖然表面上能聽懂,但卻不明白知識背后的真正原因,所以總是感覺學到的東西不實在。至于做題就更差勁了,課后習題都沒幾個會做的。其實感覺暈是很正常的,而且還得要暈上幾個月才可能就會好的。所以要硬著頭皮跟著老師學了下來。雖然感覺還是不太懂,雖然做作業仍然感覺很費勁,但始終不要放棄,這種狀態是學習數學分析的一個必經之路,因此必須克服這個困難才能學好數學分析理論知識。
除了要堅持外,還要注意不要在某些問題的解決上花費過多的時間。因為數學分析理論十分嚴謹,教科書在講解初步知識時,有時會不可避免地用到一些以后才能學到的理論思想,因而在初步學習時就對著這種問題不放是十分不劃算的。比如說,在“數學分析”一開始學習實數系的確界存在基本定理時,由于當時根本沒什么基礎,所以對于“引入這個定理的目的是什么?”這個問題怎么想也想不通,甚至覺得這個定理沒有什么實質的意義。但到后來學到了多元部分的數學分析,以及專業課“實變函數”時,才開始慢慢理解它的真正目的。這里之所以要說明是實數系有確界存在的性質,即相當于有一種連續的性質,目的就是為了后面的極限和連續做鋪墊的,因為只有在自變量能夠連續變化的時候,考慮因變量的相應變化才有意義,進而才能研究函數的性質。但是如果沒有學到后面,只了解區間而不知其它一些怪異的點集時是很難想通這個問題的。
所以,在開始學習數學分析時,可以考慮采取迂回的學習方式。先把那些一時難以想通的問題記下,轉而繼續學習后續知識,然后不時地回頭復習,在復習時由于后面知識的積累就可能會想通以前遺留的問題,進而又能促進后面知識的深刻理解。這種迂回式的學習方法,使得溫故不但能知新,而且還能更好地知故。
但是,也并不是說在初學時就不去思考任何問題。相反,勤于思考是學好數學必備的好習慣,“數學是思維的體操”,只有堅持思考才能掌握它的理論體系和邏輯關系。因此,應該在學習時掌握尺度,既要保證有充分的思考,但同時又不能過于鉆牛角尖。
3.了解背景,理論式學習
數學分析與中學數學明顯的一個差異就在于數學分析強調數學的基礎理論體系,而中學數學則是注重計算與解題。針對這個特點,學習數學分析就應該注重建立自己的數學理論知識框架。
要學習理論體系,首先就應該知道為什么要建立這種理論,它的作用是什么,這就要了解數學的歷史背景知識。比如“數學分析”在一開始就強調對-N語言的掌握,而它的產生則是由于數學史上的“第二次數學危機”引起的。眾所周知,Newton創立的微積分,雖然在其應用方面取得了巨大的成就,但微積分在那時的理論基礎是相當混亂的。Newton在求導數時先將無窮小量看成非零數作為分母,后來又將其視做零而舍去,因此這就導致了邏輯上的錯誤。為了給微積分奠定正確而堅實的基礎,大數學家威爾斯特拉森在Cauchy的基礎上提出了用-N語言的方法來推出極限和導數的概念。借助-N語言,可以十分清晰地展示出函數取極限的過程,而且在邏輯上也非常清楚嚴謹。這樣,當了解了這些歷史背景知識之后,就覺得學習-N語言是很必要的,學起來也就自然得多了。除了了解背景幫助我們學習理論知識外,還要下苦功夫去學習。在接觸了這些陌生的數學理論一段時間后,可能覺得看起來已經懂了,但其實自己不一定能真正掌握,尤其是那些證明中內含的邏輯關系最容易出錯。所以在學習時,應該適當地記憶理論知識,有時還應該默寫定理,只有通過默寫才能發現自己在理論上的漏洞,才能培養出自己嚴密的'理論、邏輯能力,這對以后的學習都是很有幫助的。
4.把握三個環節,提高學習效率
(1)課前預習
適當的預習是必要的,了解老師即將講什么內容,相應地復習與之相關內容。如果時間不多,你可以瀏覽一下教師將要講的主要內容,獲得一個大概的印象,這可以在一定程度上幫助你在課堂上跟上教師的思路,如果時間比較充裕,除了瀏覽之外,還可以進一步細致地閱讀部分內容,并且準備好問題,看一下自己的理解與教師講解的有什么區別,有哪些問題需要與教師討論。如果能夠做到這些,那么你的學習就會變得比較主動、深入,會取得比較好的效果。
(2)認真上課
注意老師的講解方法和思路,其分析問題和解決問題的過程,記好課堂筆記,聽課是一個全身心投入聽、記、思相結合的過程。教師在有限的課堂教學時間中,只能講思路,講重點,講難點。不要指望教師對所有知識都講透,要學會自學,在自學中培養學習能力和創造能力。所以要努力擺脫對于教師和對于課堂的完全依賴心理。當然也不是完全不要老師,不上課。老師能在課堂教學把主要思路,重點與難點交代清楚,從而使你自學起來條理清楚,有的放矢。對于教師在課堂上講的知識,最重要的是獲得整體的認識,而不拘泥于每個細節是否清楚。學生在課堂上聽課時,也應當把主要精力集中在教師的證明思路和對于難點的分析上。如果有某些細節沒有聽明白,不要影響你繼續聽其它內容。只要掌握了主要思路,即使某些細節沒有聽清楚,也沒有關系。你自己完全能夠在這個思路的引導下將全部細節補足,最后推出結論。應當在學習的各個環節培養自己的主動精神和自學能力,擺脫對教師與課堂的過分依賴。這不僅是今天學習的需要,而且是培養創造能力的需要。
(3)課后復習
復習不是簡單的重復,應當用自己的表達方式再現所學的知識,例如對某個定理的復習,不是再讀一遍書或課堂筆記,而是離開書本和筆記,回憶有關內容,不清楚之處再對照教材或筆記。另外,復習時的思路不應當教師講課或者教科書的翻版,一個可供參考的方法是采用倒敘式。從定理的結論倒推,為了得到定理的結論,是怎樣進行推理的,定理的條件用在何處。這樣倒置思維方式,更加接近這個定理的發現的思路,是一種創造性的思維活動。
5.掌握方法,全面式學習
(1)概念的學習方法是:①閱讀概念,記住名稱或符號;②背誦定義,掌握特性;③舉出正反實例,體會概念反映的范圍;④進行練習,準確地判斷;⑤與其它概念進行比較,弄清概念間的關系。
(2)公式的學習方法是:①書寫公式,記住公式中字母問的關系;②懂得公式的來龍去脈,了解推導過程;③驗算公式,在公式具體化過程中體會公式中反映的規律;④將公式進行各種變換,了解其不同的變化形式。
(3)定理的學習方法是:①背誦定理;②分清定理的條件和結論;③了解定理的證明過程;④應用定理證明有關問題;⑤體會定理與逆否定理、逆命題的聯系。有的定理包含公式,如中值定理、定理,它們的學習還應該同公式的學習方法結合起來進行。
6.數學分析解題方法
在學習數學分析過程中,更多的困難來自于習題。
首先,大家要重視基本概念和基本原理的理解和掌握,不要一頭扎進題海中去。上面已經提及,提高解題能力重要途徑之一是掌握好基本概念和基本方法。另一方面,因為數學分析題型變化多樣,解題技巧豐富多彩,許多類型的題目并不是只要掌握好基本概念和基本方法就會作的。需要看一些例題,或者需要教師的指點。不要因為某些題目一時找不到思路而失去信心。
至于如何解題,很難總結出幾個適用于所有題目的通用的方法。怎樣提高自己的解題能力?除了天生的智力因素之外,解題能力首先取決于基本概念和基本原理的理解與掌握程度。所以,多下功夫掌握基本概念和基本原理,盡可能地多做題目,在記憶的基礎上理解,在完成作業中深化,在比較中構筑知識結構的框架,是提高解題能力的重要途徑。另外,做題要善于總結,特別是從不同的題目中提煉出一些有代表性的思想方法。
下面是數學分析課程中部分內容的一些解題方法。
(1)數列的極限
重點:了解定義,即證明方法。特別是Cauchy收斂準則。學會反證法的表述法。
解法:
a.利用壓縮映像或者數學歸納法及放縮法的到極限存在。然后,假設極限等于c,解出c的具體的值。
b.有時可以直接解出數列的通項公式,然后帶入求得極限。c.Stolz公式。
(2)求函數的極限重點:同1)的重點解法:
a.對于一元的情況比較簡單,注意應用極限性質時的條件要求。
b.對于多元的時候,先處理一個未知數,再處理第二個。不斷利用放縮法;蛘邠Q元。
c.具體要了解上下極限、上下確界的含義。注意,極限存在也是一個條件,且這個條件是很強的。
(3)函數的連續性
重點:了解定義,和基本證明的方法。了解什么是一致連續性.解法:
a.證明f(x)和g(x)有交點的題目,如果是連續的,可以用介值定理,否則可以用實數系的定理來證明。
b.有些題目證明f(x)符合某些性質,可以先證明整數、再證明有理數。最后利用連續性來證明所有的實數滿足條件.
c.了解什么是一致連續,能舉得出連續但不是一致連續的各種函數圖像的例子,對于解題時很有幫助的
(4)導數和微分
重點:會求導的各種技巧,并了解定義求導數的方法。了解可導和連續的關系。
解法:
a.一元微分是十分簡單的。二元以上的微分,要用鏈式求導,可能會很繁瑣,但要做到滴水不漏。另外,學會換元的方法。
b.對于求最值的題目,首先試試初等方法,不行就用Lagrange乘子法。c.熟練掌握三種中值定理。遇到證明不等式,就想辦法往這三個中值定理靠,構造輔助函數。實在不行,就構造f(x)=左邊,g(x)=右邊。證明f(x)-g(x)遞增或者遞減,然后再取邊界的情況討論一下。
d.熟練掌握L’Hospital法則,注意它和Cauchy中值定理的聯系。注意它的條件必須要導函數連續。c.有些題目可以不用L’Hospital,直接用Taylor級數代余項的展開?赡芨鼮楹啙。
(5)積分
重點:熟練不定積分。和多元微積分的各種方法。了解積分中值定理.解法:
a.一元微積分比較簡單。多元微積分,強調技巧。熟練掌握包括換元、Green(Stokes)定理、Gauss公式。并且注意,使用他們要求有閉曲線,或者封閉曲面。如果沒有封閉的面記得要補上那部分.b.含參變量的積分,掌握萊布尼茲求導公式,剩下的就是求導的各種技巧了。I(a)=f(a);I’(a)=f(a)I(a)題目里面沒有要求求出函數解析式,只要求一些特殊的值。找到I(x0),I’(x0)的關系,同具體參見試題。
c.積分不等式:積分中值定理或者利用求導的方法證明,基本同前面的導數的情況。
d.學會利用級數展開的方法求積分,并了解一些特殊的定積分的值。
e.了解絕對收斂和相對收斂的區別。
(6)一致連續和一致收斂
重點:充分了解一致收斂的含義。解法:
a.大部分題目會和積分或者求和聯系起來,首先證明(內閉)一致收斂,然后用定義證明,將積分區間分成兩部分,分別趨近于不同的極限.
b.證明函數組一致收斂:AD判別法(注意還有關于積分的AD判別法,參見陳傳璋的版本,歸根到底就是Abel求和公式和分部積分法),或者按照定義作。可能要分成幾個區間,注意這一點,此時是證明對于任意的e,在這幾個區間中尋找最小的d,使得差小于e。而不是證明分別在這幾個區間中,一致收斂。
c.證明函數組不是一致收斂的。得到一個數列{xn},如果fn(xn)不趨近于f(x)的話就不是一致收斂的。
d.逐項求導和逐項積分要求一致收斂(內閉一致收斂也可以)。由于積分和求導都是極限的運算,這就是所謂的極限互相穿越的意思。
掌握一定量的題型,對于一些題目,直接知道用什么方法做。有些題目沒有頭緒的時候,可先嘗試找反例,然后想想為什么反例不成功,從中可以的得到不少的啟發。還有要充分了解函數的各種性質。做題的時候腦子里要有函數圖像。另外,充分了解定義,特別是一致收斂。了解為什么有時候一致收斂才有題目的結論,如果條件收斂,是不是也有這樣的條件。多想幾次就有了深刻的了解。遇到不清楚的地方趕快看書,多看幾遍書對于理解題目是非常有用的。再有,盡可能多地參考一些書籍會使你開闊眼界,增長知識,加深理解。每個人有不同的風格。不同的切入角度,會使你有時候讀一些問題豁然開朗。
7.學會利用參考書
盡可能多地參考一些書籍會使你開闊眼界,增長知識,加深理解。每個作者有不同的風格,不同的切入角度,學會利用參考書會使你對一些問題豁然開朗。
看參考書有兩種方式,其一是通讀某一本書,不過大家往往沒有太多的時間去通讀教材之外的書。所以我建議大家采用第二種方法:以問題為中心,有選擇地讀參考書,具體地說就是:如果你對數學分析中的某一部分,或者某個問題有興趣,希望多了解一些,作比較深入的研究,那么可以查閱幾本書,看一看其他書上對這個問題是怎樣論述的,在學習的基礎上,自己可以做一個小結,在是自學的重要方式。好的輔導書對于幫助自己學習數學分析也是有用的,但是使用輔導書要注意方法,不要僅僅停留于逐個地看例題,看得懂不等于會做,想到思路不等于做得完全正確。如果你想扎扎實實地提高解題能力,就要認真地、獨立地解題,通過自己動腦動手體會解題的思路、方法和技巧。
最后,就是平時沒有事的時候多想想,想想一些定理,自己想不同的方法證明。想想如果沒有其中的某些條件,定理是否仍然成立。
總之,掌握了一定方法,再加上自己的努力,必能學好數學分析這門課,為后繼課程的學習打下扎實的基礎。
數學學習方法總結4
數學,數學是讓很多理科和文科學生頭疼的科目。我也不好把握它應該怎么學習,但是最近我確實償到了學習的快樂。我是這樣學習的。
數學重要的課本的見解和例題,大家要把握好這個點,一定要注意課本,就是說你剛剛學完一節,作習題時如果沒有思路,你就要好好的回憶課本講了什么,要做到課本與習題的巧妙結合。
建議高一高二的同學,分幾步走。
要課前預習,很多書都這么說,可是很多同學都不屑,但是我要告訴你,如果您能落實好預習,你的數學就可以好一半,你預習時的態度要端正,不是看一遍書就完事,而是要認真的思考,看看講解的內容和例題是怎么聯系的。然后看懂后就做書上習題,不要小看書的習題,進幾年高考題目有好多都是根據書的習題改的,這個要做好的。一定要做出數來,對照答案。
其次要上課認真聽講,看看老師是怎么演繹數學的,看看老師的說法和你預習時的一樣不,最好記下老師的例題,這例題絕對經典,可以當作對象研究的。
最后就是要課下的習題,認真的完成老師布置的作業,體會課上所講的內容,不會的及時問老師。還有就是課外的練習冊最好別買,因為根據我上了高三的經驗,買的就是浪費的,千萬別買啊!如果你覺得沒有事情做了,那么你就學習英語和語文吧!這兩科如果學好了,高三都可以不用復習的。
但是大家要記住,數學必須把問題全部落實,不能拖。還要和老師及時的溝通哦。
數學復習必須掌握的3個方法
數學是三大主科之一,所占分值比例大,可以說是在考試中最容易拿分也可以說最容易失分的一個科目,讀題粗心大意的`學生,往往就丟失不必要的分數,并且這個科目考生也最忌心浮氣躁,需要靜下心來 高一,仔細閱題,由易而難做下來。數學是一門講理的學科,具有很強的邏輯性。相對于初中數學來說,高中數學明顯難了很多。因此,很多原本在初中數學成績很好的同學,到了高中就明顯感到吃力。那么針對20xx年高考數學學生該如何應對,考前需要做哪些準備?解題時需要掌握哪方面技巧,才會讓自己不易失分?
數學考試答題技巧,可以采用數形結合、直接對照法、篩選法等。
數形結合法:“數”與“形”是數學這座高樓大廈的兩塊最重要的基石,二者在內容上互相聯系、在方法上互相滲透、在一定條件下可以互相轉化,而數形結合法正是在這一學科特點的基礎上發展而來的。在解答選擇題的過程中,可以先根據題意,做出草圖,然后參照圖形的做法、形狀、位置、性質,綜合圖象的特征,得出結論。用這種方法,既方便解題又容易讓人明白。
數學學習方法總結5
教學方法的效果取決于學習方式和教學方式的協調一致。在國際教育改革和發展趨勢中,培養學生學習能力和主動發展的愿望已成為各國共同追求的目標。進入信息時代的新世紀,知識更新速度加快,學習變成了貫穿一生的過程。因此,我們不僅要關注學生綜合素質和個性的健康發展,還要注重他們的學習和發展,更重要的是讓學生愿意學習、學會學習,并掌握學習的方法和技能,能夠積極主動地進行學習。
一、檢查基本概念
基本概念、法則、公式是同學們檢查時最容易忽視的,因此在解題時極易發生小錯誤,而自己卻檢查數次也發現不了,所以,做完試卷第一步,在檢查基本題時,我們要仔細讀題,回到概念的定義中去,對癥下藥。
比如中考題選擇題,題目問“8的平方根是多少”,如果學生選擇了2√2,檢查時很容易會再算一次(2√2)^2=8,就想當然的以為答案是對的了。此時,我們就應該從概念入手,想想什么是“平方根”,那就會回憶起這樣一個等式x^2=8,看到這個方程,就會想到應該有正負兩個解。
二、對稱檢驗
對稱的條件勢必導致結論的對稱,利用這種對稱原理可以對答案進行快速檢驗。
比如:因式分解,(xy+1)(x+1)(y+1)+xy=(xy-y+1)(xy+x+1)結論顯然錯誤。
左端關于x、y對稱,所以右端也應關于x、y對稱,正確答案應為:(xy+1)(x+1)(y+1)+xy=(xy+y+1)(xy+x+1)。
三、不變量檢驗
某些數學問題在變化、變形過程中,其中有的量保持不變,如圖形在平移、旋轉、翻折時,圖形的形狀、大小不變,基本量也不變。利用這種變化過程中的不變量,可以直接驗證某些答案的正確性。
四、特殊情形檢驗
問題的`特殊情況往往比一般情況更易解決,因此通過特殊值、特例來檢驗答案是非?旖莸姆椒ā
比如中考經?嫉膬绲倪\算,比如(-a^2)^3,就可以取a=2,先計算-a^2=-4,再計算(-4)^3,就很容易檢驗出原答案的正確與否。
五、答案逆推法
很多學生在解題后會采用一種常見的方法,即將答案代入題目中驗證條件是否成立。然而,使用這種方法時需要謹慎,必須考慮是否存在多個解的情況。我覺得很多學生都會想到這樣的方法,在求得答案之后,可以將答案重新代入題目中,以驗證題目的條件是否滿足。但是要注意,使用這種方法時必須思考是否可能存在多個解的情況。
總而言之,要想提高檢查的次數與效率,又想避免枯燥的重復,就需要一題多解去檢驗。
人們普遍存在慣性思維,即在解決問題時傾向使用相同的方法,這很容易導致忽視一些細微的錯誤。在檢查答案時,我們應該嘗試采用一些新的方法。這樣做有幾個好處:首先,能夠驗證答案的正確性;其次,可以減少機械性重復產生的枯燥感;第三,思考新的解法也是鍛煉思維的有效方式;第四,能夠充分發揮試卷中題目的作用,實現多方面收益。以上措施可謂一舉多得。
此外,直接檢查法是一種重要的解題方法,需要注重技巧。它通過核對、校對和驗算求解過程及相關結論來進行檢查。為了方便檢查,建議使用草稿紙,并按順序演算并標上題號,以便進行對照。同時,要非常細心,每個細節都需要仔細推敲,不能憑空假設。記住,“最安全的地方有時候也是最危險的地方”。
數學學習方法總結6
綜合理解,逐一突破
如何逐一突破?其實并不復雜,首要的就是高中數學的學習方法及技巧。我們利用本地高考真題卷,進行逐一突破。如數學復數運算,我們突破考點時,要聯想到復數運算的基本公式,更加重要的是復數在坐標系中的意義,復數計算公式是如何產生的,其計算的數學意義是什么。簡單來說,我們抓住的是,全部的知識點考點是如何產生的,它是干什么用的。然后放在考試中怎么用上的。通過真題的形式,結合考點本身的特性,那么做其他題時,思路就非常的清晰明了。
合理利用題目信息,結合考點解題
很多同學都有這么個誤區,認為高考考點完全掌握了,高考就能獲得高分。其實不然。大家如果有靜下心來對試卷進行思考,會發現高考完全以題為本的.方法。考點僅僅是其中的一個元素,在高中數學學習中還是會要掌握技巧方法的。
高考數學考點是死的,命題是靈活多變的,但無論命題如何多變,只要掌握高中數學學習方法技巧,任何題目都一定要表述清楚,無論考我們什么考點,解題的依據不能背離試題的命題信息。故而只有抓住命題本身,用“師夷長技以制夷”的思想,結合考點,問什么答什么,用題目信息來解決問題,才是高考的取勝之道。如果依賴死板的“做過的數學題的經驗”、“知識點套用”,雖然能解決一部分題,但成績必定不會太高。大家始終記住,高考,除了考點,還有能力。
數學學習方法總結7
提高聽課的效率
學生學習期間,在課堂的時間占了一大部分。因此聽課的效率如何,決定著學習的基本狀況提高聽課效率應注意以下幾個方面:課前預習能提高聽課的針對性。預習中發現不懂的地方,就是聽課的重點;對預習中遇到的沒有掌握好的有關的知識,可進行補缺,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平和自學能力。同時可以糾正在預習中因為理解不充分造成的錯誤認識。
掌握聽課過程中的技巧。首先應做好課前的準備,以使得上課時不至于出現翻箱倒柜找課本的現象;上課前也不應做過于激烈的體育運動或看小書、下棋、打牌、激烈爭論等。以免上課后心平靜下來。其次就是聽課要全神貫注。全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。特別注意老師講課的.開頭和結尾:老師講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。另外老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。
形成良好的學習習慣
針對學生的學習習慣,我有四個方面的要求:一是在課前要認真預習,努力找出重點和難點,對課本中的練習要嘗試進行解題,遇到自己不了解之處,要重點思考,以確定上課時聽講所要注重的主要問題。二是在課堂的聽課過程中,要把遇到的疑問和重點、解題思路和需要進一步學習的典型例題等內容都完整地記下來,便于在課后進行整理和復習。三是在課后要及時進行復習,根據課堂筆記中的記錄,徹底弄清楚課堂上所學到的知識,解決自己的疑問。
通過整理課堂筆記,把知識點進一步進行深化、系統化和條理化。對于學有余力的學生,應要求其結合所學內容,閱讀有關的數學課外書籍,以便加深和加寬知識面。四是在課后做數學作業之前,要先復習一遍當日所上的有關內容,等做完作業之后,還要進行總結歸納,找出解決同類問題的更多方法,盡量求得多種解法。
數學學習方法總結8
1、計算是基礎,基礎要打牢:
三年級數學課本系統的介紹了四則運算及其巧算,關于數的計算是比較枯燥的內容,但它同時也是學好數學的基礎,是歷次競賽或選拔比賽中都必不可少的組成部分。小學數學練習機里很多計算題,電腦自動批改,家長省心省力。
就資深數學教練陸霞老師的教學經驗表明,在二、三年級打下良好運算基礎的同學,一方面使得學生今后的數學學習更加輕松,另一方面,在高年級競賽或選拔中往往會有相當大的優勢。
2、應用題,重中之重:
從三年級起,數學課本中介紹了大量的數學專題知識,尤其是應用題部分,是所有年級所有競賽考試中必考的重點知識。學生一定要在各個應用題專題學習的初期打下良好的基礎。
現在許多五六年級同學數學水平提高非常困難,就是因為他們三年級的數學專題知識掌握的不牢靠。
3、學習方法很重要:
在學習計算的基礎上,三年級逐步引入了基本應用題,簡單圖形問題等數學知識,面對突然增大的'數學信息量,學生可以有意識的培養自己復習,總結等良好的學習習慣;
同時,三年級是學生培養自己的數學學習方法的時間。在三年級接觸學習大量數學知識的前提下,有意識地培養自己的學習方法對今后的數學學習有非常重要的幫助。
數學學習方法總結9
1、課內重視聽講,課后及時復習。
2、適當多做題,養成良好的解題習慣。
3、調整心態,正確對待考試。
具體方法:
1、聽講和復習
學好數學,最關鍵的是要有良好的學習習慣。要聽好課,抓住每節課的重難點,弄懂每一個問題,確保課堂聽課的效率。要特別注意老師講課的開頭和結尾。老師的開頭,一般是概括上節課的內容,并指出本節課的內容,所以一定要集中精力聽好。老師的結尾,往往是一節課的精華,是本節課內容的歸納總結,是學生掌握本節課的重點、難點及知識的聯系的關鍵所在,所以要去認真聽,并做好筆記。同時,要適當地重復老師講的.重點,對于自己已經掌握的,也要適當地重復。
另外,要認真完成老師布置的作業,多做練習題,養成良好的解題習慣。
2、調整心態,正確對待考試
首先,要重視數學考試的過程。同學們在考試時,不但要在自己的解題中獲得樂趣,還要熟悉考題的題型,對考題要有一定的預見性,能夠知道一些題目的解法,避免在考試時出現不必要的錯誤。
其次,要重視考后總結。每次考試都會有一定的失誤和差錯,我們要找出失誤的原因,以后避免。
數學學習方法總結10
高中的學習生活其實不只是要努力,正確的學習方法在學習生活中起著很大的作用,F在我就高中的學習方法給你做些介紹啊,希望對你的學習生活有所作用!我知道你數學不是很好,所以呢,我著重數學。
你們女生老是說高中數學難,其實是那么回事嗎?在高考中,數學只有二十一題,選擇和填空有十五題,然后再六個大題。所以在高中你只有學會這二十一題就行。
在試卷的第一題你會碰到虛數的有關內容,虛數無非是虛數有理化,實部和虛部,注意實部和虛部都是數哦!之所以這個虛放在第一題就是要你拿到那個五分,一定不要客氣哦!在試卷的第二題你將會看到簡單邏輯連接詞的有關試題,其實這一部分的題目還是比較簡單的了,只要掌握了課本上的就足夠了。關于前面的兩題我就不想多講了。還有集合內容我也覺得不是高考的重點。至于統計我也就不詳細的說了,我所講的是三角函數與解三角形,函數與導數,立體幾何,解析幾何,數列,向量。
一:三角函數與解三角形
這個知識點考的還是比較多的,大概有17分。
1、你需要掌握正余弦,正切的圖像,及其的有關圖像變化。在高考中的圖像題可能就是
這方面的。關于圖像的上下平移,左右平移,圖像的性質。三角函數是個周期函數,這在學習的過程中可能要花不少時間,其實當你不清楚的時候就畫畫圖像,在圖像上找到你所要的東西,當然你也要學會求它的周期,這些你都要熟練掌握。其實三角函數的圖像無非是關于圖形的變換,只要有耐心和一定的基本功,這部分的題目解決來不是什么難事!
2、三角函數的誘導公式,正余弦的和差展開式,二倍角公式,半角公式。這一部分內容
除了必要的練習還要有效的記憶。其中誘導公式是比較多的,你可以先集中記憶,然后在練習中加以鞏固,達到熟練的目的。注意,你要找到這些公式的異同點找到自己的方法記憶。比如在做題的時候你看到了平方那么你的第一感覺就是看看能不能用半角公式,從半角公式形式上看它比較適合降次。多找找這樣的特點有助于你記憶和應用。
3、快速有效的掌握AB形式。在高考中,這樣的題型有著很大的分量。你要做的就是在
什么時候要用這種形式和又好又快的解決這類問題。這種形式我們不難發現它必須是在同角的時候才可以用,至于熟練運用就要靠你平時的努力了!
4、解三角形。這一塊要熟練得掌握正余弦定理。無論是正弦還是余弦都必須知道三角形
的三個條件,注意有時我們用正弦的時候發現有兩個值,那么一定要注意是不是要舍去一個啊,要經常用大角對大邊的定理進行檢驗。
二:函數與導數
1、基本初等函數。包括一次,二次,指數,對數等函數。對于二次函數的題目我們要注
意的是四要素:開口方向,對稱軸,截距,根的分布。在習題中你要時?紤]這四個因素,要尋找到題目中的隱藏條件,大多的題目至少有一個隱藏條件,找到以后你就可以化繁為簡。還有,不要怕分類討論,其實分類討論只要部遺漏部重復就行,不用太在意那個,難的分類討論并不是每個人都會。指數函數你要知道它的圖像和性質,比如a的范圍啊,單調性,值域啊。對數函數和指數函數有共同點,只要掌握了兩種圖像你就可以掌握他們了。還有,對于基本初等函數的`基本運算你還是要多加練習的,比如指數函數和對數函數的幾個運算公式你一定要熟練掌握,這是你解決復雜題目的基礎。
2、導數的運用。導函數和原函數要能夠區別,首先你要明確導函數是用來干嘛的,導函
數就是用來研究原函數的單調性的一種方式,不能將二者混淆。大部分的導數運用最終都會轉化到二次函數上去,所以在有空的時候對二次函數要加強練習。
三:立體幾何。
立體幾何中最重要的就是線、面的關系。有線面的平行、垂直關系,面面的平行、垂直關系。通常在高考中考察的立體幾何就是要證明線面的位置關系以及面面的位置關系。我們在解決此類的題目的時候要數練掌握定理和性質,對于定理我們比較熟悉,而對于性質的運用不是很好,所以我們要加強性質的運用。在解決較復雜的立體幾何題目中你多畫輔助線,也許輔助線會給你許多的益處,為你的解題提供方便之門。
四:解析幾何。
解析幾何在高考中的難度比較大,所以只要掌握常規方法就足夠了。
1、直線與圓的位置關系,圓與圓的位置關系。這里運用的最多的就是點到直線的距離來判斷他們的位置關系。
2、橢圓、雙曲線、拋物線。橢圓在高考中出現的頻率還是比較高的,形式以直線與橢圓
的位置為主,所以對于常規的圓錐曲線的題目你要掌握常規的解法,比如點差法和代入法啊,這些常規的方法一定要掌握。雙曲線和拋物線在前面的客觀題還是考的比較多。主要還是離心率考察的比較多,這就要從已知條件出發,將所給的條件劃到關于ac上最常見的就是將離心率平方,找到ac的關系。
五:數列。
等差數列的通項公式、求和公式,等比數列的通項公式、求和公式要熟練運用。數列類的題目大部分要你先求通項,然后再求和。
1、你要對求通項和求和的進行分類,找到其中的方法,比如求通項的時候你就要想到利
用和式進行做差,這樣就能夠解決。當題目給的是遞推公式的時候,那么你就要進行構造新的數列,這個新數列不是等比就是等差。在有的題目已經給出了新的構造的數列據比較簡單了,只要湊下就好了。
2、在求和的時候你就要會公式發,錯位相減法,倒序相加,列項相消法,分組求和等方法。
不過你要分清他們的使用范圍,比如錯位相減法就是解決等差數列和等比數列的組合的復雜的數列。因為求和的方法不過只有這么多,實在不行的話就一個個的試。
六:向量。
向量在高考中的分量不是很重,所以你只要掌握向量的基本運算。向量的基本運算方法分為幾何法和坐標法,幾何法就是利用三角形定理和平行四邊形定理,這些在選擇填空題中常見,另外,充分的運用三點共線原理進行解決問題很重要。坐標法運用的比較多,對于向量的坐標法的基本運算你也要好好的掌握,在幾何法解決有點苦難的時候你就要想到坐標法,建系,設點坐標。
數學學習方法總結11
最全的數學學習方法:
1、多看數學書,抓住基礎。
工欲善其事,必先利其器。中考試題有知識面全、注重基礎的特點。所以學生要從基本的做起,多看課本;A差的學生更要多看幾遍。在看課本的過程中要強調一點:第一、例題要重讀,教材中的例題都是很有代表性的,要珍惜每道例題,可以自己先試著做一做,然后在看解答。第二、概念要精讀,比如射線、二次函數等的概念都是很精準的,要一字一句的仔細閱讀。才能加深對概念定理的理解。第三、學會點、劃、批、問。把關鍵的'地方點出來,把公式、結論等畫出來、把自己的理解、質疑等批出來,把沒看懂的地方問出來。
2、學會聽課。
老師每節課講課發的講義都是知識點很全面的。大家都認真聽,可是聽課后的效率為什么會不同呢?所以要學會聽課。聽課中要注意:
。1)聽每節課的學習要求。
。2)聽知識引入及知識形成過程。
。3)聽懂重點、難點。
。4)聽立體解法的思路和數學思想方法的體現。
(5)聽好課后總結。
3、建立糾錯本
學生要把典型例題、出錯的題目寫在糾錯本上。錯題一般分為兩種:一種是自己根本就不會做,因為太難了,沒有思路;另一種是自己會做,因為粗心做錯了,我覺得,最有機制的錯題是第二類。因為粗心也有很多種,我們也要分析它,為什么會錯?有哪些教訓?下一階段怎么學?
4、做題規范
要求學生書寫格式要規范、步驟要完整、條理要清楚。平常的題目要正確的由條件畫出圖形。老師平常給學生做示范作用,有意讓學生模仿、訓練,逐步養成學生良好的書寫習慣。
5、學會總結
通過不同類型的題目的練習,列出重點、難點、自己哪些不會?歸納出各種題型的解題方法。
數學學習方法總結12
【一、及時回憶】
如果等到把課堂內容遺忘得差不多時才復習,就幾乎等于重新學習,所以課堂學習的新知識必須及時復習。
可以一個人單獨回憶,也可以幾個人在一起互相啟發,補充回憶。一般按照教師板書的提綱和要領進行,也可以按教材綱目結構進行,從課題到重點內容,再到例題的每部分的細節,循序漸進地進行復習。在復習過程中要不失時機整理筆記,因為整理筆記也是一種有效的復習方法。
【二、重復鞏固】
即使是復習過的內容仍須定期鞏固,但是復習的次數應隨時間的增長而逐步減小,間隔也可以逐漸拉長。可以當天鞏固新知識,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統的學期復習。從內容上看,每課知識即時回顧,每單元進行知識梳理,每章節進行知識歸納總結,必須把相關知識串聯在一起,形成知識網絡,達到對知識和方法的`整體把握。
【三、合理安排】
復習一般可以分為集中復習和分散復習。實驗證明,分散復習的效果優于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類,并且與其他的學習或娛樂或休息交替進行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點,把握重復次數與間隔時間,并非間隔時間越長越好,而要適合自己的復習規律。
【四、突破重點難點】
對所學的素材要進行分析、歸類,找出重、難點,分清主次。在復習過程中,特別要關注難點及容易造成誤解的問題,應分析其關鍵點和易錯點,找出原因,必要時還可以把這類問題進行梳理,記錄在一個專題本上,也可以在電腦上做一個重難點“超市”,可隨時點擊,進行復習。
【五、效果檢測】
隨著時間的推移,復習的效果會產生變化,有的淡化、有的模糊、有的不準確,到底各環節的內容掌握得如何,需進行效果檢測,如:周周練、月月測、單元過關練習、期中考試、期末考試等,都是為了檢測學習效果。檢測時必須獨立,完成,保證檢測出的效果的真實性,如果存在問題,應該找到錯誤的根源,并適時采取補救措施進行校正。目前市場上練習冊多如牛毛,請在老師的指導下選用。
【數學學習方法推薦】
高一數學與初中數學的區別是概念多并且較抽象,學起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數y=f(x)與y=f-1(x)的圖象關于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當f(x-1)=f(1-x)時,函數y=f(x)的圖象關于y軸對稱,而y=f(x-1)與y=f(1-x)的圖象卻關于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
數學學習方法總結13
中學數學學習方法七要點:
要學好數學,要把握好以下幾要點,對于數學的學習成績的提高,自學能力的養成肯定有促進的。
(一)制定合理學習計劃,及時檢查落實。
1、制定符合自己的實際情況的學習計劃。
2、要有明確的學習目標。通過一個階段的學習,要達到什么水平,掌握那些知識等,這些都是在制定學習計劃前應該非常明確。
3、長期目標和短期安排要相互結合好。應先制定長期計劃,據此確定短期學習安排,來促使長期學習計劃的實現。學期計劃,半期計劃,月計劃,周計劃。
4、要合理安排計劃。計劃不能太古板,可根據執行過程中出現的新情況及時做適當調整。
5、措施落實要有力?筛綆е贫ㄓ媱澛鋵嵡闆r的自我檢查表,以便監督自己如期完成學習目標。
(二)做好課前預習,提高聽課效率。
通過預習,了解要學習的課程的主要內容和重、難點,預習的任務是通過初步閱讀,先理解感知新課的內容(如概念、定義、公式、論證方法等),為順利聽懂新課掃除障礙。
1、預習的最佳時間是晚上的8:00到9:00這一段時間,單科的預習的時間一般控制在15分鐘到30分鐘左右。
2、課前預習:先看書做到:
一、粗讀,先粗略瀏覽教材的有關內容,了解本節知識的概貌也就是大體內容。
二、細讀,對重要概念、公式、
法則、定理反復閱讀、體會、思考,注意該知識的形成過程,了解課程的內容的重、難點,新舊知識的聯系及新知識在學科體系中的地位與意義,對難以理解的概念作出記號,以便帶著疑問去聽課,而后再做練習,通過練習來檢查自己的.預習時掌握的情況,最后再帶著自己不懂的問題去聽課。
(三)聽好每一節課,解決疑點,吸納新知。
耳到:就是專心聽講,聽老師如何講授,如何分析問題,如何歸納總結,另外,還要認真聽同學們的答問,看它是否對自己有所啟發。老師對一些重點難點會作出某些語言、強調的語氣,聽老師對每節課的學習要求;聽知識引人及知識形成過程;聽懂重點、難點剖析(尤其是預習中的疑點);聽例題解法的思路和數學思想方法的體現;聽好每節課的小結。
眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢和演示實驗的動作,接受老師某種動作的提示、以及所要表達的思想。
心到:集中注意力,避免走神,學習目標要明確,增強自己學習自覺性。課堂上用心思考,跟上老師的教學思路,領會、分析老師是如何抓住重點,解決疑難。老師在講例題時,在腦海中跟著老師,每一步都得自己想通。多思、勤思,隨聽隨思;深思,即追根溯源地思考,大膽的提出問題;善思,由聽和觀察去聯想、猜想、歸納;樹立批判意識,學會反思。
口到:就是在老師的指導下,主動回答問題或參加討論,也可避免走神。同時有利于知識的記憶。
手到:記筆記服從聽講,要掌握記錄時機,就是在聽、看、想、的基礎上劃出課文的重點,記下講課的要點、疑問、記解題思路和方法以及自己的感受或有創新思維的見解、課前疑點的答、記小結、記課后思考題的分析。
筆記要有重點。記錄形式多種多樣可以在書上或筆記本上劃線(直線、曲線)、圈點、作標記、使用不同顏色的筆(如紅色就比較顯眼)、記錄的格式不同、書寫的字體不同,這些都是記筆記的好方法。
(四)扎實搞好復習,減少遺忘。
當天上完課的課,必須做好當天的復習。不能只停留在一遍遍地看書或筆記,可以采取回憶式的復習:先把書,筆記合起來,回憶上課時老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫)盡量想得完整些。然后打開筆記與書本對照,看一下還有哪些沒記清的,及時把它補記起來。同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
通過復習,把自己的想法,思路寫成小結、列出圖表、或者用提綱摘要的方法,把前后知識貫穿起來,形成一個完整的知識網。復習中遇到問題,要先想后看(問)。
做好單元復習。利用單元知識系統框架,采取回憶式復習。也要做好單元小節。本單元(章)的知識網絡;本章的基本思想與方法(應以典型例題形式將其表達出來);自我體會:對本章內,自己做錯的典型問題應有記載,分析其原因及正確答案(如:錯題本),應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
(五)做好小結或總結,提升對知識的領悟。
在進行單元小結或學期總結時,做到:
一看:看書、看筆記、看習題。通過看,回憶、熟悉所學內容;
二列:列出相關的知識點的框架,標出重點、難點,列出各知識點之間的關系;
三做:有目的、有重點、有選擇地解一些各種檔次、類型的習題,通過解題再反饋,發現問題、解決問題。
最后歸納出體現所學知識的各種題型及解題方法(倍速在章末有歸納)。學會總結是數學學習的最高層次。平時放學回家,堅持復習當天所學的內容,加深印象。并做相應的練習題以鞏固上課所學的知識。
對所學知識系統地小結,具體如下:小結的頻率:最好就是每周一次,將本周所學的知識進行系統歸納。小結的內容:可以把識記知識(如概念、公式等)系統化,也可以對題型作歸納,并附上自己的解題心得和注意事項等。當然可以參考章末小結。
(六)做練習題強化、鞏固新的知識結構。
復習中要適當看點題、做點題。選的題要圍繞復習的中心來選。在解題前,要先回憶一下過去做過的有關習題的解題思路,在這基礎上再做題
(七)合理安排學習時間
要注意勞逸結合,這也是保證時間利用效率的一個重要方面,只有會休息的人才會工作。
數學學習方法總結14
復習高等數學的四點訣竅
第一,要理解概念
數學中有很多概念。概念反映的是事物的本質,弄清楚了它是如何定義的、有什么性質,才能真正地理解一個概念。所有的問題都在理解的基礎上才能做好。
第二,要掌握定理
定理是一個正確的命題,分為條件和結論兩部分。對于定理除了要掌握它的條件和結論以外,還要搞清它的適用范圍,做到有的放矢。
第三,在弄懂例題的基礎上作適量的習題
要特別提醒學習者的是,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點和解法在理解例題的基礎上作適量的習題。作題時要善于總結——不僅總結方法,也要總結錯誤。這樣,作完之后才會有所收獲,才能舉一反三。
第四,理清脈絡
要對所學的知識有個整體的把握,及時總結知識體系,這樣不僅可以加深對知識的理解,還會對進一步的學習有所幫助。
高等數學中包括微積分和立體解析幾何,級數和常微分方程。其中尤以微積分的內容最為系統且在其他課程中有廣泛的應用。微積分的理論,是由牛頓和萊布尼茨完成的。(當然在他們之前就已有微積分的應用,但不夠系統)
數學備考一定要有一個復習時間表,也就是要有一個周密可行的計劃。按照計劃,循序漸進,切忌搞突擊,臨時抱佛腳。其實數學是基礎性學科,解題能力的提高,是一個長期積累的過程,因而復習時間就應適當提前,循序漸進。大致在三、四月分開始著手進行復習,如果數學基礎差可以將復習的時間適當提前。復習一定要有一個可行的計劃,通過計劃保證復習的進度和效果。一般可以將復習分成四個階段,每個階段的起止時間和所要完成的任務考生應給予明確規定,以保證計劃的可行性。第一個階段是按照考試大綱劃分復習范圍,在熟悉大綱的基礎上對考試必備的基礎知識進行系統的復習,了解考研數學的基本內容、重點、難點和特點。這個時間段一般劃定為六月前。第二個階段是在第一階段的基礎上,做一定數量的題,重點解決解題思路的問題。一般從七月到十月。這個階段要注意歸納總結,即拿到題后要知道從什么角度,可以分幾步去求解,每道題并不要求都要寫出完整步驟,只要思路有了,運算過程會做了,可以視情況而靈活掌握,這樣省出時間來看更多的題。所選試題可以是歷年真題,也可以是書上的練習題,但真題一定要做,而且要嚴格按照實考的要求去做,把握真題的特點和解題思路及運算步驟。第三個階段是實戰訓練階段,從十一月到十二月的中旬,這也是臨考前非常重要的階段?忌獙Υ缶V所要求的知識點做最后的梳理,熟記公式,系統地做幾套模擬試卷,進行實戰訓練,自測復習成果。在做模擬題前先要系統記憶掌握基本公式,做題要講究質量,既要有速度,又要有嚴格的步驟、格式和計算的準確性。最后階段是考前沖刺,從十二月下旬到考試。針對在做模擬試題過程中出現的問題作最后的補習,查缺補漏,以便以的狀態參加考試。學好數學是一個長期的過程,來不得半點的投機取巧,所以考前突擊,臨時抱佛腳的做法是不足取的,只有按照自己的計劃,踏踏實實的進行準備,才能以不變應萬變,只要自己的綜合能力提高了,不管考試如何變化,都能取得好的成績。
數學的學習一定要每天都有個進度,每天都要有題量,我們不應該搞題海戰術,但是通過做題提高實戰經驗也是必須的,首先有個大的學習框架,然后計劃到每天,怎么去學習,每天做那方面的題,定期的查漏補缺,這樣的學習才真正的有效果。
學習高等數學要做的準備
在高等教育自學考試的很多專業中,很多都有高等數學課程。很多考生反映,高等數學(一)通過非常難,林士中老師所教授的高等數學課程一直受到廣大網校學員的好評。在授課之余,林教授傳授了通過高數的訣竅。他說,在學習高數(一)之前,首先你要打好基礎,把初中的數學補回來,再參加這兩門課程的`考試就好的多。
林士中:我對同學了解的情況,一種是原來中學學的初等知識掌握太少,高等數學沒有用大量的初等數學知識,但是要用一部分的知識。有些同學不是高等數學知識沒掌握好,主要是初等數學知識不夠數量,或者掌握太少,變形變不過來,這樣就算你知道高等數學,但是初等掌握不好,考試肯定會遇到一定困難。如果你是初等數學掌握過少影響考試不及格,你應該把最基本的初等數學知識復習。自考365網校已經推出了高等數學的基礎輔導課程,介紹微積分當中用到的初等數學有哪些,大概有6課時。介紹微積分當中用到的初等數學有哪些,如果有一部分同學感到初等數學知識不夠用,我希望同學不要害怕,你即便初等數學知識不夠好,不見得過不了。希望大家多花點時間學習,可以起到事半功倍的效果。
第二個,有些同學覺得,學高等數學,或者微積分,主要靠理解,但是實際上這里邊有一些誤會,數學主要是靠理解,但是和其他課程有區別,其他課程靠記憶比較多,當然也要理解,但是數學,靠理解的比較多,不等于不要記憶,特別有些基本的東西必須記的大家還要記憶,比如說一些基本概念,導數的定義,連續性的定義這些基本的東西要適當的記一下。
第三個,基本公式表,微分公式表也要記,這些基本的東西大家還要記。積分公式表記不住,積分就過不了關,在記憶的基礎上適當做一些題達到融會貫通,我希望大家做好這兩方面的復習。
有同學初等數學不會的,經過努力,這樣的都能考過,其他人一定能考過。當然得補一些數學,不補是不行的,你們提出來補什么好,我跟大家說,初等數學不像你們中學那樣什么都要考,中學老師教你們主要是競爭,考大學是一種競爭性質,要求的內容相當多,偏題怪題都有,但是作為學高等數學不是競爭性質,只要求掌握基本知識,所以這部分就要把初等數學的基本內容掌握好就行,實際上我個人覺得,你只要有決心補初等數學,有兩三天就夠了。
如何學好高等數學
認真聽課。既然是高數課,自然是老師講課,一周的高數課的節數肯定不會少。所以,老師上課就是最好的一個學習媒介。少年們,上課努力早起去做前排吧。如果老師夠認真負責,相信做好了這一步,那就基本上成功了一半.
買一本靠譜的考研書。如果老師不認真負責,只會用蚊子般大小的聲音念念ppt怎么辦;根本聽不下去怎么辦。這個時候,不用慌張,其實還是有很多很好的選擇,推薦去買一本厚厚的考研書,不用擔心,考研書就是幫你們復習大一的高數知識,而且上面通常整理的非常好。各類例題也都是平時?嫉念愋。
做好筆記。書上一些沒有的證明和老師上課隨性發揮的精華可是一瞬即逝的噠。做好筆記還有益于自己上課認真專注。如果是自己看書也需要記筆記。
按時做作業。還記得高中時怎么沒日沒夜的做作業嗎,practice makesperfect,這句話是沒有錯的,高數的作業會有很多,而它對你學好高數的重要性也不言而喻的。而且,作業好還有平時分還高,最后總評也高不是。
學習公開課。如果對一些證明,推理,或者概念不清楚,想要找個名師的話,網絡上的公開課其實是一個非常好的選擇。這也是現在的教育的一種趨勢,這里推薦一些常用的,比如mooc,愛課程網,網易公開課等等。國外名校的都是大師,聽完他們的講解相信一定會對高數和整個數學體系有一個新的理解,并對它產生興趣。
數學學習方法總結15
數學學習是很多小學生和家長最為頭疼的問題,很多小學生學習數學不好,面對這一難題,小編僅根據自己的親身經歷分析學習數學的方法:
一、學會主動預習
新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。因此,培養自學能力,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
二、在老師的引導下掌握思考問題的方法
一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題。如有這樣一道題讓學生解“把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”同學們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關系講:長方形→正方形;從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,經老師啟發,學生分析后,學生根據其思路(可畫出圖形)進行解答。有的學生很快解答出來:設原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。
三、及時總結解題規律
解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題后,要注意回顧以下問題:
。1)本題最重要的特點是什么?
。2)解本題用了哪些基本知識與基本圖形?
。3)本題你是怎樣觀察、聯想、變換來實現轉化的?
(4)解本題用了哪些數學思想、方法?
。5)解本題最關鍵的一步在那里?
。6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?
。7)本題你能發現幾種解法?其中哪一種最優?那種解法是特殊技巧?你能總結在什么情況下采用嗎?把這一連串的問題貫穿于解題各環節中,逐步完善,持之以恒,學生解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。
四、拓寬解題思路
在教學中老師會經常給學生設置疑點,提出問題,啟發學生多思多想,這時學生要積極思考,拓寬思路,以使思維的廣闊性得到較好的發展。如:修一條長2400米的水渠,5天修了它的20%,照這樣計算剩下的還需幾天修完?根據工作總量、工作效率、工作時間三者的關系,學生可以列出下列算式:
(1)2400÷(2400×20%÷5)—5=20(天)
。2)2400×(1—20%)÷(2400×20%÷)=20(天)。
教師啟發學生,提問:“修完它的20%用5天,還剩下(1—20%要用多少天修完呢?”學生很快想到倍比的方法列出:
(3)5×(1—20%)÷20%=20(天)。如果從“已知一個數的幾分之幾是多少,求這個數”的方法去思考,又可得出下列解法:5÷20%—5=20(天)。
再啟發學生,能否用比例知識解答?學生又會想出:
。4)20%∶(1—20%)=5∶X(設剩下的.用X天修完)。這樣啟發學生多思,溝通了知識間的縱橫關系,變換解題方法,拓寬學生的解題思路,培養學生思維的靈活性。
五、善于質疑問難
學啟于思,思源于疑。學生的積極思維往往是從有疑開始的,學會發現和提出問題是學會創新的關鍵。著名教育家顧明遠說:“不會提問的學生不是一個好學生。”現代教育的學生觀要求:“學生能獨立思考,有提出問題的能力!迸囵B創新意識、學會學習,應從學會提出疑問開始。如學習“角的度量”,認識量角器時,認真觀察量角器,問自己:“我發現了什么?我有什么問題可以提?”通過觀察、思考,你可能會說說:“為什么有兩個半圓的刻度呢?”“內外兩個刻度有什么用處?”,“只有一個刻度會不會比兩個刻度更方便量呢?”,“為什么要有中心的一點呢?”等等,不同的學生會提出各種不同的看法。在度量形狀如“V”時,你可能會想到不必要用其中一條邊與量角器零刻度線重合的辦法。學習中要善于發現問題,敢于提出問題,即增加主體意識,敢于發表自己的看法、見解,激發創造欲望,始終保持高昂的學習情緒。
六、歸納的思想方法
在研究一般性性問題之前,先研究幾個簡單的、個別的、特殊的情況,從而歸納出一般的規律和性質,這種從特殊到一般的思維方式稱為歸納思想。數學知識的發生過程就是歸納思想的應用過程。在解決數學問題時運用歸納思想,既可認由此發現給定問題的解題規律,又能在實踐的基礎上發現新的客觀規律,提出新的原理或命題。因此,歸納是探索問題、發現數學定理或公式的重要思想方法,也是思維過程中的一次飛躍。如:在教學“三角形內角和”時,先由直角三角形、等邊三角形算出其內角和度數,再用猜測、操作、驗證等方法推導一般三角形的內角和,最后歸納得出所有三角形的內角和為180度。這就運用歸納的思想方法。
七、符號化的思想方法
數學發展到今天,已成為一個符號化的世界。符號就是數學存在的具體化身。英國著名數學家羅素說過:“什么是數學?數學就是符號加邏輯!睌祵W離不開符號,數學處處要用到符號。懷特海曾說:“只要細細分析,即可發現符號化給數學理論的表述和論證帶來的極大方便,甚至是必不可少的!睌祵W符號除了用來表述外,它也有助于思維的發展。如果說數學是思維的體操,那么,數學符號的組合譜成了“體操進行曲”,F行小學數學教材十分注意符號化思想的滲透。符號化思想在小學數學內容中隨處可見,數學符號是抽象的結晶與基礎,如果不了解其含義與功能,它如同“天書”一樣令人望而生畏。
八、統計的思想方法
在生產、生活和科學研究時,人們通常需要有目的地調查和分析一些問題,就要把收集到的一些原始數據加以歸類整理,從而推理研究對象的整體特征,這就是統計的思想和方法。例如,求平均數是一種理想化的統計方法。我們要比較兩個班的學習情況,以班級學生的平均數作為該班成績的標志是有一定說服力的,這是一種最常用、最簡單方便的統計方法小學數學除滲透運用了上述各數學思想方法外,還滲透運用了轉化的思想方法、假設的思想方法、比較的思想方法、分類的思想方法、類比的思想方法等。從教學效果看,在教學中滲透和運用這些教學思想方法,能增加學習的趣味性,激發學生的學習興趣和學習的主動性;能啟迪思維,發展學生的數學智能;有利于學生形成牢固、完善的認識結構。
總結一下:
。1)細心地發掘概念和公式;
。2)總結相似的類型題目;
。3)收集自己的典型錯誤和不會的題目;
。4)就不懂的問題,積極提問、討論;
。5)注重實戰(考試)經驗的培養。
【數學學習方法總結】相關文章:
數學學習方法總結11-22
總結數學學習方法12-20
數學學習方法總結02-16
關于數學的學習方法總結12-07
總結數學學習方法05-17
初中數學的學習方法總結01-11
數學學習方法總結07-07
總結數學學習方法05-17
數學學習方法的總結11-14
初中數學學習方法總結12-05