五年級數學學習方法7篇
在學習、工作或生活中,很多人都在不斷學習,保持進步,對于學習的人來說,學習方法是非常重要的。想要找到正確的學習方法?以下是小編精心整理的五年級數學學習方法,歡迎大家分享。
五年級數學學習方法1
數學的學法指導應首先指導學生從“聽、讀、寫、思”入手,掌握數學學習的方法。
一、指導“聽“
數學教學中指導學生聽課,首先應從培養學生的數學興趣入手來集中學生的注意力,激活他原有的認知結構,專心聽講;其次,要指導學生會聽,主要應注意聽老師每一節課開始所講的教學內容、重點和學習要求,注意聽教師在講解例題時關鍵部分的提示和處理,注意聽教師對概念要點的剖析和概念體系的串連,注意聽教師每節課的小結和對某些較難習題的提示。
二、指導“讀”
這里所講的讀是指閱讀數學課本,主要是指導學生從各個方面去深入理解課本內容。
、僮x標題。要求學生細細體會標題,能提綱挈領地抓住教材的主要內容;
、谧x例題。在預習時應要求學生帶著問題讀例題,并初步領會解題方法;
、圩x插圖。教師應指導學生認真閱讀課本上的插圖,使學生更具體、更形象、更準確地理解文字的內容;
、茏x算式。應要求學生準確地讀出算式,弄清算式的意義;⑤讀結語。要求學生對教材的結語逐字逐句地理解分析,以便準確地把握。
三、指導“寫”
數學教學中,對學生的學法指導,教師一是要指導學生學會做學習筆記;二是要指導學生將數學語言轉化為數學符號,數學符號是數學語言的重要表現形式,它不僅簡潔美觀,而且便于記憶和使用;三是熟練掌握數學中常用的書寫格式;四是會作圖,作圖包括根據條件作圖,解題時將文字語言轉化為直觀圖形。教師應著力于以下四點:一是從學生思維的“最近發展區”入手引導學生積極主動地思考;二是善于變式思考。變式是數學的一大特點,對于某一個問題,改變結論,結論將如何,改變結論,條件又將如何,在變中求活,在變中找方法;三是比較歸納,將數學知識系統化;四是教師在教學過程中,要善于暴露思維過程,留下一定的思維時間和空間,讓學生“思在知識的轉折點,思在問題的疑難處,思在矛盾的解決上,思在真理的探求中!边@樣,就能使學生學會并掌握基本的數學思想方法,達到啟思悟理,融會貫通。再次數學學法指導應指導學生在“說、看、練、記”上著力,掌握數學學習的方法。
。ㄒ唬﹩l“說”首先啟發學生說思路,說思維過程。課堂上要讓每個學生都有說自己想法的機會,可以讓學生根據某一問題,獨自小聲說,同桌之間練習說,四人小組互相說,等等。通過說,訓練思維方法;其次,引導學生用簡明、準確、規范的數學用語,完整地回答問題,在引導學生觀察、分析、推理、判斷后,啟發學生用自己的話總結、概括出定義、法則或公式,使感性認識上升為理性認識。
(二)指導“看”!椭鷮W生選準觀察點,進行有目的地觀察,在看中辨析、思考,增強觀察力,激發求知欲。
。ㄈ┲笇А熬殹!⊥ㄟ^指導練習,強化“做”的過程。在練習中,應突出練習的目的性、啟發性、針對性、多樣性,促使學生系統地探索新知識,有效地解決新問題,以達到會、熟、活。
。ㄋ模┲笇А坝洝币雽W好數學,對老師所講的概念、定理、公式、法則、重要結論、解題規律都必須記住。因此,在數學教學中要結合教學內容向學生傳授記憶的方法。
、倮斫庥洃浄。很多數學知識,光靠死記硬背不容易記住。如果讓學生在理解的基礎上記憶,就不容易忘記了;
②分類記憶法。許多數學知識之間往往有著密切的內在聯系,如果我們對它們進行恰當的分類,就可以形成一個知識網,記住了一個就記住了一類;
、郾容^記憶法。對于一些容易混淆的概念,通過比較弄清它們的聯系與區別,把兩個概念組成一對進行記憶,也不容易忘記。另外,數學中所涉及到的數學學習方法還應是對大多數學生適用的“通法”,而不能是適用于少數個別學生的特殊方法。
總之,學法指導應由“學會”向“會學”發展,從根本上讓學生掌握學習方法,形成學習的能力,讓學生終身受益。
五年級數學學習方法2
主動預習
主動預習,不僅能提前了解上課內容,在聽課的時候有的放矢,還能鍛煉孩子的自學能力。
具體做法:認真閱讀教材,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。
如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。
抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
掌握思考問題的方法
“把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”
一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題,比如上題。
同學們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。
這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關系講:長方形→正方形;
從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,
經老師啟發,學生分析后,學生根據其思路(可畫出圖形)進行解答。
有的學生很快解答出來:設原長方體的底面長為X,則2X×4=48得:X=6(即正方體的'棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。
掌握思考問題的方法
解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題后,要注意回顧以下問題:
(1)本題最重要的特點是什么?
(2)解本題用了哪些基本知識與基本圖形?
(3)本題你是怎樣觀察、聯想、變換來實現轉化的?
(4)解本題用了哪些數學思想、方法?
(5)解本題最關鍵的一步在那里?
(6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?
(7)本題你能發現幾種解法?其中哪一種?那種解法是特殊技巧?
你能總結在什么情況下采用嗎?把這一連串的問題貫穿于解題各環節中,逐步完善,持之以恒,學生解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。
五年級數學學習方法3
天津奧數網 五年級是接觸專題最多的時期,小學階段的重要知識點和難點也都集中在這個階段,專題的練習有助于知識點和難點的鞏固和加強;真題的練習可以為你積累豐富的實戰經驗。
五年級的孩子可以嘗試參加考試和比賽,獲獎對于孩子來說是一個莫大的激勵,能夠促使他們在奧數學習上興趣倍增,為以后取得更多的證書以及,奠定堅實的基礎。
爬坡攻堅階段
五年級是一個奧數學習的爬坡階段。如果在這個階段對奧數進行系統學習,哪怕之前都沒怎么接觸奧數的孩子,其數學成績可能有很大幅度的提高。下面我就來說說剛剛接觸奧數的同學該怎么學。
由簡單入手
五年級是有余力進行額外學習的,但是如果之前沒接觸過奧數,那么還是從簡單入手比較好。一則讓孩子通過簡單問題逐漸熟悉奧數,一則培養孩子的奧數興趣,避免接觸難題打消學習積極性。
要迅速過渡
五年級的學生是屬于小學的高年級階段,雖然是最初接觸奧數,也不必按部就班的學。應該輔助一定的練習對幾種類型題和專題進行深入分析了理解,掌握專題的解題思路,做到以點概面,迅速過渡到高年級奧數的學習。
制定學習計劃
所謂系統學習,決不是拿過哪塊來就學習哪塊,必須要有一個合理的學習計劃。通過一段時間簡單的學習,家長應注意了解孩子的學習進度,幫助孩子制定一份大體的學習計劃。然后嚴格按照計劃進行系統學習。
重視基礎
奧數是的競爭資本之一。其中大部分重點中學的奧數測試比較重視奧數的基礎。而杯賽也基本都是在奧數基礎上進行的延伸。所以不論是從的角度還是從提高自身能力的角度考慮,五年級學生都應該重視奧數基礎部分。
量變到質變
學習到一定階段之后,也要注重孩子思維方法的培養了,不能總是停留在解題這個階段。要綜合各個題型進行分析學習,通過知識的了解上升到方法的拓展,再到掌握方法舉一反三,實現一個質的飛躍!
五年級數學學習方法4
小學五年級數學學習方法五條
主動預習
主動預習,不僅能提前了解上課內容,在聽課的時候有的放矢,還能鍛煉孩子的自學能力。
具體做法:認真閱讀教材,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。
如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。
抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
掌握思考問題的方法
“把一個長方體的高去掉2厘米后成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?”
一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題,比如上題。
同學們對求體積的公式雖記得很熟,但由于該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。
這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、長方體、正方體;從圖形變化關系講:長方形→正方形;
從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積,
經老師啟發,學生分析后,學生根據其思路(可畫出圖形)進行解答。
有的學生很快解答出來:設原長方體的底面長為X,則2X×4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6×6×6=216(立方厘米)。
小學五年級數學解題技巧
1、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在于,訓練學生對數學知識的正確理解、牢固記憶、準確辨識。
例1:三個連續自然數的和是18,則這三個自然數從小到大分別是多少?
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
例2:判斷題:能被2除盡的數一定是偶數。
這里要對照“除盡”和“偶數”這兩個數學概念。只有這兩個概念全理解了,才能做出正確判斷。
2、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,并能準確運用。
例3:計算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運用乘法分配律
=59×50…………運用加法計算法則
=(60-1)×50…………運用數的組成規則
=60×50-1×50…………運用乘法分配律
=3000-50…………運用乘法計算法則
=2950…………運用減法計算法則
3、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯系與區別,這是比較的實質。
(3)必須在同一種關系下(同一種標準)進行比較,這是“比較”的基本條件。
(4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
例4:填空:0.75的位是(),這個數小數部分的位是();十分位的數4與十位上的數4相比,它們的()相同,()不同,前者比后者小了()。
這道題的意圖就是要對“一個數的位和小數部分的位的區別”,還有“數位和數值”的區別等。
例5:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?
這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。
找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數為90÷2=45(人)。
4、分類法
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。
例6:自然數按約數的個數來分,可分成幾類?
答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個。
5、分析法
把整體分解為部分,把復雜的事物分解為各個部分或要素,并對這些部分或要素進行研究、推導的一種思維方法叫做分析法。
依據:總體都是由部分構成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進行圖解思路。
例7:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件?
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。
小學五年級上冊數學復習計劃
一、把知識分塊,進行分類整理復習。
五年級數學一共七個單元,但是重點知識分為三塊,一是計算類:小數乘除法和解簡易方程;二是圖形面積類:平行四邊形、三角形、梯形以及組合圖形的面積計算;三是問題解決:小數乘除法的解決問題以及用方程解決問題。把知識分類也能讓學生明了本冊學習的重點內容,在練習時能對癥下藥,即題目到底是考查了哪一個知識點,這樣學生面對一些陌生的題目時也不會手足無措。
二、多訓練計算。
本學期的計算占的比重相當大,于是讓每個學生都掌握計算法則,會計算每種類型的題目。最近一個月我每天會讓學生做六道計算題。雖然讓學生練習了,但是我做的并不好,檢查不到位,只是讓小組長把這個家庭作業落實,學生糾錯率不高。在接下來的一段時間我準備在課代表以及小組長的配合下,每天不定時抽查學生的家庭作業,并掌握每個學生的計算能力,程度的在基礎計算上讓學困生得分。
三、把每班學生按不同程度分類。
優等生、中等程度的學生、學困生。在復習時有所側重,優等生在掌握基礎題的同時,多做一些拔高的習題;中等生能夠把基礎知識、概念、計算做的非常扎實,拔高題并不做要求;學困生是個大難題,他們基礎差,學習習慣不好,甚至有厭學情緒,多讓他們在學習中體驗成功樂趣是重點,讓他們有學習的欲望,基本的小數乘除法、簡單的方程,一定要重復訓練,對他們進行模式訓練,記憶為主。
“一幫一計劃“也有所改動,原來優等生帶學困生,但是實施過程中發現,有些學生在給學困生講題時,極其不耐煩,總是聽到有人抱怨認為很簡單的題目也不會做,影響很不好,于是我大膽決定,讓優等生幫助中等生,中等生帶學困生,這樣差距小一些,實施起來也比較容易些,而且發揮中等生的作用,一方面避免了有些中等生聽不懂裝懂,理解知識不透徹的壞習慣,另一方面通過幫助別人他也能體驗成功,對自身提高很有幫助。
最后,復習一定不要只顧做試卷而脫離課本,且不說期末考試的題目都是書上例題的變形,更重要的是課本上的習題都是基于課程標準的,不會超綱,有代表性,對于學生理解定義、概念有很大的幫助作用。
總之,期末復習一定要有計劃性,根據本班學生制定一個具有時效性的計劃,能對癥下藥,這樣的復習應該會有比較顯著的效果!
五年級數學學習方法5
1、合理安排學習計劃
根據小升初的形勢,六年級寒假就應該是綜合復習的時候。這樣從三年級暑假開始算起,到六年級寒假只有兩年半的時間。我們建議學生在兩年半時間里一定要扎實學習奧數知識。整個學習過程要按梯度進行,切莫一味做難題,根據學生學習情況,一步一個臺階。兼顧競賽、仁華、重點學校培訓班,早做規劃,早做準備。
2、鞏固基礎知識
由于還有一年就要轉入小升初的復習階段,所以五年級之前的奧數基礎內容一定要掌握好。之前的奧數內容以應用題、計算為主。對于基本應用題建議利用方程的方法求解,可以達到事半功倍的效果。計算問題需要對基本的簡算方法了如指掌,因為這些方法也是以后分數計算和綜合混合運算的基礎。
3、多做專題練習
五年級是接觸專題最多的時期,小學階段的重要知識點和難點也都集中在這個階段。其中數論、行程問題、排列組合是重中之重,如果這幾個專題掌握的不好,想上一個理想的中學是非常困難的。做專題練習也不能光看做了多少道題,要保證練一道會一道,真正的理解并掌--
握所做的題目,日積月累,幾個重點難點也就不再是老大難問題了。
五年級數學學習方法6
五年級下學期是前的最后一個學期,對于整個小學階段的數學學習起著至關重要的作用,只有這一關過好了,才可能在的備考中游刃有余。所以這學期的奧數學習應該有更強的針對性,針對自己的實際情況和目標選擇合適的班型。
學習重點難點解析:
五年級屬于小學高年級,孩子進入五年級以后,隨著年齡的增長,孩子的計算能力,認知能力,邏輯分析能力都比以前有很大的提高,這個時期是奧數思維形成的關鍵時期,是學奧數的黃金時段,所以是否把握住五年級這個黃金時段,關系到以后的成與敗。那么在整個五年級階段都有哪些重點知識呢?為了孩子更好的把握五年級的學習重點,下面就介紹一下五年級的關鍵知識點。
1.進入數學寶庫的分析方法——遞推方法:任何事物的發展總是從簡單到復雜,奧數也是一樣,對于復雜問題,我們不妨先從最簡單的情況入手,通過處理簡單的問題,我們可以從中得到規律或者訣竅,從而來解決復雜的問題,這就是遞推方法。比如說:平面上20xx條直線最多有幾個交點?同學們第一眼看到這個問題時,肯定會想畫20xx條直線相交然后再數交點個數,那該是多麻煩。∑鋵嵨覀兛梢韵葋斫鉀Q簡單點的情況,分別找到1條、2條、3條、4條……這些直線有多少個交點。
1條直線最多有0個交點
2條直線最多有1個交點
3條直線最多有3個交點
4條直線最多有6個交點
5條直線最多有10個交點
6條直線最多有15個交點
……
所以20xx條直線有1+2+3+4+5+…+20xx=2015028個交點。
那么聰明的你,你能算出20xx條直線最多可以把圓分成幾部分么?
2.變化無窮、形跡不定的行程問題:提到行程問題,同學們可能就感到頭疼,的確不錯,因為行程問題中各個物體的速度、時間、路程都在變化,而且各個物體都是在運動中,位置是隨著時間在變化,所以分析起來就很麻煩,為了更好的解決這個問題,我們把行程問題進行了細分:基本行程(單個物體)、平均速度、相遇、追及、流水行船、火車過橋、火車錯車、鐘表問題、環形線路上行程。只要我們掌握這些每個小類型中的訣竅,形成一種分析思路,復雜的行程問題無非是這些類型的變形而已,解決起來就容易多了。
3.抽象而又雜亂的數論問題:數論是從五年級的核心知識,無論是在哪本教材里,都用了很多的章節來講解數論,要想解決復雜的數論問題,我們首先得掌握數論的基本知識:數的奇偶性、約數(現在叫因數)、倍數、公約數及最大公約數、公倍數及最小公倍數、質數、合數、分解質因數、整除、余數及同余等。這些基本知識點里又有些非常有代表性的例題,只要能掌握好這些知識點,然后做一定量的數論綜合習題,碰到難的數論問題我們就容易解決了。
4.有趣的抽屜原理:生活中有很多有趣的事情,比如說:把4個蘋果放到3個抽屜里,無論你怎么放,總有某個抽屜里至少有2個蘋果,這就是抽屜原理。
對于抽屜原理我們只要找到蘋果的個數a與抽屜的個數b,我們就可以得到下面的結論:
若a÷b=r……
當q=0時,我們就說總有某個抽屜里至少有r個蘋果;
當q0時,我們就說總有某個抽屜里至少有(r+1)個蘋果。
比如說把32個蘋果放進8個抽屜里,因為32÷8=4,無論怎么放,總有某個抽屜里有4個蘋果。如果把35個蘋果放進8個抽屜里,因為35÷8=4……3,無論怎么放,總有某個抽屜里有4+1=5個蘋果。
但是大部分的奧數題是沒有告訴我們抽屜的個數的,那樣我們就得自己構造抽屜,從而找出抽屜的個數。
5.圖形面積計算:求圖形的面積也是奧數中的一個難點,對于這類題我們首先要掌握好各種基本圖形的面積計算公式,然后記住一些重要的結論:比如說三角形的等積變形、直角三角形中30度所對的邊是斜邊的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中邊與面積的關系。在計算面積時的方法有:直接計算法、割補法、方程法等。在圖形面積計算中,難題往往得添加輔助線,這個就是難點所在,因為添加輔助線非常靈活,這就要我們多做些這方面的題,多積累一些添加輔助線的技巧,做到心中有數。
五年級數學學習方法7
(一)數與代數
1、第一單元倍數與因數:結合具體情境,經歷探索數的有關特征的活動,認識自然數,認識倍數和因數,能在100以內的自然數中找出10以內某個自然數的所有倍數,能找出100以內某個自然數的所有因數,知道質數、合數;經歷2、3、5的倍數特征的探索過程,知道2、3、5的倍數的特征,知道奇數和偶數;能根據解決問題的需要,收集有用的信息,進行歸納、類比與猜測,發展初步的合情推理能力;
2.第三單元分數:進一步理解分數的意義,能正確用分數描述圖形或簡單的生活現象;認識真分數、假分數與帶分數,理解分數與除法的關系,會進行分數的大小比較;能找出10以內兩個自然數的公倍數和最小公倍數,能找出兩個自然數的公因數和最大公因數,會正確進行約分和通分;初步了解分數在實際生活中的應用,能運用分數知識解決一些簡單的實際問題。
3.第四單元分數加減法:理解異分母分數加減法的算理,并能正確計算;能理解分數加減混合運算的順序,并能正確計算;能把分數化成有限小數,也能把有限小數化成分數;能結合實際情境,解決簡單分數加減法的實際問題。
(二)在學習《空間與圖形》可采用數、形結合的方式,以及類比法等教學
1.第二單元圖形的面積(一):知道比較面積大小方法的多樣性;經歷探索平行四邊形、三角形、梯形面積計算方法的過程,并能運用計算的方法解決生活中一些簡單的問題;在探索圖形面積的計算方法中,獲得探索問題成功的體驗。
2.第五單元圖形的面積(二):在探索活動中,認識組合圖形,并會運用不同的方法計算組合圖形的面積;能正確運用計算組合圖形面積的方法,解決相應的實際問題;能估計不規則圖形的面積大小,并能用不同方法計算面積。
【五年級數學學習方法】相關文章:
數學的學習方法07-22
數學的學習方法09-27
數學的學習方法集合11-16
小升初數學的學習方法11-29
數學的基本學習方法11-01
關于數學的學習方法11-08
小升初數學:學習方法11-29
關于數學的學習方法10-13
學習數學的學習方法01-04
數學學習方法11-11