• <sub id="h4knl"><ol id="h4knl"></ol></sub>
    <sup id="h4knl"></sup>
      <sub id="h4knl"></sub>

      <sub id="h4knl"><ol id="h4knl"><em id="h4knl"></em></ol></sub><s id="h4knl"></s>
      1. <strong id="h4knl"></strong>

      2. 高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿

        時間:2022-11-29 09:28:22 高中說課稿 我要投稿

        關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿

          作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫說課稿,借助說課稿可以更好地組織教學(xué)活動。怎么樣才能寫出優(yōu)秀的說課稿呢?以下是小編為大家收集的關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿,僅供參考,希望能夠幫助到大家。

        關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿

        關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿1

          一、地位作用

          數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應(yīng)用較為廣泛,在整個高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問題的能力。

          基于此,設(shè)計(jì)本節(jié)的數(shù)學(xué)思路上:

          利用類比的思想,聯(lián)系等差數(shù)列的概念及通項(xiàng)公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動性,調(diào)動學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。

          二、教學(xué)目標(biāo)

          知識目標(biāo):

          1)理解等比數(shù)列的概念

          2)掌握等比數(shù)列的通項(xiàng)公式

          3)并能用公式解決一些實(shí)際問題

          能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學(xué)生運(yùn)用類比思想、解決分析問題的能力。

          三、教學(xué)重點(diǎn)

          1)等比數(shù)列概念的理解與掌握關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

          2)等比數(shù)列的通項(xiàng)公式的推導(dǎo)及應(yīng)用

          四、教學(xué)難點(diǎn)

          “等比”的理解及利用通項(xiàng)公式解決一些問題。

          五、教學(xué)過程設(shè)計(jì)

          (一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)

          首先讓學(xué)生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。

          回答下列問題

          1)課本中前3個實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數(shù)列的定義。

          2)觀察以下幾個數(shù)列,回答下面問題:

         �、儆心膸讉€是等比數(shù)列?若是公比是什么?

         �、诠萹為什么不能等于零?首項(xiàng)能為零嗎?

         �、酃萹=1時是什么數(shù)列?

         �、躴>0時數(shù)列遞增嗎?q<0時遞減嗎?

          3)怎樣推導(dǎo)等比數(shù)列通項(xiàng)公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?

          4)等比數(shù)列通項(xiàng)公式與函數(shù)關(guān)系怎樣?

         �。ǘw納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)

          這一環(huán)節(jié)主要是通過學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個重點(diǎn)內(nèi)容。

          通過回答問題(1)(2)給出等比數(shù)列的定義并強(qiáng)調(diào)以下幾點(diǎn):①定義關(guān)鍵字“第二項(xiàng)起”“常數(shù)”;

         �、谝龑�(dǎo)學(xué)生用數(shù)學(xué)語言表達(dá)定義:=q(n≥2);③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

         �、躴>0時等比數(shù)列單調(diào)性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。

          通過回答問題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項(xiàng)公式。

          法一:歸納法,學(xué)會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。

          法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識轉(zhuǎn)化能力。

        關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿2

          一、教學(xué)目標(biāo)

          (一)知識與技能

          1、進(jìn)一步熟練掌握求動點(diǎn)軌跡方程的基本方法。

          2、體會數(shù)學(xué)實(shí)驗(yàn)的直觀性、有效性,提高幾何畫板的操作能力。

         �。ǘ┻^程與方法

          1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。

          2、體會感性到理性、形象到抽象的思維過程。

          3、強(qiáng)化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

          (三)情感態(tài)度價值觀

          1、感受動點(diǎn)軌跡的動態(tài)美、和諧美、對稱美。

          2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。

          二、教學(xué)重點(diǎn)與難點(diǎn)

          教學(xué)重點(diǎn):運(yùn)用類比、聯(lián)想的方法探究不同條件下的軌跡。

          教學(xué)難點(diǎn):圖形、文字、符號三種語言之間的過渡。

          三、教學(xué)方法和手段

          教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會,幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。

          教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的.障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。

          教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

          四、教學(xué)過程

          1、創(chuàng)設(shè)情景,引入課題

          生活中我們四處可見軌跡曲線的影子。

          演示:這是美麗的城市夜景圖。

          演示:許多人認(rèn)為天體運(yùn)行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。

          演示建筑中也有許多美麗的軌跡曲線。

          設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。

          2、激發(fā)情感,引導(dǎo)探索

          靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1。

        關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿3

          一、說教材

          1.從在教材中的地位與作用來看

          《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲蓄、分期付款的有關(guān)計(jì)算等等,并且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

          2.從學(xué)生認(rèn)知角度看

          從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)資料與等差數(shù)列前n項(xiàng)和從公式的構(gòu)成、特點(diǎn)等方面進(jìn)行類比,這是進(jìn)取因素,應(yīng)因勢利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不一樣,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯.

          3.學(xué)情分析

          教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴(yán)謹(jǐn).

          4.重點(diǎn)、難點(diǎn)

          教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

          教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

          公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).

          二、說目標(biāo)

          知識與技能目標(biāo):

          理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.

          過程與方法目標(biāo):

          經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事.

          情感與態(tài)度價值觀:

          經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).

          三、說過程

          學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:

          1.創(chuàng)設(shè)情境,提出問題

          在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚.為什么呢

          設(shè)計(jì)意圖:設(shè)計(jì)這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的進(jìn)取性.故事資料緊扣本節(jié)課的主題與重點(diǎn).

          此時我問:同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫出麥粒總數(shù).帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時我對他們的這種思路給予肯定.

          設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識構(gòu)成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時,構(gòu)成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.

          2.師生互動,探究問題

          在肯定他們的思路后,我之后問:1,2,22,…,263是什么數(shù)列有何特征應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢

          探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系(學(xué)生會發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

          探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)

          設(shè)計(jì)意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維本事的良好契機(jī).

          經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.教師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢

          設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

          3.類比聯(lián)想,解決問題

          這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,

          那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo).

          設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.

          對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ).)

          再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(引導(dǎo)學(xué)生得出公式的另一形式)

          設(shè)計(jì)意圖:經(jīng)過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和理解,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的本事.這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.

          4.討論交流,延伸拓展

          (略)

        【高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿】相關(guān)文章:

        高中數(shù)學(xué)經(jīng)典說課稿11-25

        高中數(shù)學(xué)的說課稿11-04

        高中數(shù)學(xué)說課稿05-01

        高中數(shù)學(xué)的說課稿范文04-29

        高中數(shù)學(xué)數(shù)列說課稿11-20

        高中數(shù)學(xué)向量說課稿09-09

        高中數(shù)學(xué)《向量》說課稿11-05

        高中數(shù)學(xué)函數(shù)的說課稿11-17

        高中數(shù)學(xué)實(shí)驗(yàn)說課稿11-26

        高中數(shù)學(xué)必修說課稿11-25

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码
      3. <sub id="h4knl"><ol id="h4knl"></ol></sub>
        <sup id="h4knl"></sup>
          <sub id="h4knl"></sub>

          <sub id="h4knl"><ol id="h4knl"><em id="h4knl"></em></ol></sub><s id="h4knl"></s>
          1. <strong id="h4knl"></strong>

          2. 亚洲新福利92 | 久久国产一区二区 | 日本免费人成网站在线观看 | 婷婷色五月中文在线字幕 | 亚洲欧美日韩国产国产a | 色妞AV永久一区二区国产AV |

            關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿

              作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫說課稿,借助說課稿可以更好地組織教學(xué)活動。怎么樣才能寫出優(yōu)秀的說課稿呢?以下是小編為大家收集的關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿,僅供參考,希望能夠幫助到大家。

            關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿

            關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿1

              一、地位作用

              數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應(yīng)用較為廣泛,在整個高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問題的能力。

              基于此,設(shè)計(jì)本節(jié)的數(shù)學(xué)思路上:

              利用類比的思想,聯(lián)系等差數(shù)列的概念及通項(xiàng)公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動性,調(diào)動學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。

              二、教學(xué)目標(biāo)

              知識目標(biāo):

              1)理解等比數(shù)列的概念

              2)掌握等比數(shù)列的通項(xiàng)公式

              3)并能用公式解決一些實(shí)際問題

              能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學(xué)生運(yùn)用類比思想、解決分析問題的能力。

              三、教學(xué)重點(diǎn)

              1)等比數(shù)列概念的理解與掌握關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

              2)等比數(shù)列的通項(xiàng)公式的推導(dǎo)及應(yīng)用

              四、教學(xué)難點(diǎn)

              “等比”的理解及利用通項(xiàng)公式解決一些問題。

              五、教學(xué)過程設(shè)計(jì)

              (一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)

              首先讓學(xué)生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。

              回答下列問題

              1)課本中前3個實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數(shù)列的定義。

              2)觀察以下幾個數(shù)列,回答下面問題:

             �、儆心膸讉€是等比數(shù)列?若是公比是什么?

             �、诠萹為什么不能等于零?首項(xiàng)能為零嗎?

             �、酃萹=1時是什么數(shù)列?

             �、躴>0時數(shù)列遞增嗎?q<0時遞減嗎?

              3)怎樣推導(dǎo)等比數(shù)列通項(xiàng)公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?

              4)等比數(shù)列通項(xiàng)公式與函數(shù)關(guān)系怎樣?

             �。ǘw納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)

              這一環(huán)節(jié)主要是通過學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個重點(diǎn)內(nèi)容。

              通過回答問題(1)(2)給出等比數(shù)列的定義并強(qiáng)調(diào)以下幾點(diǎn):①定義關(guān)鍵字“第二項(xiàng)起”“常數(shù)”;

             �、谝龑�(dǎo)學(xué)生用數(shù)學(xué)語言表達(dá)定義:=q(n≥2);③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

             �、躴>0時等比數(shù)列單調(diào)性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。

              通過回答問題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項(xiàng)公式。

              法一:歸納法,學(xué)會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。

              法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識轉(zhuǎn)化能力。

            關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿2

              一、教學(xué)目標(biāo)

              (一)知識與技能

              1、進(jìn)一步熟練掌握求動點(diǎn)軌跡方程的基本方法。

              2、體會數(shù)學(xué)實(shí)驗(yàn)的直觀性、有效性,提高幾何畫板的操作能力。

             �。ǘ┻^程與方法

              1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。

              2、體會感性到理性、形象到抽象的思維過程。

              3、強(qiáng)化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

              (三)情感態(tài)度價值觀

              1、感受動點(diǎn)軌跡的動態(tài)美、和諧美、對稱美。

              2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。

              二、教學(xué)重點(diǎn)與難點(diǎn)

              教學(xué)重點(diǎn):運(yùn)用類比、聯(lián)想的方法探究不同條件下的軌跡。

              教學(xué)難點(diǎn):圖形、文字、符號三種語言之間的過渡。

              三、教學(xué)方法和手段

              教學(xué)方法:觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機(jī)會,幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。

              教學(xué)手段:利用網(wǎng)絡(luò)教室,四人一機(jī),多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的.障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。

              教學(xué)模式:重點(diǎn)中學(xué)實(shí)施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

              四、教學(xué)過程

              1、創(chuàng)設(shè)情景,引入課題

              生活中我們四處可見軌跡曲線的影子。

              演示:這是美麗的城市夜景圖。

              演示:許多人認(rèn)為天體運(yùn)行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。

              演示建筑中也有許多美麗的軌跡曲線。

              設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。

              2、激發(fā)情感,引導(dǎo)探索

              靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1。

            關(guān)于高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿3

              一、說教材

              1.從在教材中的地位與作用來看

              《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲蓄、分期付款的有關(guān)計(jì)算等等,并且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

              2.從學(xué)生認(rèn)知角度看

              從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)資料與等差數(shù)列前n項(xiàng)和從公式的構(gòu)成、特點(diǎn)等方面進(jìn)行類比,這是進(jìn)取因素,應(yīng)因勢利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不一樣,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情景,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯.

              3.學(xué)情分析

              教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴(yán)謹(jǐn).

              4.重點(diǎn)、難點(diǎn)

              教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

              教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

              公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).

              二、說目標(biāo)

              知識與技能目標(biāo):

              理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.

              過程與方法目標(biāo):

              經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事.

              情感與態(tài)度價值觀:

              經(jīng)過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).

              三、說過程

              學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:

              1.創(chuàng)設(shè)情境,提出問題

              在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚.為什么呢

              設(shè)計(jì)意圖:設(shè)計(jì)這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的進(jìn)取性.故事資料緊扣本節(jié)課的主題與重點(diǎn).

              此時我問:同學(xué)們,你們明白西薩要的是多少粒小麥嗎引導(dǎo)學(xué)生寫出麥粒總數(shù).帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時我對他們的這種思路給予肯定.

              設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識構(gòu)成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時,構(gòu)成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.

              2.師生互動,探究問題

              在肯定他們的思路后,我之后問:1,2,22,…,263是什么數(shù)列有何特征應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢

              探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系(學(xué)生會發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

              探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)

              設(shè)計(jì)意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,所以教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維本事的良好契機(jī).

              經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.教師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢

              設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

              3.類比聯(lián)想,解決問題

              這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,

              那里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo).

              設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自我探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.

              對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ).)

              再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(引導(dǎo)學(xué)生得出公式的另一形式)

              設(shè)計(jì)意圖:經(jīng)過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和理解,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的本事.這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.

              4.討論交流,延伸拓展

              (略)

            【高中數(shù)學(xué)說課稿 高一數(shù)學(xué)說課稿】相關(guān)文章:

            高中數(shù)學(xué)經(jīng)典說課稿11-25

            高中數(shù)學(xué)的說課稿11-04

            高中數(shù)學(xué)說課稿05-01

            高中數(shù)學(xué)的說課稿范文04-29

            高中數(shù)學(xué)數(shù)列說課稿11-20

            高中數(shù)學(xué)向量說課稿09-09

            高中數(shù)學(xué)《向量》說課稿11-05

            高中數(shù)學(xué)函數(shù)的說課稿11-17

            高中數(shù)學(xué)實(shí)驗(yàn)說課稿11-26

            高中數(shù)學(xué)必修說課稿11-25