- 相關推薦
高中數學說課比賽一等獎說課稿(通用17篇)
作為一位杰出的教職工,通常需要用到說課稿來輔助教學,認真擬定說課稿,那么什么樣的說課稿才是好的呢?下面是小編為大家收集的高中數學說課比賽一等獎說課稿,希望能夠幫助到大家。
高中數學說課比賽一等獎說課稿 篇1
一、教材分析:
1、教材的地位與作用。
本節資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。"用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。
2、重點與難點。
重點:對概率意義的理解,經過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。
情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設計問題一,學生經過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大。R龑W生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的`實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。
2、歸納概括
學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題本事,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
3、舉例應用
、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
4、深化發展
、旁O置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。
、谱寣W生設計活動資料,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新本事。
高中數學說課比賽一等獎說課稿 篇2
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節內容在全書和章節中的作用是:《xxx》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。
2. 教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3. 重點,難點以及確定依據:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1. 教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟澱n的特點: 應著重采用 的教學方法。
2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
3. 學情分析:(說學法)
(1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4. 教學程序及設想:
(1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業。
針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:
(一)課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分
高中數學集合教學反思
集合這章內容,教學參考書上安排的課時為五課時,我們的'導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內容很廣,學生學習本章內容時,不僅要理解本章的概念,還要理解與本章內容相關聯的其他內容,這些內容有初中學習過的內容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質:確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質進行分析,反復訓練,讓學生通過實例體會這三個性質。
第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數形結合思想,集合間的關系和運算,以數形結合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。
第四,集合問題涉及到的其他內容,遇到了講透,不拓展。
高中數學說課比賽一等獎說課稿 篇3
一、本節資料的地位與重要性
"分類計數原理與分步計數原理"是《高中數學》一節獨特資料。這一節課與排列、組合的基本概念有著緊密的聯系,經過對這一節課的學習,既能夠讓學生理解、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。
二、關于教學目標的確定
根據兩個基本原理的地位和作用,我認為本節課的教學目標是:
(1)使學生正確理解兩個基本原理的概念;
。2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;
(3)提高分析、解決問題的本事
。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。
三、關于教學重點、難點的選擇和處理
中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點資料。
正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,應對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生理解概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。
四、關于教學方法和教學手段的選用
根據本節課的資料及學生的實際水平,我采取啟發引導式教學方法并充分發揮電腦多媒體的輔助教學作用。
啟發引導式作為一種啟發式教學方法,體現了認知心理學的基本理論。貼合教學論中的自覺性和進取性、鞏固性、可理解性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則,教學過程中,教師采用點撥的方法,啟發學生經過主動思考、動手操作來到達對知識的"發現"和理解,進而完成知識的內化,使書本的知識成為自我的知識。
電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,能夠將教師的思路和策略以軟件的形式來體現,更好地為教學服務。
五、關于學法的指導
"授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養學生主動觀察、主動思考、自我發現的學習本事,增強學生的綜合素質,從而到達教學的`目標。教學中,教師創設疑問,學生想辦法解決疑問,經過教師的啟發點撥,類比推理,在進取的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發現"——"解惑"四個環節,學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學生認知水平,培養了學習本事。
六、關于教學程序的設計
。ㄒ唬┱n題導入
這是本章的第一節課,是起始課,講起始課時,把這一學科的資料作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下頭的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節的必要性,明確研究計數方法是本章資料的獨特性,從應用的廣泛看學習本章資料的重要性。同時板書課題(分類計數原理與分步計數原理)
這樣做,能使學生明白本節資料的地位和作用,激發其學習新知識的欲望,為順利完成教學任務做好思維上的準備。
。ǘ┬抡n講授
經過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。
緊跟著給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不一樣的走法?
引伸2:若完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法?
這個問題的兩個引申由漸入深、循序漸進為學生理解分類計數原理做好了準備。
板書分類計數原理資料:
完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)
此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理資料,啟發總結得下頭三點注意:(出示幻燈片)
。1)各分類之間相互獨立,都能完成這件事;
。2)根據問題的特點在確定的分類標準下進行分類;
。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。
這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。
接下來給出問題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經B村去C村,共有多少種不一樣的走法?
提出問題:問題1與問題2同是研究從甲地到乙地的不一樣走法,請找出這兩個問題的不之處?學生會發現問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不一樣的顏色閃現出六種不一樣的走法,讓學生列式求出不一樣走法數,并列舉所有走法。
歸納得出:分步計數原理(板書原理資料)
分步計數原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有N=m1×m2×…×mn種不一樣的方法。
同樣趁學生對定理有必須的認識,引導學生分析分步計數原理資料,啟發總結得下頭三點注意:(出示幻燈片)
(1)各步驟相互依存,僅有各個步驟完成了,這件事才算完成;
。2)根據問題的特點在確定的分步標準下分步;
。3)分步時要注意滿足完成一件事必須并且只需連續完成這N個步驟這件事才算完成。
。ㄈ⿷门e例
教材例1:(書架取書問題)引導學生分析解答,注意區分是分類還是分步。
例2:由數字0,1,2,3,4能夠組成多少個三位整數(各位上的數字允許重復)?本題設置了4個問題:
。1)每一個三位數是由什么構成的?(三個整數字)
。2)023是一個三位數嗎?(百位上不能是0)
。3)組成一個三位數需要怎樣做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)
。4)怎樣表述?
教師巡視指導、并歸納
解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法。根據分步計數原理,得到能夠組成的三位整數的個數是N=4×5×5=100.
答:能夠組成100個三位整數。
(教師的連續發問、啟發、引導,幫忙學生找到正確的解題思路和計算方法,使學生的分析問題本事有所提高。
教師在第二個例題中給出板書示范,能幫忙學生進一步加深對兩個基本原理實質的理解,周密的研究,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的構成有著進取的促進作用,也能夠為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)
。ㄋ模w納小結
師:什么時候用分類計數原理、什么時候用分步計數原理呢?
生:分類時用分類計數原理,分步時用分步計數原理。
師:應用兩個基本原理時需要注意什么呢?
生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。
(五)課堂練習
P222:練習1~4.學生板演第4題
。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
。┎贾米鳂I
P222:練習5,6,7.
補充題:
1.在所有的兩位數中,個位數字小于十位數字的共有多少個?
。ㄌ崾荆喊词簧蠑底值拇笮∧軌蚍譃9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)
2.某學生填報高考志愿,有m個不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不一樣的志愿,求該生填寫志愿的方式的種數。
。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數中,有且僅有兩個數字相同的三位數共有多少個?
。ㄌ崾荆耗軌蛴孟骂^方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個僅有兩個數字相同的三位數)
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不一樣的選法?
。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3
只要大家用心學習,認真復習,就有可能在高中的戰場上考取自我夢想的成績。
高中數學說課比賽一等獎說課稿 篇4
一、教材結構與內容簡析
1、本節內容在全書及章節的地位:
《向量》出現在高中數學第一冊(下)第五章第1節。本節內容是傳統意義上《平面解析幾何》的基礎部分,因此,在《數學》這門學科中,占據極其重要的地位。
2、數學思想方法分析:
。1)從“向量可以用有向線段來表示”所反映出的“數”與“形”之間的轉化,就可以看到《數學》本身的“量化”與“物化”。
。2)從建構手段角度分析,在教材所提供的材料中,可以看到“數形結合”思想。
二、教學目標
根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
1、基礎知識目標:掌握“向量”的概念及其表示方法,能利用它們解決相關的問題。
2、能力訓練目標:逐步培養學生觀察、分析、綜合和類比能力,會準確地闡述自己的思路和觀點,著重培養學生的認知和元認知能力。
3、創新素質目標:引導學生從日常生活中挖掘數學內容,培養學生的發現意識和整合能力;《向量》的教學旨在培養學生的“知識重組”意識和“數形結合”能力。
4、個性品質目標:培養學生勇于探索,善于發現,獨立意識以及不斷超越自我的創新品質。
三、教學重點、難點、關鍵
重點:向量概念的引入。
難點:“數”與“形”完美結合。
關鍵:本節課通過“數形結合”,著重培養和發展學生的認知和變通能力。
四、教材處理
建構主義學習理論認為,建構就是認知結構的組建,其過程一般是先把知識點按照邏輯線索和內在聯系,串成知識線,再由若干條知識線形成知識面,最后由知識面按照其內容、性質、作用、因果等關系組成綜合的知識體。本課時為何提出“數形結合”呢,應該說,這一處理方法正是基于此理論的體現。其次,本節課處理過程力求達到解決如下問題:知識是如何產生的?如何發展?又如何從實際問題抽象成為數學問題,并賦予抽象的數學符號和表達式,如何反映生活中客觀事物之間簡單的和諧關系。
五、教學模式
教學過程是教師活動和學生活動的十分復雜的動態性總體,是教師和全體學生積極參與下,進行集體認識的過程。教為主導,學為主體,又互為客體。啟動學生自主性學習,啟發引導學生實踐數學思維的過程,自得知識,自覓規律,自悟原理,主動發展思維和能力。
六、學習方法
1、讓學生在認知過程中,著重掌握元認知過程。
2、使學生把獨立思考與多向交流相結合。
七、教學程序及設想
(一)設置問題,創設情景。
1、提出問題:在日常生活中,我們不僅會遇到大小不等的量,還經常會接觸到一些帶有方向的量,這些量應該如何表示呢?
2、(在學生討論基礎上,教師引導)通過“力的圖示”的回憶,分析大小、方向、作用點三者之間的關系,著重考慮力的作用點對運動的相對性與絕對性的影響。
設計意圖:
1、把教材內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”、驚訝、困惑、感到棘手,緊張地沉思,期待尋找理由和論證的過程。
2、我們知道,學習總是與一定知識背景即情境相聯系的。在實際情境下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識。這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情境中。
。ǘ┨峁⿲嶋H背景材料,形成假說。
1、小船以0.5m/s的速度航行,已知一條河長xxxxm,寬150m,問小船需經過多長時間,到達對岸?
2、到達對岸?這句話的實質意義是什么?(學生討論,期望回答:指代不明。)
3、由此實際問題如何抽象為數學問題呢?(學生交流討論,期望回答:要確定某些量,有時除了知道其大小外,還需要了解其方向。)
設計意圖:
1、教師范文吧在稍稍超前于學生智力發展的邊界上(即思維的最鄰近發展)通過問題引領,來促成學生“數形結合”思想的形成。
2。通過學生交流討論,把實際問題抽象成為數學問題,并賦予抽象的數學符號和表達方式。
。ㄈ┮龑剿鳎瑢ふ医鉀Q方案。
1、如何補充上面的題目呢?從已學過知識可知,必須增加“方位”要求。
2、方位的實質是什么呢?即位移的本質是什么?期望回答:大小與方向的統一。
3、零向量、單位向量、平行向量、相等向量、共線向量等系列化概念之間的關系是什么?(明確要領。)
設計意圖:
學生在教師引導下,在積累了已有探索經驗的基礎上,進行討論交流,相互評價,共同完成了“數形結合”思想上的建構。
2、這一問題設計,試圖讓學生不“唯書”,敢于和善于質疑批判和超越書本和教師,這是創新素質的突出表現,讓學生不滿足于現狀,執著地追求。
3、盡可能地揭示出認知思想方法的全貌,使學生從整體上把握解決問題的方法。
。ㄋ模┛偨Y結論,強化認識。
經過引導,學生歸納出“數形結合”的思想——“數”與“形”是一個問題的兩個方面,“形”的外表里,蘊含著“數”的本質。
設計意圖:促進學生數學思想方法的形成,引導學生確實掌握“數形結合”的思想方法。
。ㄎ澹┳兪窖由欤M行重構。
教師引導:在此我們已經知道,欲解決一些抽象的數學問題,可以借助于圖形來解決,這就是向量的理論基礎。
下面繼續研究,與向量有關的一些概念,引導學生利用模型演示進行觀察。
概念1:長度為0的向量叫做零向量。
概念2:長度等于一個單位長度的向量,叫做單位向量。
概念3:方向相同或相反的非零向量叫做平行(或共線)向量。(規定:零向量與任一向量平行。)
概念4:長度相等且方向相同的向量叫做相等向量。
設計意圖:
1、學生在教師引導下,在積累了已有探索經驗的基礎上進行討論交流,相互評價,共同完成了有向線段與向量兩者關系的建構。
2、這些概念的'比較可以讓學生加強對“向量”概念的理解,以便更好地“數形結合”。
3、讓學生對教學思想方法,及其應情境達到較為純熟的認識,并將這種認識思維地貯存在大腦中,隨時提取和應用。
。┛偨Y回授調整。
1、知識性內容:
例設O是正六邊形ABCDEF的中心,分別寫出圖中與向量OA、OB、OC相等的向量。
2、對運用數學思想方法創新素質培養的小結:
a要善于在實際生活中,發現問題,從而提煉出相應的數學問題。發現作為一種意識,可以解釋為“探察問題的意識”;發現作為一種能力,可以解釋為“找到新東西”的能力,這是培養創造力的基本途徑。
b問題的解決,采用了“數形結合”的數學思想,體現了數學思想方法是解決問題的根本途徑。
c問題的變式探究的過程,是一個創新思維活動過程中一種多維整合過程。重組知識的過程,是一種多維整合的過程,是一個高層次的知識綜合過程,是對教材知識在更高水平上的概括和總結,有利于形成一個自我再生力強的開放的動態的知識系統,從而使得思維具有整體功能和創新能力。
2、設計意圖:
1、知識性內容的總結,可以把課堂教學傳授的知識,盡快轉化為學生的素質。
2、運用數學方法創新素質的小結,能讓學生更系統,更深刻地理解數學思想方法在解題中的地位和作用,并且逐漸培養學生的良好個性品質。這是每堂課必不可少的一個重要環節。
(七)布置作業。
反饋“數形結合”的探究過程,整理知識體系,并完成習題5.1的內容。
高中數學說課比賽一等獎說課稿 篇5
一、教材分析
1、《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節資料,是在學習了《指數》一節資料之后編排的。經過本節課的學習,既能夠對指數和函數的概念等知識進一步鞏固和深化,又能夠為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅僅是本章《函數》的重點資料,也是高中學段的主要研究資料之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體此刻細胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學習這部分知識還有著廣泛的現實意義。本節資料的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2、教學目標、重點和難點
經過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了必須的認知結構,主要體此刻三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有必須的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知本事的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
②掌握指數函數的圖象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
、贊B透數形結合的基本數學思想方法;
、谂囵B學生觀察、聯想、類比、猜測、歸納的本事;
(3)情感目標:
、袤w驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題;
②經過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的本事;
、垲I會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖經過這一節課的教學到達不僅僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而到達培養學生學習本事的目的,我根據自我對“誘思探究”教學模式和“情景式”教學模式的'認識,將二者結合起來,主要突出了幾個方面:
1、創設問題情景、按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2、強化“指數函數”概念、引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3、突出圖象的作用、在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家以往說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,所以圖象發揮了主要的作用。
4、注意數學與生活和實踐的聯系、數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情景,我主要在以下幾個方面做了嘗試:
1、再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫忙學生再現原有認知結構,為理解指數函數的概念做好準備。
2、領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3、在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的理解和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4、注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不一樣難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的構成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。
1、創設情景、導入新課
教師活動:
①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子;
、趯W生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
②回憶指數的概念;
、蹥w納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸惖姆椒ā
設計意圖:經過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性,為突破難點做好準備;
2、啟發誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象
、谠跍蕚浜玫男『诎迳弦幏兜禺嫵鲞@兩個指數函數的圖象
、郯鍟笖岛瘮档男再|。
學生活動:
、佼嫵鰞蓚簡單的指數函數圖象
、诮涣鳌⒂懻
、蹥w納出研究函數性質涉及的方面
、芸偨Y出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的資料有著必須的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,到達進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情景,學生就會很自然的經過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
高中數學說課比賽一等獎說課稿 篇6
一、說教材
1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。
2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的.概念,因此,本節課的難點是理解和領悟反比例函數的概念。
二、說教學目標
根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:
1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。
三、說教法
本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。
四、說學法
我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。
好學教育:
因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。
高中數學說課比賽一等獎說課稿 篇7
各位老師:
今天我說課的題目是《輸入、輸出語句和賦值語句》,內容選自于新課程人教A版必修3第一章第二節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節課的.分析和設計:
一、教材分析
1.教材所處的地位和作用
我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設計語言翻譯成計算機程序。程序設計語言有很多種。為了實現算法中的三種基本的邏輯結構:順序結構、條件結構和循環結構,各種程序設計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環語句.。而我們今天所要學習的是前三種算法語句,它們基本上是對應于算法中的順序結構的。
2.教學的重點和難點
重點:正確理解輸入語句、輸出語句、賦值語句的作用。
難點:準確寫出輸入語句、輸出語句、賦值語句。
二、教學目標分析
1.知識與技能目標:
。1)正確理解輸入語句、輸出語句、賦值語句的結構。
(2)會寫一些簡單的程序。
(3)掌握賦值語句中的“=”的作用。
2.過程與方法目標:
。1)讓學生充分地感知、體驗應用計算機解決數學問題的方法;并能初步操作、模仿。
。2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學生應用數學軟件的能力.
3.情感,態度和價值觀目標
(1) 通過對三種語句的了解和實現,發展有條理的思考,表達的能力,提高邏輯思維能力.
(2) 學習算法語句,幫助學生利用計算機軟件實現算法,活躍思維,提高學生的數學素養.
(3) 結合計算機軟件的應用, 增強應用數學的意識,在計算機上實現算法讓學生體會成功喜悅.
三、教學方法與手段分析
1.教學方法:引導與合作交流相結合,學生在體會三種語句結構格式的過程中,讓學生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結三種算法語句的思想與特征.
2.教學手段:運用計算機、圖形計算器輔助教學
四、教學過程分析
1. 創設情境(約5分鐘)
在課的開始,我要求學生們舉出一些在日常生活中所應用到的'有關計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數據等等,并告訴他們在現代社會里,計算機已經成為人們日常生活和工作不可缺少的工具,然后接著問他們知不知道計算機到底是怎樣工作的?通過這個問題引出我們今天所要學習的內容。(板出課題)
在這個過程中,我讓學生們將課本學習的內容與現實生活聯系在了一起,這樣能夠激起他們對接下來的所要學習內容的興趣,為整節課的學習打下一個良好的基礎。
2.探究新知(約15分鐘)
這里我先給出一個題目:用描點法作出函數
的圖象,用描點法作函數的圖象時,需要先求出自變量與函數的對應值。編寫程序,分別計算當
時的函數值。(程序由我在課前準備好,教學中直接調用運行)
程序:INPUT“x=”;x 輸入語句
y=x^3+3*x^2-24*x+30 賦值語句
PRINT x 輸出語句
PRINT y 輸出語句
END
(學生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發現問題所在,進一步提高學生的模仿能力)
之后,我向學生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學們互相交流、議論、猜想、概括出結論。提示:“input”和“print”的中文意思,還要請學生們注意到在賦值語句中的賦值號“=”與數學中的等號意義不同。)
此過程由老師引導,學生們自己討論并總結出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學習的效果更佳,同時也鍛煉了學生們思考問題的能力和概括能力,激發學習興趣。
然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內容怎樣用輸入語句、輸出語句來表達?(學生討論、交流想法,然后請學生作答)這樣可以及時應用剛剛學習的內容,并可以將前后所學知識聯系起來。
3.例題精析(約12分鐘)
在本環節中我為學生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學生通過這幾道例題的講解,結合計算機程序上機運用,可以掌握在程序設計語言中的前三種算法語句,體會到他們在程序中的意義和作用。
4.課堂精練(約4分鐘)
P15 練習 1.
提問:如果要求輸入一個攝氏溫度,輸出其相應的華氏溫度,又該如何設計程序?(學生課后思考,討論完成)通過提問啟發學生們思考,發散思維。
5.課堂小結(約5分鐘)
⑴輸入語句、輸出語句和賦值語句的結構特點及聯系
⑵應用輸入語句,輸出語句,賦值語句編寫一些簡單的程序解決數學問題
、 賦值語句中“=”的作用及應用
、染幊桃话愕牟襟E:先寫出算法,再進行編程。
6.布置作業
P23 習題1.2 A組 1(2)、2
[設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。
高中數學說課比賽一等獎說課稿 篇8
尊敬的各位教師:
大家好,我是xx場的xx號考生。今日,我說課的資料是xx,對于本節課,我將從教什么、怎樣教、為什么這么教來闡述本次說課。
一、說教材
教材是連接教師和學生的紐帶,在整個教學過程中起著至關重要的作用,所以,先談談我對教材的理解。
正弦函數的性質是選自北師大版高中數學必修四第一章三角函數第五節正弦函數的性質與圖象5。3正弦函數的性質的資料,主要資料便是正弦函數的性質,教材經過作圖、觀察、誘導公式等方法得出正弦函數y=sinx的性質。并且教材突出了正弦函數圖象的重要性,能夠幫忙學生更深刻的認識、理解、記憶正弦函數的性質。
二、說學情
合理把握學情是上好一堂課的基礎,本次課所應對的學生群體具有以下特點。
高中的學生掌握了必須的基礎知識,思維較敏捷,動手本事較強,但理解本事、自主學習本事較缺乏;诖耍竟澱n注重引導學生動腦思考,更富有啟發性。并且學生的自尊心較強,所以對學生的評價注重先揚后抑,鼓勵學生多多發言,還能夠對學生進行正確引導。
三、說教學目標
根據以上對教材的分析以及對學情的把握,我制定了如下三維目標:
。ㄒ唬┲R與技能
會用正弦函數圖象研究和理解正弦函數的性質,能熟練運用正弦函數的性質解決問題。
。ǘ┻^程與方法
經過正弦函數的圖象,探索正弦函數的性質,提升邏輯思考、歸納總結的本事。
。ㄈ┣楦袘B度價值觀
經過本節的學習體驗數學的嚴謹性,養成細心觀察、認真分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神。
四、說教學重難點
本著新課程標準,吃透教材,了解學生特點的基礎上我確定了以下重難點
。ㄒ唬┙虒W重點
由正弦函數的圖象得到正弦函數的性質。
。ǘ┙虒W難點
正弦函數的周期性和單調性。
五、說教法和學法
此刻的文盲不是不懂字的人,而是沒有掌握學習方法的人。因而在本節課我將采用講授法、探究法、練習法等教學方法,我在教學過程中異常重視對學生的引導,讓學生從機械的.學答中向學問轉變,從學會到會學,成為真正學習的主人。
六、說教學過程
在這節課的教學過程中,我注重突出重點,條理清晰,緊湊合理。各項活動的安排也注重互動、交流,限度的調動學生參與課堂的進取性、主動性。
(一)新課導入
首先是導入環節,在這一環節中我將采用復習的導入方法。
我會讓學生回憶正弦函數的概念,以及上節課所學的正弦函數圖象,讓學生根據圖象思考正弦函數有哪些性質從而引出課題——《正弦函數的性質》。
這樣設計能夠讓學生對前面的知識進行充分的回顧,為本節課的順利開展奠定基礎。
。ǘ┬轮剿
接下來是新課講授環節,在這一環節我將采用講解法、小組合作探究的方式進行。
讓學生自我經過五點作圖法畫出正弦函數的圖象,并在大屏幕上展示正弦函數的標準圖象。
學生一邊看投影,一邊思考如下問題:
。1)正弦函數的定義域是什么
。2)正弦函數的值域是什么
(3)正弦函數的最值情景如何
。4)正弦函數的周期
(5)正弦函數的奇偶性
。6)正弦函數的遞增區間
給學生十分鐘的時間小組討論,之后小組代表發言,師生共同總結。
1、定義域:y=sinx定義域為R
2、值域:引導學生回憶單位圓中的正弦函數線,發現值域為[—1,1]
3、最值:根據值域的確定得到在何處取得最值以及函數的正負性。
4、周期性:經過觀察圖象引導學生發現正弦函數的圖象是有規律不斷重復出現的,讓學生思考后發現是每隔2π重復出現一次,得出y=sinx的最小正周期是2π。之后經過誘導公式證明。
5、奇偶性:在剛才經過誘導公式證明后順勢提出公式,總結得到正弦函數是奇函數。
6、單調性:最終讓學生根據剛才所得到的結論自我嘗試總結正弦函數的單調性。
在探究完正弦函數性質后,利用單位圓和正弦函數圖象理解和記憶正弦函數的性質,這樣的安排能夠讓學生及時鞏固正弦函數的性質,并且還能夠結合之前所學的單位圓,三角函數線等知識,讓學生感受到知識間的聯系。
。ㄈ┱n堂練習
第三環節是鞏固環節,多媒體出示書上例題2:用五點法畫出函數的簡圖,并根據圖象討論它的性質。
經過這樣的練習,既鞏固了學生學過的知識,又進一步培養了學生理解、分析、推理的本事,趣味的知識在學生們的積極主動的探索中顯得更有味道。
。ㄋ模┬〗Y作業
最終一個環節為小結作業環節,關于課堂小結,我打算讓學生自我來總結。這樣既發揮了學生的主體性,又能夠提高學生的總結概括本事,讓我在第一時間得到學習反饋,及時加以疏導。
在作業布置上,我讓學生思考余弦函數的圖象與性質是什么樣的。
經過比較靈活的題目呈現,能夠讓學生結合本節課的知識進而思考后續的知識。
七、說板書設計
我的板書設計遵循簡介明了突出重點部分,以下是我的板書設計:
。裕
高中數學說課比賽一等獎說課稿 篇9
大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。
一、教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的'對角解三角形時判斷解的個數。
二、教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。
三、學法
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
(一)創設情境(3分鐘)
“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)猜想—推理—證明(15分鐘)
激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)
在三角形中,角與所對的邊滿足關系
注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
(三)總結--應用(3分鐘)
1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(四)講解例題(8分鐘)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中
一邊的對角時解三角形的各種情形。完了把時間交給學生。
(五)課堂練習(8分鐘)
1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發現問題,并解答。
(六)小結反思(3分鐘)
1.它表述了三角形的邊與對角的正弦值的關系。
2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
五、教學反思
從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。
高中數學說課比賽一等獎說課稿 篇10
一、地位作用
數列是高中數學重要的內容之一,等比數列是在學習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個高中數學內容中數列與已學過的函數及后面的數列極限有密切聯系,它也是培養學生數學能力的良好題材,它可以培養學生的觀察、分析、歸納、猜想及綜合解決問題的能力。
基于此,設計本節的數學思路上:
利用類比的思想,聯系等差數列的概念及通項公式的學習方法,采取自學、引導、歸納、猜想、類比總結的教學思路,充分發揮學生主觀能動性,調動學生的.主體地位,充分體現教為主導、學為主體、練為主線的教學思想。
二、教學目標
知識目標:
1)理解等比數列的概念
2)掌握等比數列的通項公式
3)并能用公式解決一些實際問題
能力目標:培養學生觀察能力及發現意識,培養學生運用類比思想、解決分析問題的能力。
三、教學重點
1)等比數列概念的理解與掌握 關鍵:是讓學生理解“等比”的特點
2)等比數列的通項公式的推導及應用
四、教學難點
“等比”的理解及利用通項公式解決一些問題。
五、教學過程設計
。ㄒ唬╊A習自學環節。(8分鐘)
首先讓學生重新閱讀課本105頁國際象棋發明者的故事,并出示預習提綱,要求學生閱讀課本P122至P123例1上面。
回答下列問題
1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數列的定義。
2)觀察以下幾個數列,回答下面問題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
-1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉是等比數列?若是公比是什么?
②公比q為什么不能等于零?首項能為零嗎?
、酃萹=1時是什么數列?
、躴>0時數列遞增嗎?q<0時遞減嗎?
3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?
4)等比數列通項公式與函數關系怎樣?
。ǘw納主導與總結環節(15分鐘)
這一環節主要是通過學生回答為主體,教師引導總結為主線解決本節兩個重點內容。
通過回答問題(1)(2)給出等比數列的定義并強調以下幾點:
①定義關鍵字“第二項起”“常數”;
、谝龑W生用數學語言表達定義: =q(n≥2);
、踧=1時為非零常數數列,既是等差數列又是等比數列。
引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
、躴>0時等比數列單調性不定,q<0為擺動數列,類比等差數列d>0為遞增數列,d<0為遞減數列。
通過回答問題(3)回憶等差數列的推導方法,比較兩個數列定義的不同,引導推出等比數列通項公式。
法一:歸納法,學會從特殊到一般的方法,并從次數中發現規律,培養觀察力。
法二:迭乘法,聯系等差數列“迭加法”,培養學生類比能力及新舊知識轉化能力。
高中數學說課比賽一等獎說課稿 篇11
一、教材分析
1、 教材的地位和作用
。1)本節課主要對函數單調性的學習;
(2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫)
。3)它是歷年高考的熱點、難點問題
。ǜ鶕唧w的課題改變就行了,如果不是熱點難點問題就刪掉)
2、 教材重、難點
重點:函數單調性的定義
難點:函數單調性的證明
重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)
二、教學目標
知識目標:(1)函數單調性的定義
。2)函數單調性的證明
能力目標:培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想
情感目標:培養學生勇于探索的精神和善于合作的意識
。ㄟ@樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)
三、教法學法分析
1、教法分析
“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法
2、學法分析
“授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的.參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。
(前三部分用時控制在三分鐘以內,可適當刪減)
四、教學過程
1、以舊引新,導入新知
通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)
2、創設問題,探索新知
緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。
讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。
讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。
3、 例題講解,學以致用
例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式
例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。
例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。
學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。
4、歸納小結
本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。
5、作業布置
為了讓學生學習不同的數學,我將采用分層布置作業的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2
6、板書設計
我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。
(這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)
五、教學評價
本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。
高中數學說課比賽一等獎說課稿 篇12
一、教材分析
本節知識是必修五第一章《解三角形》的第一節資料,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,并且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。
根據上述教材資料分析,研究到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
本事目標:引導學生經過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維本事,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,經過學生之間、師生之間的交流、合作和評價,調動學生的主動性和進取性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的資料,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的'對角解三角形時確定解的個數。
二、教法
根據教材的資料和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究資料,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,進取探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的本事線聯系方法與技能使學生較易證明正弦定理,另外經過例題和練習來突破難點
三、學法
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自我所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維本事,構成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,構成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
。ㄒ唬﹦撛O情境,布疑激趣
“興趣是最好的教師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫忙別人的熱情和學習的興趣,從而進入今日的學習課題。
。ǘ┨綄ぬ乩,提出猜想
1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生經過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
。ㄋ模w納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的資料,討論能夠解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1.在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,教師巡視,及時發現問題,并解答。
。ㄆ撸┬〗Y反思,提高認識
經過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現了數形結合的數學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
。◤膶嶋H問題出發,經過猜想、實驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生進取性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發現正弦定理不適用了,那么自然過渡到下一節資料,余弦定理。布置作業,預習下一節資料。
高中數學說課比賽一等獎說課稿 篇13
尊敬的各位評委、老師們:
大家好!
今天我說課的內容是《函數的概念》,選自人教版高中數學必修一第一章第二節。下面介紹我對本節課的設計和構思,請您多提寶貴意見。
我的說課有以下六個部分:
一、背景分析
1、學習任務分析
本節課是必修1第1章第2節的內容,是函數這一章的起始課,它上承集合,下引性質,與方程、不等式、數列、三角函數、解析幾何、導數等內容聯系密切,是學好后繼知識的基礎和工具,所以本節課在數學教學中的地位和作用是至關重要的。
2、學情分析
學生在初中已經學習了函數的概念,初步具備了學習函數概念的基本能力,但函數的概念從初中的變量學說到高中階段的對應說很抽象,不易理解。
另外,通過對集合的學習,學生基本適應了有效教學的課堂模式,初步具備了小組合作、自主探究的學習能力。
基于以上的分析,我認為本節課的教學重點為:函數的概念以及構成函數的三要素;
教學難點為:函數概念的形成及理解。
二、教學目標設計
根據《課程標準》對本節課的學習要求,結合本班學生的情況,故而確立本節課的教學目標。
1、知識與技能(方面)
通過豐富的實例,讓學生
、倭私夂瘮凳欠强諗导椒强諗导囊粋對應;
②了解構成函數的三要素;
③理解函數概念的本質;
、芾斫鈌(x)與f(a)(a為常數)的區別與聯系;
、輹笠恍┖唵魏瘮档亩x域。
2、過程與方法(方面)
在教學過程中,結合生活中的實例,通過師生互動、生生互動培養學生分析推理、歸納總結和表達問題的能力,在函數概念的構建過程中體會類比、歸納、猜想等數學思想方法。
3、情感、態度與價值觀(方面)
讓學生充分體驗函數概念的形成過程,參與函數定義域的求解過程以及函數的求值過程,使學生感受到數學的抽象美與簡潔美。
三、課堂結構設計
為充分調動學生的學習積極性,變被動學習為主動愉快的探究,我使用有效教學的課堂模式,課前學生通過結構化預習,完成問題生成單,課中采用師生互動、小組討論、學生展寫、展講例題,教師點評的方式完成問題解決單,課后完成問題拓展單,課堂結構包含:
復習舊知,引出課題(約2分鐘)創設情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識——小組討論,展寫例題(約8分鐘)小組展講,教師點評(約10分鐘)總結反思,知識升華(約2分鐘)(最后)布置作業,拓展練習。
四、教學媒體設計
教學中利用投影與黑板相結合的形式,利用投影直觀、生動地展示實例,并能增加課堂容量;利用黑板列舉本節重要內容,使學生對所學內容有一整體認識,并讓學生利用黑板展寫、展講例題,有問題及時發現及時解決。
五、教學過程設計
本節課圍繞問題的解決與重難點的突破,設計了下面的教學過程。
整個教學過程按四個環節展開:
首先,在第一環節——復習舊知,引出課題,先由兩個問題導入新課
、俪踔袝r函數是如何定義的?
、趛=1是函數嗎?
[設計意圖]:學生通過對這兩個問題的思考與討論,發現利用初中的定義很難回答第②個問題,從而激起他們的好奇心:高中階段的函數概念會是什么?激發他們學習本節課的強烈愿望和情感,使他們處于積極主動的探究狀態,大大提高了課堂效率。
從學生的`心理狀態與認知規律出發,教學過程自然過渡到第二個環節——函數概念的形成。
由于高中階段的函數概念本身比較抽象,看不見也摸不著,不易直接給出,因此在本環節中,我主要通過學生能看見能感知的生活中的3個實例出發,由具體到抽象,由特殊到一般,一步步歸納形成函數的概念,此過程我稱之為“創設情境,形成概念”。
對于這3個實例,我分別預設一個問題讓學生思考與體會。
問題1:從炮彈發射到落地的0-26s時間內,集合A是否存在某一時間t,在B中沒有高度h與之對應?是否有兩個或多個高度與之相對應?
問題2:從1979—2001年,集合A是否存在某一時間t,在B中沒有面積S與之對應?是否有兩個或多個面積與它相對應嗎?
問題3:從1991—2001年,集合A中是否存在某一時間t,在B中沒恩格爾系數與之對應?是否會有兩個或多個恩格爾系數與對應?
[設計意圖]:通過循序漸進地提問,變教為誘,以誘達思,引導學生根據問題總結3個實例的各自特點,并綜合各自特點,歸納它們的公共特征,著重向學生滲透集合與對應的觀點,這樣,再讓學生經歷由具體到抽象的概括過程,用集合、對應的語言來描述函數時就顯得水到渠成,難點得以突破。
函數的概念既已形成,本節課自然進入了第3個環節——剖析概念,理解概念。
函數概念的理解是本節課的重點也是難點,概念本身比較抽象,學生在理解上可能把握不準確,所以我分兩個步驟來進行剖析,由具體到抽象,螺旋上升。
首先,在學生熟讀熟背函數概念的基礎上,我設計一個學生活動,讓學生充分參與,在參與中體會學習的快樂。
我利用多媒體制作一個表格,請學號為01—05的同學填寫自己上次的數學考試成績,并提出3個問題:
問題1:若學號構成集合A,成績構成集合B,對應關系f:上次數學考試成績,那么由A到B能否構成函數?
問題2:若將問題1中“學號”改為“01—05的學生”,其余不變,那么由A到B能否構成函數?
問題3:若學號04的學生上次考試因病缺考,無成績,那么對問題1學號與成績能否構成函數?
[設計意圖]:通過層層提問,層層回答,讓學生對概念中關鍵詞的把握更為準確,對函數概念的理解更為具體,為總結歸納函數概念的本質特征打下基礎。
其次,我通過幻燈片的形式展示幾組數集的對應關系,讓學生分析討論哪些對應關系能構成函數,在學生深刻認識到函數是非空數集到非空數集的一對一或多對一的對應關系,并能準確把握概念中的關鍵詞后,再著重強強在這兩種對應關系中,何為定義域,何為值域,值域和集合B有什么關系,強調函數的三要素,得出兩函數相等的條件。
至此,本節課的第三個環節已經完成,對于區間的概念,學生通過預習能夠理解課堂上不再多講,僅在多媒體上進行展示,但會在后面例題的使用中指出注意事項。
在本節課的第四個環節——例題分析中,我重點以例題的形式考查函數的有關概念問題,簡單函數的定義域問題以及函數的求值問題,至于分段函數、復合函數的求值及定義域問題,將在下節課予以解決,本環節主要通過學生討論、展寫、展講、學生互評、教師點評的方式完成知識的鞏固,讓學生成為課堂的主人。
最后,通過
——總結點評,完善知識體系
——課堂練習,鞏固知識掌握
——布置作業,沉淀教學成果
六、教學評價設計
教學是動態生成的過程,課堂上必然會有難以預料的事情發生,具體的教學過程還應根據實際情況加以調整。
最后,引用赫爾巴特的一句名言結束我的說課,那就是“發揮我們教師的創造性,使教育過程成為一種藝術的事業,使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。
謝謝大家!
高中數學說課比賽一等獎說課稿 篇14
一、教材分析
1 教材的地位與作用 “拋物線焦點的性質”是拋物線的重要性質之一,它是在學生學習拋物線的一般性質的基礎上,學習和研究的拋物線有關問題的基本工具之一;本節教材對于培養學生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。
2 教學目的 全日制普通高級中學《數學教學大綱》第22頁“重視現代教育技術的運用”中明確提出:在數學教學過程中,應有意識地利用計算機網絡等現代信息技術,認識計算機的智能圖形、快速計算、機器證明、自動求解及人機交互等功能在數學教學中的巨大潛力,努力探索在現代信息技術支持下的.教學方法、教學模式。設計和組織能吸引學生積極參與的數學活動,支持和鼓勵學生運用信息技術學習數學、開展課題研究,改進學習方式,提高學生的自主學習能力和創新意識。因此本人在現行高中新教材(試驗修訂本·必修)數學第二冊(上)拋物線這一節內容為背景材料,以多媒體網絡教室為場地,以《幾何畫板》為教學工具與學習工具,設計了一堂《拋物線焦點性質的探索》,具體目標如下:
。1) 知識目標:了解焦點的有關性質;并掌握這些性質的證明方法;體會數形結合思想與分類討論思想在解決解析幾何題中的指導作用。
。2) 能力目標:使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型;培養辯證唯物主義思想和辯證思維能力(主要包括量變與質變,常量與變量,運動與靜止)培養學生通過計算機來自主學習的能力與創新的能力。
。3) 情感目標:培養學生不畏困難,勇于鉆研、探索、大膽創新的精神,在挫折中成長鍛煉,培養學生良好的心理素質和抗挫折能力,通過拋物線焦點性質的探索及證明,使學生得到數學美和創造美的享受。
3 教學內容、重點、難點及關鍵本節安排兩節課,
第一節課:主要內容是利用《幾何畫板》探索拋物線的有關性質;
第二節課:證明第一節所得到的有關性質。
重點:
。1)如何利用《幾何畫板》探索、發現拋物線焦點的性質;
。2)如何證明這些性質。
難點;
。1)如何利用《幾何畫板》探索、發現拋物線焦點的性質;
。2)如何證明這些性質。
二、教學策略及教法設計
學生在網絡教室(每人一機),其中裝有《幾何畫板》軟件及上課系統,每個學生的窗口,其他學生及教師都可以通過教師機切換,從而和其他學生交流,也可以通過網上論壇交流研究結果。
三、網絡教學環境設計
學生在網絡教室(每人一機)中有幾何畫板軟件,學生通過教師提供的網絡,自已閱讀,下載有關,利用《幾何畫板》的操作、試驗、猜想,通過自已的研究獲得結論,并互相討論觀察到的現象、交流研究結果。
四、教學過程設計
使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型 問題1 回顧一下拋物線的定義,并根據拋物線的定義思考用《幾何畫板》如何作出焦點在x軸上的拋物線圖象。 由于創設了一個創作的《幾何畫板》的窗口及網絡窗口,學生通過網絡學習,得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點性質的基本圖形。
高中數學說課比賽一等獎說課稿 篇15
一、教材分析
1.教學內容
本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2. 教材的地位和作用
函數單調性是高中數學中相當重要的一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。
3.教材的重點﹑難點﹑關鍵
教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念。
教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程。
4.學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強.
二、目標分析
(一)知識目標:
1.知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。
2.能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。
3.情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。
(二)過程與方法
培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1.教學方法
在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2.學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。
四、過程分析
本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。
(一)問題情景:
為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(詳見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。
(二)函數單調性的定義引入
1.幾何畫板動畫演示 ,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1:觀察下列函數圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調性的“通俗定義”
從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與 f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。
設計意圖:
①通過學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。
、谕ㄟ^學生已學過的一次y=2x+4 的圖象的'動態形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。
③從學生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。
④從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。
(三)增函數、減函數的定義
在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1 x2時,都有f(x1)< f(x2)”描述了y隨x的增大而增大;它刻畫了函數的單調遞增的性質,數學語言多么精練簡潔,這就是數學的魅力所在!
注意:
(1)函數的單調性也叫函數的增減性;
(2)注意區間上所取兩點x1,x2的任意性;
(3)函數的單調性是對某個區間而言的,它是一個局部概念。
讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。
設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。
(四)例題分析
在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。
2.例2.證明函數 在區間(-∞,+∞)上是減函數。
在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。
變式一:函數f(x)=-3x+b在R上是減函數嗎?為什么?
變式二:函數f(x)=kx+b (k<0)在R上是減函數嗎?你能用幾種方法來判斷。
變式三:函數f(x)=kx+b (k<0)在R上是減函數嗎?你能用幾種方法來判斷。
錯誤:實質上并沒有證明,而是使用了所要證明的結論
例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)— 定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。
(五)鞏固與探究
1.教材 p36 練習 2,3
2.探究:二次函數的單調性有什么規律?
(幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。
設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。
通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。
(六)回顧總結
通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。
設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。
(七)課外作業
1.教材 p43 習題1.3 A組 1(單調區間),2(證明單調性);
2.判斷并證明函數 在 上的單調性。
3.數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。
設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。
(七)板書設計(見ppt)
五、評價分析
有效的概念教學是建立在學生已有知識結構基礎上,,因此在教學設計過程中注意了:第一.教要按照學的法子來教;第二在學生已有知識結構和新概念間尋找“最近發展區”;第三.強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程 ,培養“用數學”的意識和能力,成為積極主動的建構者 。
本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。
高中數學說課比賽一等獎說課稿 篇16
我今天說課的課題是新課標高中數學人教版A版必修第二冊第三章“3.1.1傾斜角與斜率”。我說課的程序主要由說教材、說教法、說學法、說教學程序這四個部分組成。
一、說教材:
1、教材分析:直線的傾斜角和斜率是解析幾何的重要概念之一,也是直線的重要的幾何要素。學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以坐標化(解析化)的方式來研究直線相關性質,而本節直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節也初步向學生滲透解析幾何的基本思想和基本方法。因此,本節課的有著開啟全章,奠定基調,滲透方法,明確方向,承前啟后的作用。
2、教學目標
根據本課教材的特點,新大綱對本節課的教學要求,結合學生身心發展的合理需要,我從三個方面確定了以下教學目標:
(1)知識與技能目標:
了解直線的方程和方程的直線的概念;在新的問題的情境中,去主動構建理解直線的傾斜角和斜率的定義;初步感悟用代數方法解決幾何問題的思想方法。
(2)過程與方法目標:
引導學生觀察發現、類比,猜想和實驗探索,培養學生的創新能力和動手能力
(3)情感、態度與價值觀目標:
在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,實現共同探究、教學相長的教學情境。
3、教學重點、難點
(1)教學重點:理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線的斜率的計算公式。
。2)教學難點:斜率公式的推導
二、說教法
課堂教學應有利于學生的數學素質的形成與發展,即在課堂教學過程中,創設問題的情境,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效地滲透數學思想方法,發展學生個性思維品質,這是本節課的教學原則。根據這樣的原則及所要完成的教學目標,我采用觀察發現、啟發引導、探索實驗相結合的教學方法。啟發引導學生積極的思考并對學生的思維進行調控,使學生優化思維過程;在此基礎上,通過學生交流與合作,從而擴展自已的數學知識和使用數學知識及數學工具的能力,實現自覺地、主動地、積極地學習。
三、說學法
在實際教學中,根據學生對問題的感受程度不同,學習熱情、身心特點等,對學生進行針對性的學法指導。主要運用引導、啟發、情感暗示等隱性形式來影響學生,多提供機會讓學生去想、去做,給學生自己動手、參與教學過程、發現問題、討論問題提供了很好的機會。這不僅讓學生對所學內容留下了深刻的印象,而且能力得到培養,素質得以提高,充分地調動學生學習的熱情,讓學生學會學習,學會探索問題的方法,培養學生的能力。
四、說教學程序:
1、導入新課:
提出問題:如何確定一條直線的位置?
。1)兩點確定一條直線;
。2)一點能確定一條直線嗎?
過一點P可以作無數條直線,這些直線的傾斜程度不同,如何描述直線的傾斜程度?本節課將解決這個問題。
設計意圖:打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,直線的傾斜角這一概念的產生是因為研究直線的需要,從而明確新課題研究的必要性,觸發學生積極思維活動的展開。
2、探究發現:
(1)直線的傾斜角:
有新課導入直接引出此概念,學生易于接受,但是容易忽視其中的重點字。因此重點強調定義的幾個注意點:
①x軸正半軸;
、谥本向上方向;
、郛斨本與x軸平行或重合時,直線的.傾斜角為0度。由此得出直線傾斜角的取值范圍。
。2)直線的確定方法:
確定平面直角坐標系中一條直線位置的幾何要素:直線上的一個定點以及它的傾斜角,二者缺一不可。
。3)直線的斜率:
注:直線的傾斜角與斜率的區別:
所有的直線都有傾斜角;但是不是所有直線都有斜率(傾斜角為90°的直線沒有斜率,因為90°的正切不存在。)
(4)由兩點確定的直線的斜率:
先讓學生自主探究、學生之間互相交流,然后再由師生共同歸納得出結論:
經過兩點P1(x1.y1),P2(x2,y2)直線的斜率公式:(x1≠x2)。
3、學用結合:
(1)例題講解:P89-90例題1和例題2。
例題的講解主要關注思路的點撥以及解題過程的規范書寫。
。2)課堂練習:
P91練習第1、2題
4、總結歸納:
直線的傾斜角直線的斜率直線的斜率公式
定義
取值范圍
5、布置作業:P91練習第3、4題
高中數學說課比賽一等獎說課稿 篇17
一、教材分析
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。
二、教學目標
1、學習目標
。1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬于”關系;
。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
2、能力目標
。1)能夠把一句話一個事件用集合的方式表示出來。
。2)準確理解集合與及集合內的元素之間的關系。
3、情感目標
通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。
三、教學重點與難點
重點 集合的基本概念與表示方法;
難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的'集合;
四、教學方法
(1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;
(2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。
五、學習方法
。1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,
教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。
。2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培優扶差,滿足不同!
六、教學思路
具體的思路如下
復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。
一、 引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學生閱讀教材,并思考下列問題:
。1)集合有那些概念?
。2)集合有那些符號?
。3)集合中元素的特性是什么?
。4)如何給集合分類?
。ㄒ唬┘系挠嘘P概念
。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,
都可以稱作對象.
。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由
這些對象的全體構成的集合.
。3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、元素通常用小寫的拉丁字母表示,如a、b、c、
1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,
對學生的例子予以討論、點評,進而講解下面的問題。
2、元素與集合的關系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
。2)互異性:集合中的元素一定是不同的.
(3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據集合所含元素個屬不同,可把集合分為如下幾類:
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個元素的集合叫做有限集
。3)含有無窮個元素的集合叫做無限集
注:應區分?,{?},{0},0等符號的含義
5、常用數集及其表示方法
。1)非負整數集(自然數集):全體非負整數的集合.記作N
。2)正整數集:非負整數集內排除0的集.記作N*或N+
(3)整數集:全體整數的集合.記作Z
。4)有理數集:全體有理數的集合.記作Q
(5)實數集:全體實數的集合.記作R
注:(1)自然數集包括數0.
。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*
。ǘ┘系谋硎痉椒
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},
例1.(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
。2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
。ㄈ┱n堂練習(課本P6練習)
三、 歸納小結與作業
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書面作業:習題1.1,第1- 4題
【高中數學說課比賽一等獎說課稿】相關文章:
高中數學說課稿06-12
高中數學說課稿12-12
高中數學說課稿06-13
小學數學說課比賽優秀說課稿《小數除法》11-12
高中數學說課稿優秀02-28
【熱】高中數學說課稿11-24
高中數學說課稿【薦】11-24
【精】高中數學說課稿11-22
【薦】高中數學說課稿11-22
高中數學說課稿【推薦】11-22