精選高中數學說課稿范文匯編8篇
作為一名教師,通常需要用到說課稿來輔助教學,借助說課稿我們可以快速提升自己的教學能力。怎么樣才能寫出優秀的說課稿呢?以下是小編整理的高中數學說課稿8篇,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學說課稿 篇1
說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。
下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。
一、 背景分析
1、學習任務分析
平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。
本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。
2、學生情況分析
學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。
二、 教學目標設計
《普通高中數學課程標準(實驗)》 對本節課的要求有以下三條:
(1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。
(2)體會平面向量的數量積與向量投影的關系。
(3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。
從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。
綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:
1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;
2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,
并能運用性質和運算律進行相關的運算和判斷;
3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。
三、課堂結構設計
本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:
即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。
四、 教學媒體設計
和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:
1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。
2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。
平面向量數量積的物理背景及其含義
一、 數量積的概念 二、數量積的性質 四、應用與提高
1、 概念: 例1:
2、 概念強調 (1)記法 例2:
(2)“規定” 三、數量積的運算律 例3:
3、幾何意義:
4、物理意義:
五、 教學過程設計
課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:
活動一:創設問題情景,激發學習興趣
正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:
問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?
問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?
期望學生回答:物理模型→概念→性質→運算律→應用
問題3:如圖所示,一物體在力F的作用下產生位移S,
(1)力F所做的功W= 。
(2)請同學們分析這個公式的特點:
W(功)是 量,
F(力)是 量,
S(位移)是 量,
α是 。
問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。
問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。
問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。
活動二:探究數量積的概念
1、概念的抽象
在分析“功”的計算公式的基礎上提出問題4
問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?
學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。
2、概念的明晰
已知兩個非零向量
與
,它們的夾角為
,我們把數量 ︱
︱·︱
︱cos
叫做
與
的數量積(或內積),記作:
·
,即:
·
= ︱
︱·︱
︱cos
在強調記法和“規定”后 ,為了讓學生進一步認識這一概念,提出問題5
問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:
角
的范圍0°≤
<90°
=90°0°<
≤180°
·
的符號
通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。
3、探究數量積的幾何意義
這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。
如圖,我們把│
│cos
(│
│cos
)叫做向量
在
方向上(
在
方向上)的投影,記做:OB1=│
│cos
問題6:數量積的幾何意義是什么?
這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。
4、研究數量積的物理意義
數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題 一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。
問題7:
(1) 請同學們用一句話來概括功的數學本質:功是力與位移的數量積 。
(2)嘗試練習:一物體質量是10千克,分別做以下運動:
①、在水平面上位移為10米;
②、豎直下降10米;
③、豎直向上提升10米;
④、沿傾角為30度的斜面向上運動10米;
分別求重力做的功。
活動三:探究數量積的運算性質
1、性質的發現
教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:
(1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?
(2)比較︱
·
︱與︱
︱×︱
︱的大小,你有什么結論?
在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。
2、明晰數量積的性質
3、性質的證明
這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。
活動四:探究數量積的運算律
1、運算律的發現
關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9
問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?
通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。
學生可能會提出以下猜測: ①
·
=
·
②(
·
)
=
(
·
) ③(
+
)·
=
·
+
·
猜測①的正確性是顯而易見的。
關于猜測②的正確性,我提示學生思考下面的問題:
猜測②的左右兩邊的結果各是什么?它們一定相等嗎?
學生通過討論不難發現,猜測②是不正確的。
這時教師在肯定猜測③的基礎上明晰數量積的運算律:
2、明晰數量積的運算律
3、證明運算律
學生獨立證明運算律(2)
我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:
當λ<0時,向量
與λ
,
與λ
的方向 的關系如何?此時,向量λ
與
及
與λ
的夾角與向量
與
的夾角相等嗎?
師生共同證明運算律(3)
運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。
在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。
活動五:應用與提高
例1、(師生共同完成)已知︱
︱=6,︱
︱=4,
與
的夾角為60°,求
(
+2
)·(
-3
),并思考此運算過程類似于哪種運算?
例2、(學生獨立完成)對任意向量
,b是否有以下結論:
(1)(
+
)2=
2+2
·
+
2
(2)(
+
)·(
-
)=
2—
2
例3、(師生共同完成)已知︱
︱=3,︱
︱=4, 且
與
不共線,k為何值時,向量
+k
與
-k
互相垂直?并思考:通過本題你有什么收獲?
本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。
為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:
1、 下列兩個命題正確嗎?為什么?
①、若
≠0,則對任一非零向量
,有
·
≠0.
②、若
≠0,
·
=
·
,則
=
.
2、已知△ABC中,
=
,
=
,當
·
<0或
·
=0時,試判斷△ABC的形狀。
安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,
通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。
活動六:小結提升與作業布置
1、本節課我們學習的主要內容是什么?
2、平面向量數量積的兩個基本應用是什么?
3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?
4、類比向量的線性運算,我們還應該怎樣研究數量積?
通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下
一節做好鋪墊,繼續激發學生的求知欲。
布置作業:
1、課本P121習題2.4A組1、2、3。
2、拓展與提高:
已知
與
都是非零向量,且
+3
與7
-5
垂直,
-4
與 7
-2
垂直求
與
的夾角。
在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。
六、教學評價設計
評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:
1、 通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定
性的評價。
2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。
3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。
4、 通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。
高中數學說課稿 篇2
函數的單調性
今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。
一、說教材
1、教材的地位和作用
本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。
2、學情分析
本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。
教學目標分析
基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:
1.知識與技能(1)理解函數的單調性和單調函數的意義;
(2)會判斷和證明簡單函數的單調性。
2.過程與方法
(1)培養從概念出發,進一步研究性質的意識及能力;
(2)體會數形結合、分類討論的數學思想。
3.情感態度與價值觀
由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。
三、教學重難點分析
通過以上對教材和學生的分析以及教學目標,我將本節課的重難點
重點:
函數單調性的概念,判斷和證明簡單函數的單調性。
難點:
1.函數單調性概念的認知
(1)自然語言到符號語言的轉化;
(2)常量到變量的轉化。
2.應用定義證明單調性的代數推理論證。
四、教法與學法分析
1、教法分析
基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。
2、學法分析
新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。
五、教學過程
為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。
(一)知識導入
溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。
(二)講授新課
1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?
通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。
2.觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:
(1)在y軸的右側部分圖象具有什么特點?
(2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1 (3)如何用數學符號語言來描述這個規律? 教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。 (4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢? 類似地分析圖象在y軸的左側部分。 通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1 仿照單調增函數定義,由學生說出單調減函數的定義。 教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。 (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解) (三)鞏固練習 1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x 練習2:練習2:判斷下列說法是否正確 ①定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。 ②定義在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。 1③已知函數y=,因為f(-1) 1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x 上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。 (四)歸納總結 我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。 (五)布置作業 必做題:習題2-3A組第2,4,5題。 選做題:習題2-3B組第2題。 新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。 二次函數的圖像說課稿 今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。 一、教材分析 教材的地位和作用 本節內容選自北師大版高中數學必修1,第二章第4.1節。二次函數的圖像在教材中起著承上啟下的作用。 學情分析 本節課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變為參數,使學生對二次函數的圖像由感性認識上升到理性認識,能培養學生利用數形結合思想解決問題的能力。 二、教學目標分析 基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分: 1.知識與技能 理解二次函數中參數a,b,c,h,k對其圖像的影響; 2.過程與方法 通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。 3.情感態度與價值觀 通過本節的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。 三、教學重難點分析 通過以上對教材和學生的分析以及教學目標,我將本節課的重難點確定如下 重點: 二次函數圖像的平移變換規律及應用。 難點: 探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。 四、教法與學法分析 1、教法分析 基于以上對教材、學情的分析以及新課改的要求,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。 2、學法分析 新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法進行學習。 五、教學過程 為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環節來進行我的教學。 (1)知識導入 溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。 (2)講授新課 例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像 讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。 前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解, (3)鞏固練習 我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。 (4)歸納總結 我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節課的教學過程做好準備。 (5)布置作業 略 一、說教材 1、 教材的地位和作用 《集合的概念》是人教版第一章的內容(中職數學)。本節課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發展學生運用數學語言交流的能力。 2、 教學目標 (1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念; b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。 (2)能力目標:a、讓學生感知數學知識與實際生活得密切聯系,培養學生解決實際的能力; b、學會借助實例分析,探究數學問題,發展學生的觀察歸納能力。 (3)情感目標:a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態度; b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。 3、重點和難點 重點:集合的概念,元素與集合的關系。 難點:準確理解集合的概念。 二、學情分析(說學情) 對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。 三、說教法 針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發,提高學生的注意力和激發學生的學習興趣。在創設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。 四、學習指導(說學法) 教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。 五、教學過程 1、引入新課: a、創設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。 b、介紹集合論的創始者康托爾 2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發,引導學生尋找實例中的共同特征,培養學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。 3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。 教師在這一環節做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。 4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。 5、 集合的符號記法,為本節重點做好鋪墊。 6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環節教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。 7、 思考交流本課的重要環節在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。 8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。 9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。 10、知識的實際應用: 問題不難,落實課本能力目標,培養學生運用數學的意識和能力初步培養學生應用集合的眼光觀看世界。 11、課堂小節 以學生小節為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養學生的鬼納總結能力。 六、評價 教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發揮著積極作用,教學過程遵重學生之間的差異培養學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環節。 七、教學反思 1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。 2、 啟發探究教學,營造學生的學習氛圍,培養學生自主學習,合作交流的能力。 八、板書設計 【教材分析】 1、本節教材的地位與作用 本節主要研究閉區間上的連續函數最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經會求某些函數的最值,并且已經掌握了性質:“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會求可導函數的極值之后進行學習的,學好這一節,學生將會求更多的函數的`最值,運用本節知識可以解決科技、經濟、社會中的一些如何使成本最低、產量最高、效益最大等實際問題。這節課集中體現了數形結合、理論聯系實際等重要的數學思想方法,學好本節,對于進一步完善學生的知識結構,培養學生用數學的意識都具有極為重要的意義。 2、教學重點 會求閉區間上連續開區間上可導的函數的最值。 3、教學難點 高三年級學生雖然已經具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優化解題過程依據的理解會有較大的困難,所以這節課的難點是理解確定函數最值的方法。 4、教學關鍵 本節課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點。 【教學目標】 根據本節教材在高中數學知識體系中的地位和作用,結合學生已有的認知水平,制定本節如下的教學目標: 1、知識和技能目標 (1)理解函數的最值與極值的區別和聯系。 (2)進一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。 (3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。 2、過程和方法目標 (1)了解開區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。 (2)理解閉區間上的連續函數最值存在的可能位置:極值點處或區間端點處。 (3)會求閉區間上連續,開區間內可導的函數的最大、最小值。 3、情感和價值目標 (1)認識事物之間的的區別和聯系。 (2)培養學生觀察事物的能力,能夠自己發現問題,分析問題并最終解決問題。 (3)提高學生的數學能力,培養學生的創新精神、實踐能力和理性精神。 【教法選擇】 根據皮亞杰的建構主義認識論,知識是個體在與環境相互作用的過程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。 本節課在幫助學生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學生通過觀察閉區間內的連續函數的幾個圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進而探索出函數最大值、最小值求解的方法與步驟,并優化解題過程,讓學生主動地獲得知識,老師只是進行適當的引導,而不進行全部的灌輸。為突出重點,突破難點,這節課主要選擇以合作探究式教學法組織教學。 【學法指導】 對于求函數的最值,高三學生已經具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數的求最值問題?教學設計中注意激發起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發揮他們作為認知主體的作用。 【教學過程】 本節課的教學,大致按照“創設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創新——歸納小結,反饋回授”四個環節進行組織。 尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數學必修2(A版),是第三章直線與方程中的第2節的第一課時3.2.1直線的點斜式方程的內容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。 一、教學背景的分析 1.教材分析 直線的方程是學生在初中學習了一次函數的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內容之一。“直線的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產實踐中有著廣泛的應用。同時在這一節中利用坐標法來研究曲線的數形結合、幾何直觀等數學思想將貫穿于我們整個高中數學教學。 2.學情分析 我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現“數”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。 根據上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標: 3.教學目標 (1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法; (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ; (3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規律; (4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數的關系等活動,培養學生主動探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。 4. 教學重點與難點 (1)重點: 直線點斜式、斜截式方程的特點及其初步應用。 (2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。 二、教法學法分析 1.教法分析:根據學情,為了能調動學生學習的積極性,本節課采用“實例引導的啟發式”問題教學法。幫助學生將幾何問題代數化,用代數的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當的利用多媒體課件進行輔助教學,激發學生的學習興趣。 2.學法分析:學生從問題中嘗試、總結、質疑、運用,體會學習數學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數”的轉化思想。 下面我就對具體的教學過程和設計加以說明: 三、教學過程的設計及實施 整個教學過程是由六個問題組成,共分為四個環節,學習或涉及四個概念: 溫故知新,澄清概念----直線的方程 深入探究,獲得新知--------點斜式 拓展知識,再獲新知--------斜截式 小結引申,思維延續--------兩點式 平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節要學習的內容。 (一)溫故知新,澄清概念----直線的方程 問題一:畫出一次函數y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系? [學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。 [教師活動] 對于不同學生的表述進行分析、歸納,用規范的語言對方程和直線的方程進行描述。 [設計意圖]從學生熟知的舊知識出發澄清直線的方程的概念,試圖做到“用學生已有的數學知識去學數學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。 問題二:若直線經過點A(-1, 3),斜率為-2,點P在直線l上。 (1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ; (2)畫出直線l,你能求出直線l的方程嗎? (3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式? [學生活動]學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。 [教師活動]巡視。肯定學生的各種方法及大膽嘗試的行為;并引導學生觀察發現,得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。 [設計意圖]復習斜率公式;待定系數法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環節。 (二)深入探究,獲得新知----點斜式 問題三: ① 若直線l經過點P0(x0,y0),且斜率為k,求直線l的方程。 ②直線的點斜式方程能否表示經過P0(x0,y0)的所有直線? [學生活動] ①學生敘述,老師板書,強調斜率公式與點斜式的區別。 ②指導學生用筆轉一轉不難發現,當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。 [設計意圖] 由特殊到一般的學習思路,突破難點,培養學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。 問題四:分別求經過點且滿足下列條件的直線的方程 (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。 [練習]P95.1、2。 [學生活動]學生獨立完成并展示或敘述,老師點評。 [設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現必要性及合理性;做到及時反饋,便于反思本環節的教學,指導下個環節的安排;突破重點內容后,進入第三環節。 (三)拓展知識,再獲新知----斜截式 問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。 (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。 [學生活動]學生獨立完成后口述,教師板書。 [設計意圖] 由一般到特殊再到一般,培養學生的推理能力,同時引出截距的概念及斜截式方程,強調截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數的關系。通過下面的基礎練習,突破重點。 [練習]P95.3。 [設計意圖]充分用好教材習題,及時反饋本環節的教學情況,指導下個環節的安排。 (四)小結引申,思維延續----兩點式 課堂小結 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數法。) 2、哪些地方還沒有學好? 問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。 (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。 [學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。 [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現的錯誤,規范書寫的格式;沒時間就布置分層作業。 [設計意圖](1)小題與上一節的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點的學生有一些發散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節課研究直線的兩點式方程作了重要的準備。 分層作業 必做題:P100.A組:1.(1)(2)(3)、5. 選做題:P100.A組:1.(4)(5)(6). [設計意圖]通過分層作業,做到因材施教,使不同的學生在數學上得到不同的發展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展。 四、教學特點分析 (一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發展。 (二)啟發式教學。教學中總是以提問的方式敘述所學內容,如:1.直角坐標系內的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數有什么關系?等等。啟發學生的思維,作好與學生的對話與交流活動。 (三)注重自主探究。設計問題鏈,環環相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發展區上,布設了由淺入深的學習環境突破重點、難點,引導學生逐步發現知識的形成過程。設計了兩次思維發散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。 各位老師大家好! 我說課的內容是人教 版 A版必修2第三章第一節直線的傾斜角與斜率第一課時。 (一) 教材分析 本節課選自必修2第三章(解析幾何的第一章)第一節直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數表示;學生在原有的對直線的有關性質及平面向量的相關知識理解的基礎上,重新以解析法的方式來研究直線相關性質,而本節課直線的傾斜角與斜率,是直線的重要的幾何性質,是研究直線的方程形式,直線的位置關系等的思維的起點;另外,本節課也初步向學生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。 (二) 學情分析 本節課的 教學 對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上 知道兩點確定一條直線, 知道點與坐標的關系,實現了最簡單的形與數的轉化;了解刻畫傾斜程度可用角和正切值;具備了一定的數形結合的能力和分類討論的思想。但根據學生的認知規律,還沒有形成自覺地把數學問題抽象化的能力。所以在教學設計時需 從 學生的最近發展區進行探究學習,盡量讓不同層次的學生都經歷概念的形成、 鞏固 和應用過程。 (三)教學目標 1. 理解直線的傾斜角和斜率的概念, 理解直線的傾斜角的唯一性和斜率的存在性; 2. 掌握過兩點的直線斜率的計算公式 ; 3. 通過經 歷從具體實例抽象出數學概念的過程,培養學生觀察、分析和概括能力; 4 . 通過斜率概念的建立以及斜率公式的構建,幫助學生進一步體會數形結合的思想,培養學 生嚴謹求簡的數學精神。 重點:斜率的概念,用代數方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。 難點: 直線的傾斜角與斜率的概念的形成 ,斜率公式的構建。 (四)教法和學法 課堂教學應有利于學生的數學素質的形成與發展,即在課堂教學過程中,創設問題的情景,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效的滲透數學思想方法,發展學生個性思維品質,這是本節課的教學原則。 根據這樣的教學原則,考慮到學生首次接觸解析幾何的內容及研究方法,所以我采用 設置問題串 的形式 , 啟發引導 學生 類比、聯想,產生知識遷移 ;通過 幾何畫板演示實驗、探索交流 相結合的教學方法激發學生 觀察、實驗,體驗知識的形成過程 ;由此循序漸進 , 使學生很自然達到本節課的學習目標。 ( 五) 教學過程 環節 1.指明研究方向 (3min) 平面上的點可以用坐標表示,也就是幾何問題代數化。那么我們生活中見到的很多優美的曲線能否用數來刻畫呢? 簡介17 世紀法國數學家笛卡爾和費馬的數學史 。 【設計意圖】 使學生對解析幾何的歷史以及它的研究方向有一個大致的了解 由此引入課題(直線的傾斜角與斜率) 環節2.活動探究(13min) 【設計意圖】 讓學生經歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產生是自然的,并不是硬性規定的。 (探究活動一:傾斜角概念的得出) 問題1. 如圖,對于平面直角坐標系內過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區別在哪里? 【設計意圖】引導學生發現過定點的不同直線,其傾斜程度不同。從而發現過直線上一點和直線的傾斜程度也能確定一條直線。 問題2. 在直角坐標系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢? 【設計意圖】引導學生探索描述直線的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線L與x軸相交,我們取x軸為基準,x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。 問題3. 依據傾斜角的定義,小組合作探究傾斜角的范圍是多少? (探究活動二:斜率概念的得出) 問題4. 日常生活中,還有沒有表示傾斜程度的量? 問題5 . 如果使用“傾斜角”的概念,坡度實際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度? 由學生已知坡度中“前進量”不能為0 ,補充 傾斜角 是90゜的直線 沒有斜率 【設計意圖】 遷移、類比得出 我們把 一條直線的 傾斜角 的正切值叫做 這條 直線的 斜率 , 讓學生感受數學概念來源于生活,并體驗從直觀到抽象的過程培養學生觀察、歸納、聯想的能力。 環節 3.過程體驗(斜率公式的發現)(10min) 問題6. 兩點能確定一條直線,那么兩點能確定一條直線的斜率么? 先由每名學生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。 為了深化對公式的理解,完善對公式的認識,我設計了如下三個思考問題: 思考1:如果直線AB//x軸,上述結論還適用嗎? 思考2:如果直線AB//y軸,上述結論還適用嗎? 思考3:交換A、B位置,對比值有影響嗎? 在學生充分思考、討論的基礎上,借助信息技術工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學生親自操作幾何畫板,改變直線的傾斜程度,動態演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學生更好的把握斜率公式。 環節4. 操作建構(10min) 第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。 學生獨立完成后,請三位學生作答,師生共同評析,明確斜率公式的運用,強調可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。 第二部分 ( 教材例二 ) : 在平面直角坐標系中,畫出經過原 點且斜率分別為1,-1,2及-3的直線 本題要求學生畫圖,目的是加強數形結合,我將請兩位同學上臺板演,其余同學在練習本上完成,因為直線經過原點,所以只要在找出另外一點就可確定,再推導斜率公式時,學生已經知道,斜率k的值與直線上P1,P2的位置無關,因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。 環節 5.小結作業(4min) 1、本節課你學到了哪些新的概念?他們之間有什么樣 的關系? 2、怎樣求出已知兩點的直線的斜率? 3 、本節課你還有哪些問題? 兩點 直線 傾斜角 斜率 一點一方向 作業: 必做題: P.86 第1,2,題 選做題: P.90 探究與發現:魔法師的地毯 以上五個環節環環相扣,層層深入,以明線和暗線雙線滲透。并注意調動學生自主探究與合作交流。注意教師適時的點撥引導,學生主體地位和教師的主導作用 得以 體現。能夠較好的實現教學目標,也使課標理念能夠很好的得到落實。 (六) 板書設計 3.1.1 直線的傾斜角與斜率 1定義: 傾斜角 學生板演 斜率 2.斜率k與傾斜角之間的關系 3.斜率公式 一、教學背景分析 1、教材結構分析 《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。 2、學情分析 圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。 根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標: 3、教學目標 (1) 知識目標:①掌握圓的標準方程; ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程; ③利用圓的標準方程解決簡單的實際問題。 (2) 能力目標:①進一步培養學生用代數方法研究幾何問題的能力; ②加深對數形結合思想的理解和加強對待定系數法的運用; ③增強學生用數學的意識。 (3) 情感目標:①培養學生主動探究知識、合作交流的意識; ②在體驗數學美的過程中激發學生的學習興趣。 根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點: 4、教學重點與難點 (1)重點:圓的標準方程的求法及其應用。 (2)難點: ①會根據不同的已知條件求圓的標準方程; ②選擇恰當的坐標系解決與圓有關的實際問題。 為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析: 二、教法學法分析 1、教法分析 為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。 2、學法分析 通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。 下面我就對具體的教學過程和設計加以說明: 三、教學過程與設計 整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節: 創設情境 啟迪思維 深入探究 獲得新知 應用舉例 鞏固提高 反饋訓練 形成方法 小結反思 拓展引申 下面我從縱橫兩方面敘述我的教學程序與設計意圖。 首先:縱向敘述教學過程 (一)創設情境——啟迪思維 問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道? 通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。 通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。 (二)深入探究——獲得新知 問題二 1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程? 2、如果圓心在,半徑為時又如何呢? 這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。 得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。 (三)應用舉例——鞏固提高 I、直接應用 內化新知 問題三 1、寫出下列各圓的標準方程: (1)圓心在原點,半徑為3; (2)經過點,圓心在點。 2、寫出圓的圓心坐標和半徑。 我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。 II、靈活應用 提升能力 問題四 1、求以點為圓心,并且和直線相切的圓的方程。 2、求過點,圓心在直線上且與軸相切的圓的方程。 3、已知圓的方程為,求過圓上一點的切線方程。 你能歸納出具有一般性的結論嗎? 已知圓的方程是,經過圓上一點的切線的方程是什么? 我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。 III、實際應用 回歸自然 問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。 我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。 (四)反饋訓練——形成方法 問題六 1、求過原點和點,且圓心在直線上的圓的標準方程。 2、求圓過點的切線方程。 3、求圓過點的切線方程。 接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。 (五)小結反思——拓展引申 1、課堂小結 把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法 ①圓心為,半徑為r 的圓的標準方程為: 圓心在原點時,半徑為r 的圓的標準方程為:。 ②已知圓的方程是,經過圓上一點的切線的方程是:。 2、分層作業 (A)鞏固型作業:教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。 3、激發新疑 問題七 1、把圓的標準方程展開后是什么形式? 2、方程表示什么圖形? 在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。 以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計: 橫向闡述教學設計 (一)突出重點 抓住關鍵 突破難點 求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。 第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。 (二)學生主體 教師主導 探究主線 本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。 (三)培養思維 提升能力 激勵創新 為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。 以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。 各位老師: 今天我說課的題目是《輸入、輸出語句和賦值語句》,內容選自于新課程人教A版必修3第一章第二節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節課的分析和設計: 一、教材分析 1.教材所處的地位和作用 我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設計語言翻譯成計算機程序。程序設計語言有很多種。為了實現算法中的三種基本的邏輯結構:順序結構、條件結構和循環結構,各種程序設計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環語句.。而我們今天所要學習的是前三種算法語句,它們基本上是對應于算法中的順序結構的。 2.教學的重點和難點 重點:正確理解輸入語句、輸出語句、賦值語句的作用。 難點:準確寫出輸入語句、輸出語句、賦值語句。 二、教學目標分析 1.知識與技能目標: (1)正確理解輸入語句、輸出語句、賦值語句的結構。 (2)會寫一些簡單的程序。 (3)掌握賦值語句中的“=”的作用。 2.過程與方法目標: (1)讓學生充分地感知、體驗應用計算機解決數學問題的方法;并能初步操作、模仿。 (2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學生應用數學軟件的能力. 3.情感,態度和價值觀目標 (1) 通過對三種語句的了解和實現,發展有條理的思考,表達的能力,提高邏輯思維能力. (2) 學習算法語句,幫助學生利用計算機軟件實現算法,活躍思維,提高學生的數學素養. (3) 結合計算機軟件的應用, 增強應用數學的意識,在計算機上實現算法讓學生體會成功喜悅. 三、教學方法與手段分析 1.教學方法:引導與合作交流相結合,學生在體會三種語句結構格式的過程中,讓學生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結三種算法語句的思想與特征. 2.教學手段:運用計算機、圖形計算器輔助教學 四、教學過程分析 1. 創設情境(約5分鐘) 在課的開始,我要求學生們舉出一些在日常生活中所應用到的有關計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數據等等,并告訴他們在現代社會里,計算機已經成為人們日常生活和工作不可缺少的工具,然后接著問他們知不知道計算機到底是怎樣工作的?通過這個問題引出我們今天所要學習的內容。(板出課題) 在這個過程中,我讓學生們將課本學習的內容與現實生活聯系在了一起,這樣能夠激起他們對接下來的所要學習內容的興趣,為整節課的學習打下一個良好的基礎。 2.探究新知(約15分鐘) 這里我先給出一個題目:用描點法作出函數 的圖象,用描點法作函數的圖象時,需要先求出自變量與函數的對應值。編寫程序,分別計算當 時的函數值。(程序由我在課前準備好,教學中直接調用運行) 程序:INPUT“x=”;x 輸入語句 y=x^3+3*x^2-24*x+30 賦值語句 PRINT x 輸出語句 PRINT y 輸出語句 END (學生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發現問題所在,進一步提高學生的模仿能力) 之后,我向學生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學們互相交流、議論、猜想、概括出結論。提示:“input”和“print”的中文意思,還要請學生們注意到在賦值語句中的賦值號“=”與數學中的等號意義不同。) 此過程由老師引導,學生們自己討論并總結出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學習的效果更佳,同時也鍛煉了學生們思考問題的能力和概括能力,激發學習興趣。 然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內容怎樣用輸入語句、輸出語句來表達?(學生討論、交流想法,然后請學生作答)這樣可以及時應用剛剛學習的內容,并可以將前后所學知識聯系起來。 3.例題精析(約12分鐘) 在本環節中我為學生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學生通過這幾道例題的講解,結合計算機程序上機運用,可以掌握在程序設計語言中的前三種算法語句,體會到他們在程序中的意義和作用。 4.課堂精練(約4分鐘) P15 練習 1. 提問:如果要求輸入一個攝氏溫度,輸出其相應的華氏溫度,又該如何設計程序?(學生課后思考,討論完成)通過提問啟發學生們思考,發散思維。 5.課堂小結(約5分鐘) ⑴輸入語句、輸出語句和賦值語句的結構特點及聯系 ⑵應用輸入語句,輸出語句,賦值語句編寫一些簡單的程序解決數學問題 ⑶ 賦值語句中“=”的作用及應用 ⑷編程一般的步驟:先寫出算法,再進行編程。 6.布置作業 P23 習題1.2 A組 1(2)、2 [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。 7.板書設計 【精選高中數學說課稿范文匯編8篇】相關文章: 精選高中數學說課稿范文匯編六篇08-12 精選高中數學說課稿范文匯編10篇08-06 精選高中數學說課稿范文匯編七篇08-20 精選高中數學說課稿匯編10篇07-15 高中數學經典說課稿范文06-24 精選高中數學說課稿范文8篇07-16 精選高中數學說課稿范文9篇06-23 高中數學說課稿范文匯編6篇08-01 精選高中數學說課稿范文合集六篇08-02 篇二:高一數學必修一說課稿
高中數學說課稿 篇3
高中數學說課稿 篇4
高中數學說課稿 篇5
高中數學說課稿 篇6
高中數學說課稿 篇7
高中數學說課稿 篇8