1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-07 08:01:52 高中說課稿 我要投稿

        實用的高中數學說課稿模板合集10篇

          作為一無名無私奉獻的教育工作者,就有可能用到說課稿,編寫說課稿助于積累教學經驗,不斷提高教學質量。我們應該怎么寫說課稿呢?以下是小編精心整理的高中數學說課稿10篇,希望對大家有所幫助。

        實用的高中數學說課稿模板合集10篇

        高中數學說課稿 篇1

          一、說教材

          1、 教材的地位和作用

          《集合的概念》是人教版第一章的內容(中職數學)。本節課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發展學生運用數學語言交流的能力。

          2、 教學目標

         。1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念;

          b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。

         。2)能力目標:a、讓學生感知數學知識與實際生活得密切聯系,培養學生解決實際的能力;

          b、學會借助實例分析,探究數學問題,發展學生的觀察歸納能力。

          (3)情感目標:a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態度;

          b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。

          3、重點和難點

          重點:集合的概念,元素與集合的關系。

          難點:準確理解集合的概念。

          二、學情分析(說學情)

          對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。

          三、說教法

          針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發,提高學生的注意力和激發學生的學習興趣。在創設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。

          四、學習指導(說學法)

          教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。

          五、教學過程

          1、引入新課:

          a、創設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。

          b、介紹集合論的創始者康托爾

          2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發,引導學生尋找實例中的共同特征,培養學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

          3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。

          教師在這一環節做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

          4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。

          5、 集合的符號記法,為本節重點做好鋪墊。

          6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環節教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。

          7、 思考交流本課的重要環節在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。

          8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。

          9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。

          10、知識的實際應用:

          問題不難,落實課本能力目標,培養學生運用數學的意識和能力初步培養學生應用集合的眼光觀看世界。

          11、課堂小節

          以學生小節為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養學生的鬼納總結能力。

          六、評價

          教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發揮著積極作用,教學過程遵重學生之間的差異培養學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環節。

          七、教學反思

          1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。

          2、 啟發探究教學,營造學生的學習氛圍,培養學生自主學習,合作交流的能力。

          八、板書設計

        高中數學說課稿 篇2

          一、教材分析

          1、教材內容

          本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》§2.1.3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題.

          2、教材所處地位、作用

          函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質.通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題.通過上述活動,加深對函數本質的認識.函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法.

          3、教學目標

          (1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性

          的方法;

         。2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力.

         。3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質.

          4、重點與難點

          教學重點(1)函數單調性的概念;

          (2)運用函數單調性的定義判斷一些函數的單調性.

          教學難點(1)函數單調性的知識形成;

         。2)利用函數圖象、單調性的定義判斷和證明函數的單調性.

          二、教法分析與學法指導

          本節課是一節較為抽象的數學概念課,因此,教法上要注意:

          1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性.

          2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.

          3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用.具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達.

          4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性.

          在學法上:

          1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力.

          2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍.

          三、 教學過程

        教學


        環節


        教 學 過 程


        設 計 意 圖


        問題


        情境


        (播放中央電視臺天氣預報的音樂)


        滿足在定義域上的單調性的討論.


        2、重視學生發現的過程.如:充分暴露學生將函數圖象(形)的特征轉化為函數值(數)的特征的思維過程;充分暴露在正、反兩個方面探討活動中,學生認知結構升華、發現的過程.


        3、重視學生的動手實踐過程.通過對定義的解讀、鞏固,讓學生動手去實踐運用定義.


        4、重視課堂問題的設計.通過對問題的設計,引導學生解決問題.



        高中數學說課稿 篇3

          一、教材分析

         。ㄒ唬┑匚慌c作用

          《冪函數》選自高一數學新教材必修1第2章第3節。是基本初等函數之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,為今后學習三角函數等其他函數打下良好的基礎.在初中曾經研究過y=x,y=x2,y=x—1三種冪函數。這節內容,是對初中有關內容的進一步的概括、歸納與發展,是與冪有關知識的高度升華.本節內容之后, 將把指數函數,對數函數,冪函數科學的組織起來,體現充滿在整個數學中的組織化,系統化的精神。讓學生了解系統研究一類函數的方法.這節課要特別讓學生去體會研究的方法,以便能將該方法遷移到對其他函數的研究.

         。ǘ⿲W情分析

         。1)學生已經接觸的函數,確立利用函數的定義域、值域、奇偶性、單調性研究一個函數的意識 ,已初步形成對數學問題的合作探究能力。

         。2)雖然前面學生已經學會用描點畫圖的方法來繪制指數函數,對數函數圖像,但是對于冪函數的圖像畫法仍然缺乏感性認識。

          (3)學生層次參差不齊,個體差異比較明顯。

          二、目標分析

          新課標指出“三維目標”是一個密切聯系的有機整體。

         。ㄒ唬┙虒W目標

         。1)知識與技能

         、偈箤W生理解冪函數的概念,會畫冪函數的圖象。

          ②讓學生結合這幾個冪函數的圖象,理解冪函圖象的變化情況和性質。

         。2)過程與方法

          ①讓學生通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。

         、谑箤W生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

          (3)情感態度與價值觀

         、偻ㄟ^熟悉的例子讓學生消除對冪函數的陌生感從而引出概念,引起學生注意,激發學生的學習興趣。

         、诶枚嗝襟w,了解冪函數圖象的變化規律,使學生認識到現代技術在數學認知過程中的作用,從而激發學生的學習欲望。

          ③培養學生從特殊歸納出一般的意識,培養學生利用圖像研究函數奇偶性的能力。并引導學生發現數學中的對稱美,讓學生在畫圖與識圖中獲得學習的快樂。

         。ǘ┲攸c難點

          根據我對本節課的內容的理解,我將重難點定為:

          重點:從五個具體的冪函數中認識概念和性質

          難點:從冪函數的圖象中概括其性質。

          三、教法、學法分析

          (一)教法

          教學過程是教師和學生共同參與的過程,教師要善于啟發學生自主性學習,充分調動學生的積極性、主動性,要有效地滲透數學思想方法,努力去提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法。

          1、引導發現比較法

          因為有五個冪函數,所以可先通過學生動手畫出函數的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發現異同,并進行比較,從而更深刻地領會冪函數概念以及五個冪函數的圖象與性質。

          2、借助信息技術輔助教學

          由于多媒體信息技術能具有形象生動易吸引學生注意的特點,故此,可用多媒體制作引入情境,將學生引到這節課的學習中來。再利用《幾何畫板》畫出五個冪函數的圖象,為學生創設豐富的數形結合環境,幫助學生更深刻地理解冪函數概念以及在冪函數中指數的變化對函數圖象形狀和單調性的影響,并由此歸納冪函數的性質。

          3、練習鞏固討論學習法

          這樣更能突出重點,解決難點,使學生既能夠進行深入地獨立思考又能與同學進行廣泛的交流與合作,這樣一來學生對這五個冪函數領會得會更加深刻,在這個過程中學生們分析問題和解決問題的能力得到進一步的提高,班級整體學習氛氛圍也變得更加濃厚。

          (二)學法

          本節課主要是通過對冪函數模型的特征進行歸納,動手探索冪函數的圖像,觀察發現其有關性質,再改變觀察角度發現奇偶函數的特征。重在動手操作、觀察發現和歸納的過程。

          由于冪函數在第一象限的特征是學生不容易發現的問題,因此在教學過程中引導學生將抽象問題具體化,借助多媒體進行動態演化,以形成較完整的知識結構。

          四、教學過程分析

         。ㄒ唬┙虒W過程設計

          (1)創設情境,提出問題。 新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。

          問題1:下列問題中的函數各有什么共同特征?是否為指數函數?

          由學生討論,總結,即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

          這時學生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數值,上述函數式變成:

          都是自變量的若干次冪的形式。都是形如

          的函數。

          揭示課題:今天這節課,我們就來研究:冪函數

         。ㄒ唬┱n堂主要內容

          (1)冪函數的概念

         、賰绾瘮档亩x。

          一般地,函數

          叫做冪函數,其中x 是自變量,a是常數。

         、趦绾瘮蹬c指數函數之間的區別。

          冪函數——底數是自變量,指數是常數;

          指數函數——指數是自變量,底數是常數。

         。2)幾個常見冪函數的圖象和性質

          由同學們畫出下列常見的冪函數的圖象,并根據圖象將發現的性質填入表格

          根據上表的內容并結合圖象,總結函數的共同性質。讓學生交流,老師結合學生的回答組織學生總結出性質。

          以上問題的設計意圖:數形結合是一個重要的數學思想方法,它包含以數助形,和以形助數的思想。通過問題設計讓學生著手實際,借助行的生動來闡明冪函數的性質。

          教師講評:冪函數的性質.

         、偎械膬绾瘮翟冢0,+∞)上都有定義,并且圖像都過點(1,1).

          ②如果a>0,則冪函數的圖像通過原點,并在區間〔0,+∞)上是增函數.

         、廴绻鸻<0,則冪函數在(0,+∞)上是減函數,在第一象限內,當x從右邊趨向于原點時,圖像在y軸右方無限地趨近y軸;當x趨向于+∞時,圖像在x軸上方無限地趨近x軸.

         、墚攁為奇數時,冪函數為奇函數;當a為偶數時,冪函數為偶函數。

          以問題設計為主,通過問題,讓學生由已經學過的指數函數,對數函數,描點作圖得到五個冪函數的圖像,但是我們應該知道繪制冪函數的圖像比繪制指數函數和對數函數的圖像更為復雜,因為冪函數隨著冪指數的輕微變化會出現較大的變化,因此,在描點作圖之前,應引導學生對幾個特殊的冪函數的性質先進行初步的探究,如分析函數的定義域,奇偶性等,在根據研究結果和描點作圖畫出圖像,讓學生觀察所作圖像特征,并由圖象特征得到相應的函數性質,讓學生充分體會系統的研究方法。同時學生對于歸納性質這一環節相對指數函數,對數函數的性質,學生會有更大的困難。因此,教學中只須對他們的圖像與基本性質進行認識,而不必在一般冪函數上作過多的引申和介紹。在教學中,采用從具體到一般,再從一般到具體的安排。

          通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。

          (3)當堂訓練,鞏固深化

          例題和練習題的選取應結合學生認知探究,鞏固本節課的重點知識,并能用知識加以運用。本節課選取主要選取了兩道例題。

          例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數。這題先從“形”的角度判斷函數的單調區間和單調性,再用到定義從“數”的角度對函數的單調性進行推理論證,培養學生的數形結合的數學思想和解決問題的專業素養。

          例2是補充例題,主要培養學生根據體例構造出函數,并利用函數的性質來解決問題的能力,從而加深學生對冪函數及其性質的理解。注意:由于學生對冪函數還不是很熟悉,所以在講評中要刻意體現出冪函數y=x1。3是增函數與y=x—5/4的圖像的畫法,即再一次讓學生體會根據解析式來畫圖像解題這一基本思路

         。4)小結歸納,回顧反思。 小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:

         。1)通過本節課的學習,你學到了哪些知識?

         。2)通過本節課的學習,你最大的體驗是什么?

         。3)通過本節課的學習,你掌握了哪些技能?

         。ǘ┳鳂I設計 作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成. 我設計了以下作業:

          (1)必做題

         。2)選做題

         。ㄈ┌鍟O計

          板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。

          五、評價分析

          學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對冪函數是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。

          謝謝!

        高中數學說課稿 篇4

          一、教材分析

          集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

          本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。

          二、教學目標

          1、學習目標

         。1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬

          于”關系;

         。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

          2、能力目標

         。1)能夠把一句話一個事件用集合的方式表示出來。

         。2)準確理解集合與及集合內的元素之間的關系。

          3、情感目標

          通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。

          三、教學重點與難點

          重點 集合的基本概念與表示方法;

          難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

          四、教學方法

          (1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;

          (2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

          五、學習方法

         。1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

          教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。

         。2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

          優扶差,滿足不同!

          六、教學思路

          具體的思路如下

          復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。

          一、 引入課題

          軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

          在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

          二、 正體部分

          學生閱讀教材,并思考下列問題:

         。1)集合有那些概念?

         。2)集合有那些符號?

         。3)集合中元素的特性是什么?

         。4)如何給集合分類?

          (一)集合的有關概念

         。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

          都可以稱作對象.

         。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

          這些對象的全體構成的集合.

          (3)元素:集合中每個對象叫做這個集合的元素.

          集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

          1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

          對學生的例子予以討論、點評,進而講解下面的問題。

          2、元素與集合的關系

         。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

         。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

          要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)

          集合A={3,4,6,9}a=2 因此我們知道a?A

          3、集合中元素的特性

          (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.

          (2)互異性:集合中的元素一定是不同的.

         。3)無序性:集合中的元素沒有固定的順序.

          4、集合分類

          根據集合所含元素個屬不同,可把集合分為如下幾類:

          (1)把不含任何元素的集合叫做空集Ф

         。2)含有有限個元素的集合叫做有限集

          (3)含有無窮個元素的集合叫做無限集

          注:應區分?,{?},{0},0等符號的含義

          5、常用數集及其表示方法

         。1)非負整數集(自然數集):全體非負整數的集合.記作N

         。2)正整數集:非負整數集內排除0的集.記作N*或N+

         。3)整數集:全體整數的集合.記作Z

          (4)有理數集:全體有理數的集合.記作Q

         。5)實數集:全體實數的集合.記作R

          注:(1)自然數集包括數0.

         。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

          除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

          (二)集合的表示方法

          我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

         。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

          如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

          例1.(課本例1)

          思考2,引入描述法

          說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

          (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

          如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

          例2.(課本例2)

          說明:(課本P5最后一段)

          思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

          {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

          辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

          說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

          (三)課堂練習(課本P6練習)

          三、 歸納小結與作業

          本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

          書面作業:習題1.1,第1- 4題

        高中數學說課稿 篇5

          高中數學第三冊(選修)Ⅱ第一章第2節第一課時

          一、教材分析

          教材的地位和作用

          期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。

          教學重點與難點

          重點:離散型隨機變量期望的概念及其實際含義。

          難點:離散型隨機變量期望的實際應用。

          [理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。

          二、教學目標

          [知識與技能目標]

          通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

          會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

          [過程與方法目標]

          經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。

          通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。

          [情感與態度目標]

          通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。

          三、教法選擇

          引導發現法

          四、學法指導

          “授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。

          五、教學的基本流程設計

          高中數學第三冊《離散型隨機變量的期望》說課教案.rar

        高中數學說課稿 篇6

          一、教材分析:

          1、教材的地位與作用:

          線性規劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節內容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數學在解決實際問題中的應用,體驗數形結合和轉化的思想方法,培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。

          2、教學重點與難點:

          重點:畫可行域;在可行域內,用圖解法準確求得線性規劃問題的`最優解。

          難點:在可行域內,用圖解法準確求得線性規劃問題的最優解。

          二、目標分析:

          在新課標讓學生經歷“學數學、做數學、用數學”的理念指導下,本節課的教學目標分設為知識目標、能力目標和情感目標。

          知識目標:

          1、了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行

          域和最優解等概念;

          2、理解線性規劃問題的圖解法;

          3、會利用圖解法求線性目標函數的最優解.

          能力目標:

          1、在應用圖解法解題的過程中培養學生的觀察能力、理解能力。

          2、在變式訓練的過程中,培養學生的分析能力、探索能力。

          3、在對具體事例的感性認識上升到對線性規劃的理性認識過程中,培養學生運用數形結合思想解題的能力和化歸能力。

          情感目標:

          1、讓學生體驗數學來源于生活,服務于生活,體驗數學在建設節約型社會中的作用,品嘗學習數學的樂趣。

          2、讓學生體驗數學活動充滿著探索與創造,培養學生勤于思考、勇于探索的精神;

          3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。

        高中數學說課稿 篇7

          我將從教學理念;教材分析;教學目標;教學過程;教法、學法;教學評價六個方面來陳述我對本節課的設計方案。

          一、教學理念

          新的課程標準明確指出“數學是人類文化的重要組成部分,構成了公民所必須具備的一種基本素質!逼浜x就是:我們不僅要重視數學的應用價值,更要注重其思維價值和人文價值。

          因此,創造性地使用教材,積極開發、利用各種教學資源,創設教學情境,讓學生通過主動參與、積極思考、與人合作交流和創新等過程,獲得情感、能力、知識的全面發展。本節課力圖打破常規,充分體現以學生為本,全方位培養、提高學生素質,實現課程觀念、教學方式、學習方式的轉變。

          二、教材分析

          三角函數是中學數學的重要內容之一,它既是解決生產實際問題的工具,又是學習高等數學及其它學科的基礎。本節課是在學習了任意角的三角函數,兩角和與差的三角函數以及正、余弦函數的圖象和性質后,進一步研究函數y=Asin(ωx+φ)的簡圖的畫法,由此揭示這類函數的圖象與正弦曲線的關系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進一步理解正、余弦函數的性質,它是研究函數圖象變換的一個延伸,也是研究函數性質的一個直觀反映。共3課時,本節課是繼學習完振幅、周期、初相變換后的第二課時。

          本節課倡導學生自主探究,在教師的引導下,通過五點作圖法正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律是本節課的重點。

          難點是對周期變換、相位變換先后順序調整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個字母x而言的變換成為突破本節課教學難點的關鍵。

          依據《課標》,根據本節課內容和學生的實際,我確定如下教學目標。

          三、教學目標

         。壑R與技能]

          通過“五點作圖法”正確找出函數y=sinx到y=sin(ωx+φ)的圖象變換規律,能用五點作圖法和圖象變換法畫出函數y=Asin(ωx+φ)的簡圖,能舉一反三地畫出函數y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡圖。

          [過程與方法]

          通過引導學生對函數y=sinx到y=sin(ωx+φ)的圖象變換規律的探索,讓學生體會到由簡單到復雜,特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調整后,將影響圖象變換這一難點的突破,讓學生學會抓住問題的主要矛盾來解決問題的基本思想方法。

         。矍楦袘B度與價值觀]

          課堂中,通過對問題的自主探究,培養學生的獨立意識和獨立思考能力;小組交流中,學會合作意識;在解決問題的難點時,培養學生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學生追求真理,樂于創新的情感需求,引發學生渴求知識的強烈愿望,樹立科學的人生觀、價值觀。

          四、教學過程(六問三練)

          1、設置情境

          《函數y=Asin(ωx+φ)的圖象(第二課時)》說課稿。

        高中數學說課稿 篇8

          一、本節內容的地位與重要性

          "分類計數原理與分步計數原理"是《高中數學》一節獨特內容。這一節課與排列、組合的基本概念有著緊密的聯系,通過對這一節課的學習,既可以讓學生接受、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。

          二、關于教學目標的確定

          根據兩個基本原理的地位和作用,我認為本節課的教學目標是:

          (1)使學生正確理解兩個基本原理的概念;

          (2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;

          (3)提高分析、解決問題的能力

         。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。

          三、關于教學重點、難點的選擇和處理

          中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點內容。

          正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,面對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生接受概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。

          四、關于教學方法和教學手段的選用

          根據本節課的內容及學生的實際水平,我采取啟發引導式教學方法并充分發揮電腦多媒體的輔助教學作用。

          啟發引導式作為一種啟發式教學方法,體現了認知心理學的基本理論。符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則,教學過程中,教師采用點撥的方法,啟發學生通過主動思考、動手操作來達到對知識的"發現"和接受,進而完成知識的內化,使書本的知識成為自己的知識。

          電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現,更好地為教學服務。

          五、關于學法的指導

          "授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養學生主動觀察、主動思考、自我發現的學習能力,增強學生的綜合素質,從而達到教學的目標。教學中,教師創設疑問,學生想辦法解決疑問,通過教師的啟發點撥,類比推理,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發現"——"解惑"四個環節,學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學生認知水平,培養了學習能力。

          六、關于教學程序的設計

         。ㄒ唬┱n題導入

          這是本章的第一節課,是起始課,講起始課時,把這一學科的內容作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下面的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節的必要性,明確研究計數方法是本章內容的獨特性,從應用的廣泛看學習本章內容的重要性。同時板書課題(分類計數原理與分步計數原理)

          這樣做,能使學生明白本節內容的地位和作用,激發其學習新知識的欲望,為順利完成教學任務做好思維上的準備。

          (二)新課講授

          通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。

          緊跟著給出:

          引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法?

          引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

          這個問題的兩個引申由漸入深、循序漸進為學生接受分類計數原理做好了準備。

          板書分類計數原理內容:

          完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)

          此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理內容,啟發總結得下面三點注意:(出示幻燈片)

         。1)各分類之間相互獨立,都能完成這件事;

         。2)根據問題的特點在確定的分類標準下進行分類;

         。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

          這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。

          接下來給出問題2:(出示幻燈片)

          由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經B村去C村,共有多少種不同的走法?

          提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學生會發現問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

          問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不同的顏色閃現出六種不同的走法,讓學生列式求出不同走法數,并列舉所有走法。

          歸納得出:分步計數原理(板書原理內容)

          分步計數原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

          N=m1×m2×…×mn

          種不同的方法。

          同樣趁學生對定理有一定的認識,引導學生分析分步計數原理內容,啟發總結得下面三點注意:(出示幻燈片)

         。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;

         。2) 根據問題的特點在確定的分步標準下分步;

         。3) 分步時要注意滿足完成一件事必須并且只需連續完成這N個步驟這件事才算完成。

         。ㄈ⿷门e例

          教材例1:(書架取書問題)引導學生分析解答,注意區分是分類還是分步。

          例2:由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?本題設置了4個問題:

         。1) 每一個三位數是由什么構成的?(三個整數字)

         。2) 023是一個三位數嗎?(百位上不能是0)

         。3) 組成一個三位數需要怎么做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)

         。4) 怎樣表述?

          教師巡視指導、并歸納

          解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法。根據分步計數原理,得到可以組成的三位整數的個數是N=4×5×5=100.

          答:可以組成100個三位整數。

         。ń處煹倪B續發問、啟發、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高。

          教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)

         。ㄋ模w納小結

          師:什么時候用分類計數原理、什么時候用分步計數原理呢?

          生:分類時用分類計數原理,分步時用分步計數原理。

          師:應用兩個基本原理時需要注意什么呢?

          生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。

         。ㄎ澹┱n堂練習

          P222:練習1~4.學生板演第4題

         。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構成給以提示)

         。┎贾米鳂I

          P222:練習5,6,7.

          補充題:

          1.在所有的兩位數中,個位數字小于十位數字的共有多少個?

         。ㄌ崾荆喊词簧蠑底值拇笮】梢苑譃9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)

          2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數。

          (提示:需要按三個志愿分成三步。共有m(m-1)(m-2)種填寫方式)

          3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?

          (提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)

          4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

         。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

          只要大家用心學習,認真復習,就有可能在高中的戰場上考取自己理想的成績。

        高中數學說課稿 篇9

          一、教學目標

          1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.

          2.經歷從銳角三角函數定義過度到任意角三角函數定義的推廣過程,體驗三角函數概念的產生、發展過程.領悟直角坐標系的工具功能,豐富數形結合的經驗.

          3.培養學生通過現象看本質的唯物主義認識論觀點,滲透事物相互聯系、相互轉化的辯證唯物主義世界觀.

          4.培養學生求真務實、實事求是的科學態度.

          二、重點、難點、關鍵

          重點:任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.

          難點:把三角函數理解為以實數為自變量的函數.

          關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

          三、教學理念和方法

          教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.

          根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用"啟發探索、講練結合"的方法組織教學.

          四、教學過程

          [執教線索:

          回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優化認知:用直角坐標系研究銳角三角函數--探索發展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業]

         。ㄒ唬⿵土曇、回想再認

          開門見山,面對全體學生提問:

          在初中我們初步學習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節課該研究什么呢?

          探索任意角的三角函數(板書課題),請同學們回想,再明確一下:

         。ㄇ榫1)什么叫函數?或者說函數是怎樣定義的?

          讓學生回想后再點名回答,投影顯示規范的定義,教師根據回答情況進行修正、強調:

          傳統定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.

          現代定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.

          設計意圖:

          函數和三角函數是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數的概念,因此對三角函數的學習就是一個從一般到特殊的演繹的過程,也是以具體函數豐富函數概念的過程.教學經驗表明:學生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數概念進行回想再認,目的在于明確函數概念的本質,為演繹學習任意角三角函數概念作好知識和認知準備.

         。ㄇ榫2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數.請回想:這三個三角函數分別是怎樣規定的?

          學生口述后再投影展示,教師再根據投影進行強調:

          設計意圖:

          學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展).溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少.

         。ǘ┮熹亯|、創設情景

         。ㄇ榫3)我們已經把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

          留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導.

          能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數.

          設計意圖:

          從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的"再創造"征程.

          教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義!

          師生共做(學生口述,教師板書圖形和比值):

          把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r.

          根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數比值:

          設計意圖:

          此處做法簡單,思想重要.為了順利實現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數.初中以直角三角形邊角關系來定義銳角三角函數,現在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數定義.這是一個認識的飛躍,是理解任意角三角函數概念的關鍵之一,也是數學發現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數到復數的擴展等).

         。ㄇ榫4)各個比值與角之間有怎樣的關系?比值是角的函數嗎?

          追問:銳角α大小發生變化時,比值會改變嗎?

          先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.

          引導學生觀察圖3,聯系相似三角形知識,

          探索發現:

          對于銳角α的每一個確定值,六個比值都是

          確定的,不會隨P在終邊上的移動而變化.

          得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數值的函數.

          設計意圖:

          初中學生對函數理解較膚淺,這里在學生思維的最近發展區進一步研究初中學過的銳角三角函數,在思維上更上了一個層次,扣準函數概念的內涵,突出變量之間的依賴關系或對應關系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關鍵,也是在認知上把三角函數知識納入函數知識結構的關鍵.這樣做能夠使學生有效地增強函數觀念.

         。ㄈ┓治鰵w納、自主定義

          (情境5)能將銳角的比值情形推廣到任意角α嗎?

          水到渠成,師生共同進行探索和推廣:

          對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

          終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:

          ;

          (指出:不畫出角的方向,表明角具有任意性)

          怎樣刻畫任意角的三角函數呢?研究它的六個比值:

         。ò鍟┰Oα是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:

          α=kππ/2時,x=0,比值y/x、r/x無意義;

          α=kπ時,y=0,比值x/y、r/y無意義.

          追問:α大小發生變化時,比值會改變嗎?

          先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.

          再引導學生利用相似三角形知識,探索發現:對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.

          綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節課分析).

          因此,六個比值分別是以角α為自變量、以比值為函數值的函數.

          根據歷史上的規定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):

          =sinα(正弦)=cosα(余弦)=tanα(正切)

          =cscα(余割)=sec(正弦)=cotα(余切)

          教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個整體,相當于函數記號f(x).其它幾個三角函數也如此

          投影顯示圖六,指導學生分析其對應關系,進一步體會其函數內涵:

          (圖六)

          指導學生識記六個比值及函數名稱.

          教師指出:正弦、余弦、正切、余切、正割、余割六個函數統稱為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).

          引導學生進一步分析理解:

          已知角的集合與實數集之間可以建立一一對應關系,對于每一個確定的實數,把它看成一個弧度數,就對應著唯一的一個角,從而分別對應著六個唯一的三角函數值.因此,(板書)三角函數可以看成是以實數為自變量的函數,這將為以后的應用帶來很多方便.

          設計意圖:

          把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數內涵.引導學生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數可以看成是以實數為自變量的函數"的理解有半信半疑之感,有待通過后續的應用加深理解.

         。ㄋ模┨剿鞫x域

          (情景6)(1)函數概念的三要素是什么?

          函數三要素:對應法則、定義域、值域.

          正弦函數sinα的對應法則是什么?

          正弦函數sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

          (2)布置任務情景:什么是三角函數的定義域?請求出六個三角函數的定義域,填寫下表:

          三角函數

          sinα

          cosα

          tanα

          cotα

          cscα

          secα

          定義域

          引導學生自主探索:

          如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.

          關于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實數集R.

          對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

          教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

         。P于值域,到后面再學習).

          設計意圖:

          定義域是函數三要素之一,研究函數必須明確定義域.指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握.

         。ㄎ澹┓柵袛、形象識記

         。ㄇ榫7)能判斷三角函數值的正、負嗎?試試看!

          引導學生緊緊抓住三角函數定義來分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:

          (同好得正、異號得負)

          sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

          設計意圖:

          判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.

         。┚毩曥柟、理解記憶

          1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數值.

          要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.

          課堂練習:

          p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數值.

          要求心算,并提問中下學生檢驗,--------

          點評:角α終邊上有無窮多個點,根據三角函數的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義).

          補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數值.

          師生探索:已知y=-3,要求其它五個三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

          2、自學例2:求下列各角的六個三角函數值:(1)0;(2)π/2;(3)3π/2.

          提問,據反饋信息作點評、修正.

          師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。

          取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:

          角α(角度)

          0°

          90°

          180°

          270°

          360°

          角α(弧度)

          sinα

          cosα

          tanα

          處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.

          強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數值,要結合三角函數定義記熟這些值.

          設計意圖:

          及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養學生分析解決問題的能力"貫穿在每一節課的課堂教學始終.

         。ㄆ撸┗仡櫺〗Y、建構網絡

          要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:

          1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)

          2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)

          3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)

          設計意圖:

          遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時建構知識網絡,優化知識結構,培養認知能力.

          (八)布置課外作業

          1.書面作業:習題4.3第3、4、5題.

          2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.

          教學設計說明

          一、對本節教材的理解

          三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用.

          星星之火,可以燎原.

          直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數定義,緊緊扣住三角函數定義這個寶貴的源泉,自然地導出三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數方程等),定義還是直接解決某些問題的工具,三角函數知識是物理學、高等數學、測量學、天文學的重要基礎.

          三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身.

          二、教學法加工

          數學教材通常用抽象概括的形式化的數學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發展為本"的科學教育觀,"將數學的學術形態轉化為教育形態"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數學知識產生發展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數學知識和方法,有效地發展智力、培養能力.

          在本節教材中,三角函數定義是重點,三角函數線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協調匹配,將不按教材順序來進行教學,第一課時安排三角函數的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.

          教學經驗表明,三角函數定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發探索、講練結合"的常規教學方法,在學生的最近發展區圍繞學生的學習目標設計了一系列符合學生認知規律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發展的過程,通過思維過程來理解知識、培養能力.

          將六個比值放在一起來研究,同時給出六個三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學中注意區分就行了.

          教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關系;另外可以先研究六個比值與α之間的函數關系,然后再對六個比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質.本課例采用后者組織教學.

          三、教學過程分析(見穿插在教案中的設計意圖).

        高中數學說課稿 篇10

          本節課講述的是人教版高一數學(上)3.2等差數列(第一課時)的內容。

          一、教材分析

          1、教材的地位和作用:

          數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

          2、教學目標

          根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標

          a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。

          b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

          c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

          3、教學重點和難點

          根據教學大綱的要求我確定本節課的教學重點為:

         、俚炔顢盗械母拍。

          ②等差數列的通項公式的推導過程及應用。

          由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建!钡乃枷敕椒ㄝ^為陌生,因此用數學思想解決實際問題是本節課的另一個難點。

          二、學情教法分析:

          對于三中的高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合

          這類學生的心理發展特點,從而促進思維能力的進一步發展。

          針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

          三、學法指導:

          在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

          四、教學程序

          本節課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。

          (一)復習引入:

          1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)

          通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。

          2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①

          3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②

          通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

          (二) 新課探究

          1、由引入自然的給出等差數列的概念:

          如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,

          這個常數叫做等差數列的公差,通常用字母d來表示。強調:

         、 “從第二項起”滿足條件;

         、诠頳一定是由后項減前項所得;

         、勖恳豁椗c它的前一項的差必須是同一個常數(強調“同一個常數” );

          在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

          an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

          1. 9 ,8,7,6,5,4,??;√ d=-1

          2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

          3. 0,0,0,0,0,0,??.; √ d=0

          4. 1,2,3,2,3,4,??;×

          5. 1,0,1,0,1,??×

          其中第一個數列公差<0,>0,第三個數列公差=0

          由此強調:公差可以是正數、負數,也可以是0

          2、第二個重點部分為等差數列的通項公式

          在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。

          若一等差數列{an }的首項是a1,公差是d,則據其定義可得:

          a2 - a1 =d 即: a2 =a1 +d

          a3 – a2 =d 即: a3 =a2 +d = a1 +2d

          a4 – a3 =d 即: a4 =a3 +d = a1 +3d

          ??

          猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式:

          an=a1+(n-1)d

          此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:

          a2 – a1 =d

          a3 – a2 =d

          a4 – a3 =d

          ??

          an – an-1=d

          將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

          (1)

          當n=1時,(1)也成立,

          所以對一切n∈N﹡,上面的公式都成立

          因此它就是等差數列{an}的通項公式。

          在迭加法的證明過程中,我采用啟發式教學方法。

          利用等差數列概念啟發學生寫出n-1個等式。

          對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。

          在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求

          接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2 ,

          即an=2n-1 以此來鞏固等差數列通項公式運用

          同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。

         。ㄈ⿷门e例

          這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另

          一部分量。

          例1 (1)求等差數列8,5,2,?的第20項;第30項;第40項

         。2)-401是不是等差數列-5,-9,-13,?的項?如果是,是第幾項?

          在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an.

          例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

          在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

          例3 是一個實際建模問題

          建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

          這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型------等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

          設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發了學生的興趣;3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法

          (四)反饋練習

          1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

          2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

          目的:對學生加強建模思想訓練。

          3、若數例{an} 是等差數列,若 bn = k an ,(k為常數)試證明:數列{bn}是等差數列

          此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

         。ㄎ澹w納小結(由學生總結這節課的收獲)

          1.等差數列的概念及數學表達式.

          強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

          2.等差數列的通項公式 an= a1+(n-1) d會知三求一

          3.用“數學建模”思想方法解決實際問題

          (六)布置作業

          必做題:課本P114 習題3.2第2,6 題

          選做題:已知等差數列{an}的首項a1=-24,從第10項開始為正數,求公差d的取值范圍。

         。康模和ㄟ^分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

          五、板書設計

          在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

        【實用的高中數學說課稿模板合集10篇】相關文章:

        實用的高中數學說課稿模板合集5篇08-13

        實用的高中數學說課稿模板合集8篇08-06

        實用的高中數學說課稿模板合集七篇08-18

        實用的高中數學說課稿模板9篇07-29

        實用的高中數學說課稿模板8篇07-28

        實用的高中數學說課稿模板九篇07-24

        實用的高中數學說課稿合集5篇08-09

        實用的高中數學說課稿合集8篇07-31

        實用的高中數學說課稿合集7篇07-29

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>