實用的高中數學說課稿范文合集六篇
作為一名無私奉獻的老師,總不可避免地需要編寫說課稿,是說課取得成功的前提。優秀的說課稿都具備一些什么特點呢?以下是小編為大家收集的高中數學說課稿6篇,希望對大家有所幫助。
高中數學說課稿 篇1
各位同仁,各位專家:
我說課的課題是《任意角的三角函數》,內容取自蘇教版高中實驗教科書《數學》第四冊 第1。2節
先對教材進行分析
教學內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數這一基本概念。所以這個內容要認真探討教材,精心設計過程。
教學重點:任意角三角函數的定義
教學難點:正確理解三角函數可以看作以實數為自變量的函數、初中用邊長比值來定義轉變為坐標系下用坐標比值定義的觀念的轉換以及坐標定義的合理性的理解;
學情分析:
學生已經掌握的內容,學生學習能力
1。初中學生已經學習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見的知識和求法。
2。我們南山區經過多年的初中課改,學生已經具備較強的自學能力,多數同學對數學的學習有相當的興趣和積極性。
3。在探究問題的能力,合作交流的意識等方面發展不夠均衡,尚有待加強必須在老師一定的指導下才能進行
針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下
知識目標:
。1)任意角三角函數的定義;三角函數的定義域;三角函數值的符號,
能力目標:
。1)理解并掌握任意角的三角函數的定義;
。2)正確理解三角函數是以實數為自變量的函數;
。3)通過對定義域,三角函數值的符號的推導,提高學生分析探究解決問題的能力。
德育目標:
。1)學習轉化的思想,(2)培養學生嚴謹治學、一絲不茍的科學精神;
針對學生實際情況為達到教學目標須精心設計教學方法
教法學法:溫故知新,逐步拓展
。1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發展新知識,形成新的概念;
。2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
。1)提高直觀性增強趣味性。
教學過程分析
總體來說, 由舊及新,由易及難,
逐步加強,逐步推進
先由初中的直角三角形中銳角三角函數的定義
過度到直角坐標系中銳角三角函數的定義
再發展到直角坐標系中任意角三角函數的定義
給定定義后通過應用定義又逐步發現新知識拓展完善定義。
具體教學過程安排
引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學生發現B的坐標和邊長的關系。進一步啟發他們發現由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數的定義發展到用終邊上任一點的坐標來表示, 從而銳角三角函數可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數,便考慮放在直角坐標中進行合理進行定義了
從而得到
知識點一:任意一個角的三角函數的定義
提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經過P(2,—3),求角A的三個三角函數值
。ù祟}由學生自己分析獨立動手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數值
結合變式我們發現三個三角函數值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數的定義,而我們又一直稱呼為三角函數,
提出問題:這三個新的定義確實問是函數嗎?為什么?
從而引出函數極其定義域
由學生分析討論,得出結論
知識點二:三個三角函數的定義域
同時教師強調:由于弧度制使角和實數建立了一一對應關系,所以三角函數是以實數為自變量的函數
例題變式2, 已知角A 的終邊經過P(—2a,—3a)( a不為0),求角A的三個三角函數值
解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數值的正負與角所在象限有關,從而導出第三個知識點
知識點三:三角函數值的正負與角所在象限的關系
由學生推出結論,教師總結符號記憶方法,便于學生記憶
例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業和課外作業以加強知識的記憶和理解
課堂作業P16 1,2,4
。▽W生演板,后集體討論修訂答案同桌討論,由學生回答答案)
課后分層作業(有利于全體學生的發展)
必作P23 1(2),5(2),6(2)(4) 選作P23 3,4
板書設計(見PPT)
高中數學說課稿 篇2
一、教學目標
。ㄒ唬┲R與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養學生觀察能力、抽象概括能力及創新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯想的方法,領會方程、數形結合等思想。
。ㄈ┣楦袘B度價值觀
1、感受動點軌跡的動態美、和諧美、對稱美。
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣。
二、教學重點與難點
教學重點:運用類比、聯想的方法探究不同條件下的軌跡。
教學難點:圖形、文字、符號三種語言之間的過渡。
三、、教學方法和手段
教學方法:觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。
教學手段:利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。
教學模式:重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。
四、教學過程
1、創設情景,引入課題
生活中我們四處可見軌跡曲線的影子。
演示:這是美麗的城市夜景圖。
演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多。
演示建筑中也有許多美麗的軌跡曲線。
設計意圖:讓學生感受數學就在我們身邊,感受軌跡,曲線的動態美、和諧美、對稱美,激發學習興趣。
2、激發情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1。
高中數學說課稿 篇3
1. 教材分析
1-1教學內容及包含的知識點
(1) 本課內容是高中數學第二冊第七章第三節《兩條直線的位置關系》的最后一個內容。
(2) 包含知識點:點到直線的距離公式和兩平行線的距離公式。
1-2教材所處地位、作用和前后聯系
本節課是兩條直線位置關系的最后一個內容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學大綱要求
掌握點到直線的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。
1-5教學目標及確定依據
教學目標
(1) 掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。
(2) 培養學生探究性思維方法和由特殊到一般的研究能力。
(3) 認識事物之間相互聯系、互相轉化的辯證法思想,培養學生轉化知識的能力。
(4) 滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發展。
確定依據:
中華人民共和國教育部制定的《全日制普通高級中學數學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)
1-6教學重點、難點、關鍵
(1) 重點:點到直線的距離公式
確定依據:由本節在教材中的地位確定
(2) 難點:點到直線的距離公式的推導
確定依據:根據定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現。
分析“嘗試性題組”解題思路可突破難點
(3)關鍵:實現兩個轉化。一是將點線距離轉化為定點到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點的距離。
2.教法
2-1發現法:本節課為了培養學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發學生分析、發現、比較、論證等,從而形成完整的數學模型。
確定依據:
(1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。
(2)事物之間相互聯系,相互轉化的辯證法思想。
2-2教具:多媒體和黑板等傳統教具
3. 學法
3-1發現法:豐富學生的數學活動,學生經過練習、觀察、分析、探索等步驟,自己發現解決問題的方法,比較論證后得到一般性結論,形成完整的數學模型,再運用所得理論和方法去解決問題。
一句話:還課堂以生命力,還學生以活力。
3-2學情:
(1)知識能力狀況,本節為兩線位置關系的最后一個內容,在這之前學生已經系統的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。
(2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。
(3)生活經驗:數學源于生活,生活中的點線距隨處可見,怎樣將實際問題數學化,是每個追求成長、追求發展的學生所渴求的一種研究能力。豐富的課堂數學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養能力。
3-3學具:直尺、三角板
4. 教學評價
學生完成反思性學習報告,書寫要求:
(1) 整理知識結構。
(2) 總結所學到的基本知識,技能和數學思想方法。
(3) 總結在學習過程中的經驗,發明發現,學習障礙等,說明產生障礙的原因。
(4) 談談你對老師教法的建議和要求。
作用:
(1) 通過反思使學生對所學知識系統化。反思的過程實際上是學生思維內化,知識深化和認知牢固化的一個心理活動過程。
(2) 報告的寫作本身就是一種創造性活動。
(3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調整,及時進行補償性教學。
5. 板書設計
(略)
6. 教學的反思總結
心理歷練,得意之處,困惑之處,知識的傳承發展,如何修正完善等。
高中數學說課稿 篇4
一、教材分析
1.《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
②掌握指數函數的圖象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
、贊B透數形結合的基本數學思想方法
②培養學生觀察、聯想、類比、猜測、歸納的能力;
(3)情感目標:
①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力
、垲I會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。
4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。
2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。
1.創設情景、導入新課
教師活動:
①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,
、趯W生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
、诨貞浿笖档母拍;
、蹥w納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸惖姆椒。
設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性, 為突破難點做好準備;
2.啟發誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。
學生活動:
①畫出兩個簡單的指數函數圖象
、诮涣、討論
、蹥w納出研究函數性質涉及的方面
④總結出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的.目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:
、侔鍟1
、诎鍟2第一問
、劢榻B有關考古的拓展知識。
高中數學說課稿 篇5
一、地位作用
數列是高中數學重要的內容之一,等比數列是在學習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個高中數學內容中數列與已學過的函數及后面的數列極限有密切聯系,它也是培養學生數學能力的良好題材,它可以培養學生的觀察、分析、歸納、猜想及綜合解決問題的能力。
基于此,設計本節的數學思路上:
利用類比的思想,聯系等差數列的概念及通項公式的學習方法,采取自學、引導、歸納、猜想、類比總結的教學思路,充分發揮學生主觀能動性,調動學生的主體地位,充分體現教為主導、學為主體、練為主線的教學思想。
二、教學目標
知識目標:1)理解等比數列的概念
2)掌握等比數列的通項公式
3)并能用公式解決一些實際問題
能力目標:培養學生觀察能力及發現意識,培養學生運用類比思想、解決分析問題的能力。
三、教學重點
1)等比數列概念的理解與掌握 關鍵:是讓學生理解“等比”的特點
2)等比數列的通項公式的推導及應用
四、教學難點
“等比”的理解及利用通項公式解決一些問題。
五、教學過程設計
(一)預習自學環節。(8分鐘)
首先讓學生重新閱讀課本105頁國際象棋發明者的故事,并出示預習提綱,要求學生閱讀課本P122至P123例1上面。
回答下列問題
1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數列的定義。
2)觀察以下幾個數列,回答下面問題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
。1,-1,-1,-1,……
1,0,1,0……
、儆心膸讉是等比數列?若是公比是什么?
、诠萹為什么不能等于零?首項能為零嗎?
、酃萹=1時是什么數列?
、躴>0時數列遞增嗎?q<0時遞減嗎?
3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?
4)等比數列通項公式與函數關系怎樣?
(二)歸納主導與總結環節(15分鐘)
這一環節主要是通過學生回答為主體,教師引導總結為主線解決本節兩個重點內容。
通過回答問題(1)(2)給出等比數列的定義并強調以下幾點:①定義關鍵字“第二項起”“常數”;
②引導學生用數學語言表達定義: =q(n≥2);③q=1時為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
、躴>0時等比數列單調性不定,q<0為擺動數列,類比等差數列d>0為遞增數列,d<0為遞減數列。
通過回答問題(3)回憶等差數列的推導方法,比較兩個數列定義的不同,引導推出等比數列通項公式。
法一:歸納法,學會從特殊到一般的方法,并從次數中發現規律,培養觀察力。
法二:迭乘法,聯系等差數列“迭加法”,培養學生類比能力及新舊知識轉化能力。
高中數學說課稿 篇6
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關系的一個匯集點。搞好本節課的學習,對學生系統地掌握直線和平面的知識乃至于創新能力的培養都具有十分重要的意義。教學大綱明確要求要讓學生掌握二面角及其平面角的概念和運用。
2、教學目標
根據上面對教材的分析,并結合學生的認知水平和思維特點,確定本節課的教學目標:
認知目標:
。1)使學生正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
。2)進一步培養學生把空間問題轉化為平面問題的化歸思想。
能力目標:以培養學生的創新能力和動手能力為重點。
(1)突出對類比、直覺、發散等探索性思維的培養,從而提高學生的創新能力。
(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。
教育目標:
(1)使學生認識到數學知識來自實踐,并服務于實踐,從而增強學生應用數學的意識。
(2)通過揭示線線、線面、面面之間的內在聯系,進一步培養學生聯系的辯證唯物主義觀點。
3、本節課教學的重、難點是兩個過程的教學:
(1)二面角的平面角概念的形成過程。
。2)尋找二面角的平面角的方法的發現過程。
其理由如下:
。1)現行教材省略了概念的形成過程和方法的發現過程,沒有反映出科學認識產生的辯證過程,與學生的認知規律相悖,給學生的學習造成了很大的困難,非常不利于學生創新能力、獨立思考能力以及動手能力的培養。
(2)現代認知學認為,揭示知識的形成過程,對學生學習新知識是十分必要的。同時通過展現知識的發生、發展過程,給學生思考、探索、發現和創新提供了最大的空間,可以使學生在整個教學過程中始終處于積極的思維狀態,進而培養他們獨立思考和大膽求索的精神,這樣才能全面落實本節課的教學目標。
二、指導思想和教學方法
在設計本教學時,主要貫徹了以下兩個思想:
1、樹立以學生發展為本的思想。通過構建以學習者為中心、有利于學生主體精神、創新能力健康發展的寬松的教學環境,提供學生自主探索和動手操作的機會,鼓勵他們創新思考,親身參與概念和方法的形成過程。2、堅持協同創新原則。把教材創新、教法創新以及學法創新有機地統一起來,因為只有教師創新地教,學生創新地學,才能營建一個有利于創新能力培養的良好環境。
首先是教材創新。
(1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發現過程。
(2)在引入定義之后,例題講解之前,引導學生發現尋找二面角的平面角的方法,為例題做好鋪墊。
。3)重新編排例題。
其次是教法創新。采用多種創新的教學方法,包括問題解決法、類比發現法、研究發現法等教學方法。
這組教學方法的特點是教師通過創設問題情境,引導學生逐步發現知識的形成過程,使教學活動真正建立在學生自主活動和探索的基礎上,著力培養學生的創新能力。
這組教學方法使得學生在解決問題的過程中學數學,用數學,不僅強調動腦思考,而且強調動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學生全面、多樣的主體實踐活動,促進他們獨立思考能力、動手能力等多方面素質的整體發展。
教學手段的現代化有利于提高課堂效益,有利于創新人才的培養,根據本節課的教學需要,確定利用《幾何畫板》制作課件來輔助教學;此外,為加強直觀教學,教師可預先做好一些模型。
最后是學法創新。意在指導學生會創新地學。
1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創新意識,全身心地投入到學習中去,成為學習的主人。
2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯想等數學思想方法的運用,學會建立完善的認知結構。
3、會學:通過自已親身參與,學生要領會復習類比和深入研究這兩種知識創新的方法,從而既學到知識,又學會創新。
三、程序安排
。ㄒ唬、二面角
1、揭示概念產生背景。
心理學研究表明,當學生明確數學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創設問題情境,激發了學生的創新意識,營造了創新思維的氛圍。
問題情境1、我們是如何定量研究兩平行平面的相對位置的?
問題情境2、立幾中常用距離和角來定量描述兩個元素之間的相對位置,為什么不引入兩平行平面所成的角?
問題情境3、我們應如何定量研究兩個相交平面之間的相對位置呢?
通過這三個問題,打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發學生積極思維活動的展開。
2、展現概念形成過程。
【實用的高中數學說課稿范文合集六篇】相關文章:
實用的高中數學說課稿范文合集5篇08-11
實用的高中數學說課稿范文合集9篇08-10
實用的高中數學說課稿范文合集6篇08-08
實用的高中數學說課稿范文合集十篇08-17
實用的高中數學說課稿范文合集七篇08-15
實用的高中數學說課稿合集5篇08-09
實用的高中數學說課稿合集8篇07-31
實用的高中數學說課稿合集7篇07-29
實用的高中數學說課稿合集五篇07-26