高中數(shù)學(xué)說課稿范文集錦8篇
作為一名辛苦耕耘的教育工作者,總不可避免地需要編寫說課稿,說課稿有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。那么什么樣的說課稿才是好的呢?下面是小編幫大家整理的高中數(shù)學(xué)說課稿8篇,歡迎大家分享。
高中數(shù)學(xué)說課稿 篇1
各位評(píng)委:下午好!
我叫 ,來自 。今天我說課的課題《 》(第 課時(shí))。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
《 》是人教版出版社 第 冊(cè)、第 單元的內(nèi)容!丁芳仁 在知識(shí)上的延伸和發(fā)展,又是本章 的運(yùn)用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。
。ǘ、學(xué)情分析
通過前一階段的教學(xué),學(xué)生對(duì) 的認(rèn)識(shí)已有了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)層面:
知識(shí)層面:學(xué)生在已初步掌握了 。
能力層面:學(xué)生在初步已經(jīng)掌握了用
初步具備了 思想。 情感層面:學(xué)生對(duì)數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.
。ㄈ┙虒W(xué)課時(shí)
本節(jié)內(nèi)容分 課時(shí)學(xué)習(xí)。(本課時(shí),品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。)
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識(shí)與技能:
過程與方法:
情感態(tài)度:
。ɡ纾簞(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神. 通過 對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),對(duì)學(xué)生進(jìn)行辨證唯物主義教育)
在探索過程中,培養(yǎng)獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時(shí),讓學(xué)生養(yǎng)成理性思維的品質(zhì)。
三、重難點(diǎn)分析
重點(diǎn)確定為:
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解
其本質(zhì)就是
本節(jié)課的難點(diǎn)確定為:
要突破這個(gè)難點(diǎn),讓學(xué)生歸納
作鋪墊。
四、教法與學(xué)法分析
。ㄒ唬⿲W(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計(jì)教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現(xiàn)。
五、說教學(xué)過程
本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。
。ㄒ唬﹦(chuàng)設(shè)情景………………….
。ǘ┍扰f悟新………………….
(三)歸納提煉…………………
。ㄋ模⿷(yīng)用新知,熟練掌握 …………………
。ㄎ澹┛偨Y(jié)…………………
。┳鳂I(yè)布置…………………
。ㄆ撸┌鍟O(shè)計(jì)…………………
以上是我對(duì)本節(jié)課的一些粗淺的認(rèn)識(shí)和構(gòu)想,如有不妥之處,懇請(qǐng)各位專家批評(píng)指正。謝謝
著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計(jì)劃”、“實(shí)現(xiàn)計(jì)劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進(jìn)行分解,使我們對(duì)解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?
高中數(shù)學(xué)說課稿 篇2
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2.1.3函數(shù)簡單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì).通過對(duì)本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會(huì)函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識(shí)解決一些簡單的實(shí)際問題.通過上述活動(dòng),加深對(duì)函數(shù)本質(zhì)的認(rèn)識(shí).函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識(shí)之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.
3、教學(xué)目標(biāo)
。1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
。2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.
(3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì).
4、重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;
(2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.
教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識(shí)形成;
(2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主體參與的積極性.
2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個(gè)完成對(duì)各個(gè)難點(diǎn)的突破,以獲得各類問題的解決.
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評(píng)和規(guī)范書寫等方面,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚⒊晒Φ赝瓿蓵姹磉_(dá).
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.
在學(xué)法上:
1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.
2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的一個(gè)飛躍.
高中數(shù)學(xué)說課稿 篇3
一、教材分析
本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計(jì)》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時(shí)。在上一課時(shí),學(xué)生已經(jīng)懂得根據(jù)兩個(gè)相關(guān)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識(shí)變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個(gè)變量的相關(guān)性和最小二乘法的思想。
從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點(diǎn),也是本章內(nèi)容的難點(diǎn)之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計(jì)學(xué)的重要基礎(chǔ)。
二、教學(xué)目標(biāo)
根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定本節(jié)課的教學(xué)目標(biāo)如下:
知識(shí)與技能:
1. 知道最小二乘法和回歸分析的思想;
2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程
過程與方法:
經(jīng)歷線性回歸分析過程,借助圖形計(jì)算器得出回歸直線,增強(qiáng)數(shù)學(xué)應(yīng)用和使用技術(shù)的意識(shí)。
情感態(tài)度與價(jià)值觀
通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)
三、重點(diǎn)難點(diǎn)分析:
根據(jù)目標(biāo)分析,確定教學(xué)重點(diǎn)和難點(diǎn)如下:
教學(xué)重點(diǎn):
1. 知道最小二乘法和回歸分析的思想;
2.會(huì)求回歸直線
教學(xué)難點(diǎn):
建立回歸思想,會(huì)求回歸直線
四、教學(xué)設(shè)計(jì)
提出問題
理論探究
驗(yàn)證結(jié)論
小結(jié)提升
應(yīng)用實(shí)踐
作業(yè)設(shè)計(jì)
教學(xué)環(huán)節(jié)
內(nèi)容及說明
創(chuàng)設(shè)情境
探究:在一次對(duì)人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):
問題與引導(dǎo)設(shè)計(jì)
師生活動(dòng)
設(shè)計(jì)意圖
問題1. 利用圖形計(jì)算器作出散點(diǎn)圖,并指出上面的兩個(gè)變量是正相關(guān)還是負(fù)相關(guān)?
教師提問,學(xué)生
通過動(dòng)手操作得
出散點(diǎn)圖并回答
以舊“探”新:對(duì)舊的知識(shí)進(jìn)行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識(shí)做好充分的準(zhǔn)備;尤其為一些后進(jìn)生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。
教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點(diǎn)圖是研究兩個(gè)變量相關(guān)關(guān)系的一種重要手段。下面,請(qǐng)同學(xué)們根據(jù)得出的散點(diǎn)圖,思考下面的問題2.
問題2. 甲同學(xué)判斷某人年齡在65歲時(shí)體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對(duì)甲,
乙,丙三個(gè)同學(xué)的判斷有什么看法?
學(xué)生能夠表達(dá)自己的看法。有的學(xué)生可能會(huì)認(rèn)為乙同學(xué)的判斷是錯(cuò)誤的;有的學(xué)生可能認(rèn)為甲乙丙三個(gè)同學(xué)的判斷都是對(duì)的,答案不唯一
該問題具有探究性、啟發(fā)性和開放性。鼓勵(lì)學(xué)生大膽表達(dá)自己的看法。通過設(shè)計(jì)該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點(diǎn)圖中點(diǎn)的分布具有一定規(guī)律,體會(huì)觀測(cè)點(diǎn)與回歸直線的關(guān)系;進(jìn)而引起學(xué)生的對(duì)本節(jié)課內(nèi)容的興趣。
問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個(gè)小組提出的問題多
在小組討論的形式下和比較哪個(gè)小組提出的問題多,學(xué)生之間會(huì)充分的進(jìn)行交流,提出問題
通過小組討論比較,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達(dá)到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識(shí)。
學(xué)生可能提出的問題:
、贋槭裁醇、丙同學(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較小?
②某人年齡在65歲時(shí)體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時(shí)呢?
、圻@些樣本數(shù)據(jù)揭示出兩個(gè)相關(guān)變量之間怎樣的關(guān)系呢?
、茉鯓佑脭(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個(gè)問題都是學(xué)生“火熱的思考”成果
高中數(shù)學(xué)說課稿 篇4
各位老師:
大家好!
我叫***,來自**。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時(shí)安排為兩個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過程分析四大方面來闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。它承接著前面學(xué)過的隨機(jī)事件的概率及其性質(zhì),又是以后學(xué)習(xí)條件概率的基礎(chǔ),起到承前啟后的作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解古典概型及其概率計(jì)算公式。
難點(diǎn):古典概型的判斷及把一些實(shí)際問題轉(zhuǎn)化成古典概型。
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo)
。1)通過試驗(yàn)理解基本事件的概念和特點(diǎn)
。2)在數(shù)學(xué)建模的過程中,抽離出古典概型的兩個(gè)基本特征,推導(dǎo)出古典概型下的概率的計(jì)算公式。
2、過程與方法:
經(jīng)歷公式的推導(dǎo)過程,體驗(yàn)由特殊到一般的數(shù)學(xué)思想方法。
3、情感態(tài)度與價(jià)值觀:
。1)用具有現(xiàn)實(shí)意義的實(shí)例,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。
(2)讓學(xué)生掌握"理論來源于實(shí)踐,并把理論應(yīng)用于實(shí)踐"的辨證思想。
三、教法與學(xué)法分析
1、教法分析:根據(jù)本節(jié)課的特點(diǎn),采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過提出問題、思考問題、解決問題等教學(xué)過程,觀察對(duì)比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的主體能動(dòng)性,讓每一個(gè)學(xué)生充分地參與到學(xué)習(xí)活動(dòng)中來。
2、學(xué)法分析:學(xué)生在教師創(chuàng)設(shè)的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動(dòng)手嘗試相結(jié)合,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度。
、鍎(chuàng)設(shè)情景、引入新課
在課前,教師布置任務(wù),以小組為單位,完成下面兩個(gè)模擬試驗(yàn):
試驗(yàn)一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由代表匯總;
試驗(yàn)二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點(diǎn)"、"2點(diǎn)"、"3點(diǎn)"、"4點(diǎn)"、"5點(diǎn)"和"6點(diǎn)"的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由代表匯總。
在課上,學(xué)生展示模擬試驗(yàn)的操作方法和試驗(yàn)結(jié)果,并與同學(xué)交流活動(dòng)感受,教師最后匯總方法、結(jié)果和感受,并提出兩個(gè)問題。
1.用模擬試驗(yàn)的方法來求某一隨機(jī)事件的概率好不好?為什么?
不好,要求出某一隨機(jī)事件的概率,需要進(jìn)行大量的試驗(yàn),并且求出來的結(jié)果是頻率,而不是概率。
2.根據(jù)以前的學(xué)習(xí),上述兩個(gè)模擬試驗(yàn)的每個(gè)結(jié)果之間都有什么特點(diǎn)?]
「設(shè)計(jì)意圖」通過課前的模擬實(shí)驗(yàn),讓學(xué)生感受與他人合作的重要性,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言的能力。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,通過觀察對(duì)比,培養(yǎng)了學(xué)生發(fā)現(xiàn)問題的能力。
、嫠伎冀涣、形成概念
學(xué)生觀察對(duì)比得出兩個(gè)模擬試驗(yàn)的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對(duì)相關(guān)特點(diǎn)加以說明,加深對(duì)新概念的理解。
[基本事件有如下的兩個(gè)特點(diǎn):
。1)任何兩個(gè)基本事件是互斥的;
。2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設(shè)計(jì)意圖」讓學(xué)生從問題的相同點(diǎn)和不同點(diǎn)中找出研究對(duì)象的對(duì)立統(tǒng)一面,這能培養(yǎng)學(xué)生分析問題的能力,同時(shí)也教會(huì)學(xué)生運(yùn)用對(duì)立統(tǒng)一的辯證唯物主義觀點(diǎn)來分析問題的一種方法。教師的注解可以使學(xué)生更好的把握問題的關(guān)鍵。
例1從字母a、b、c、d中任意取出兩個(gè)不同字母的試驗(yàn)中,有哪些基本事件?
先讓學(xué)生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點(diǎn)。
「設(shè)計(jì)意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學(xué)習(xí)排列組合,因此用列舉法列舉基本事件的個(gè)數(shù),不僅能讓學(xué)生直觀的感受到對(duì)象的總數(shù),而且還能使學(xué)生在列舉的時(shí)候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點(diǎn)
觀察對(duì)比,發(fā)現(xiàn)兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn):
讓學(xué)生先觀察對(duì)比,找出兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn),再概括總結(jié)得到的結(jié)論,教師最后補(bǔ)充說明。
[經(jīng)概括總結(jié)后得到:
。1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);(有限性)
。2)每個(gè)基本事件出現(xiàn)的可能性相等。(等可能性)
我們將具有這兩個(gè)特點(diǎn)的概率模型稱為古典概率概型,簡稱古典概型。
「設(shè)計(jì)意圖」培養(yǎng)運(yùn)用從具體到抽象、從特殊到一般的辯證唯物主義觀點(diǎn)分析問題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時(shí),訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過列出相同和不同點(diǎn),能讓學(xué)生很好的理解古典概型。
、缬^察分析、推導(dǎo)方程
問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機(jī)事件出現(xiàn)的概率如何計(jì)算?
教師提出問題,引導(dǎo)學(xué)生類比分析兩個(gè)模擬試驗(yàn)和例1的概率,先通過用概率加法公式求出隨機(jī)事件的概率,再對(duì)比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計(jì)算任何事件的概率計(jì)算公式:
「設(shè)計(jì)意圖」鼓勵(lì)學(xué)生運(yùn)用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時(shí)讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計(jì)算公式這一重點(diǎn)。
提問:
。1)在例1的實(shí)驗(yàn)中,出現(xiàn)字母"d"的概率是多少?
。2)在使用古典概型的概率公式時(shí),應(yīng)該注意什么?
「設(shè)計(jì)意圖」教師提問,學(xué)生回答,深化對(duì)古典概型的概率計(jì)算公式的理解,也抓住了解決古典概型的概率計(jì)算的關(guān)鍵。
㈣例題分析、推廣應(yīng)用
例2單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,c,D四個(gè)選項(xiàng)中選擇一個(gè)正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會(huì)做,他隨機(jī)的選擇一個(gè)答案,問他答對(duì)的概率是多少?
學(xué)生先思考再回答,教師對(duì)學(xué)生沒有注意到的關(guān)鍵點(diǎn)加以說明。
「設(shè)計(jì)意圖」讓學(xué)生明確決概率的計(jì)算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。鞏固學(xué)生對(duì)已學(xué)知識(shí)的掌握。
例3同時(shí)擲兩個(gè)骰子,計(jì)算:
。1)一共有多少種不同的`結(jié)果?
。2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?
。3)向上的點(diǎn)數(shù)之和是5的概率是多少?
先給出問題,再讓學(xué)生完成,然后引導(dǎo)學(xué)生分析問題,發(fā)現(xiàn)解答中存在的問題。引導(dǎo)學(xué)生用列表來列舉試驗(yàn)中的基本事件的總數(shù)。
「設(shè)計(jì)意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對(duì)古典概型及其概率計(jì)算公式的理解。培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強(qiáng)學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度。
、樘骄克枷搿㈧柟躺罨
問題思考:為什么要把兩個(gè)骰子標(biāo)上記號(hào)?如果不標(biāo)記號(hào)會(huì)出現(xiàn)什么情況?你能解釋其中的原因嗎?
要求學(xué)生觀察對(duì)比兩種結(jié)果,找出問題產(chǎn)生的原因。
「設(shè)計(jì)意圖」通過觀察對(duì)比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點(diǎn),體現(xiàn)了學(xué)生的主體地位,逐漸養(yǎng)成自主探究能力。
、昕偨Y(jié)概括、加深理解
1.基本事件的特點(diǎn)
2.古典概型的特點(diǎn)
3.古典概型的概率計(jì)算公式
學(xué)生小結(jié)歸納,不足的地方老師補(bǔ)充說明。
「設(shè)計(jì)意圖」使學(xué)生對(duì)本節(jié)課的知識(shí)有一個(gè)系統(tǒng)全面的認(rèn)識(shí),并把學(xué)過的相關(guān)知識(shí)有機(jī)地串聯(lián)起來,便于記憶和應(yīng)用,也進(jìn)一步升華了這節(jié)課所要表達(dá)的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。
㈦布置作業(yè)
課本練習(xí)1、2、3
「設(shè)計(jì)意圖」進(jìn)一步讓學(xué)生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對(duì)本節(jié)課的理解。
高中數(shù)學(xué)說課稿 篇5
一.說教材
1.本節(jié)課主要內(nèi)容是線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標(biāo)函數(shù)。應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。
2.地位作用:線性規(guī)劃是數(shù)學(xué)規(guī)劃中理論較完整、方法較成熟、應(yīng)用較廣泛的一個(gè)分支,它可以解決科學(xué)研究、工程設(shè)計(jì)、經(jīng)濟(jì)管理等許多方面的實(shí)際問題。簡單的線性規(guī)劃是在學(xué)習(xí)了直線方程的基礎(chǔ)上,介紹直線方程的一個(gè)簡單應(yīng)用。通過這部分內(nèi)容的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識(shí)和解決實(shí)際問題的能力。
3.教學(xué)目標(biāo)
(1)知識(shí)與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標(biāo)函數(shù)。
了解并初步應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。
(2)過程與方法:提高學(xué)生數(shù)學(xué)地提出、分析和解決問題的能力,發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)含的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
(3)情感、態(tài)度與價(jià)值觀:體會(huì)數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想,逐步認(rèn)識(shí)數(shù)學(xué)的應(yīng)用價(jià)值,提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的自信心。
4.重點(diǎn)與難點(diǎn)
重點(diǎn):理解和用好圖解法
難點(diǎn):如何用圖解法尋找線性規(guī)劃的最優(yōu)解。
二.說教學(xué)方法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
(1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實(shí)驗(yàn)、探索、歸納。這能充分調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性。
(2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動(dòng)”的方法。這有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn)、解決難點(diǎn);也有利于發(fā)揮學(xué)生的創(chuàng)造性。
(3)體現(xiàn)“等價(jià)轉(zhuǎn)化”、“數(shù)形結(jié)合”的思想方法。這樣可發(fā)揮學(xué)生的主觀能動(dòng)性,有利于提高學(xué)生的各種能力。
三.說學(xué)法指導(dǎo)
教給學(xué)生方法比教給學(xué)生知識(shí)更重要,本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):觀察分析、聯(lián)想轉(zhuǎn)化、動(dòng)手實(shí)驗(yàn)、練習(xí)鞏固。
(1)觀察分析:通過引例讓學(xué)生觀察化舊知為新知,造成學(xué)生認(rèn)知沖突。
(2)聯(lián)想轉(zhuǎn)化:學(xué)生通過分析、探索、得出解決問題的方法。
(3)動(dòng)手實(shí)驗(yàn):通過作圖、實(shí)驗(yàn)、從而得出一般解題步驟。
(4)練習(xí)鞏固:讓學(xué)生知道數(shù)學(xué)重在運(yùn)用,從而檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
四.說教學(xué)程序
1、導(dǎo)入課題: 由一個(gè)不等式組表示平面區(qū)域轉(zhuǎn)化為在此平面區(qū)域內(nèi)一二元一次數(shù)的最值問題,造成學(xué)生認(rèn)知沖突。
3、導(dǎo)學(xué)達(dá)標(biāo)之一:創(chuàng)設(shè)情境、形成概念
通過引例的問題讓學(xué)生探索解決新問題的方法。
(設(shè)計(jì)意圖:利用已經(jīng)學(xué)過的知識(shí)逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成過程,從而提高學(xué)生數(shù)學(xué)的地提出、分析和解決問題的能力。)
然后老師逐步引導(dǎo),動(dòng)手實(shí)驗(yàn),化抽象為直觀。從而得到解決此類問題的方法,并對(duì)比引例給出相關(guān)概念:線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察和分析問題,激發(fā)學(xué)生的探索欲望,從而培養(yǎng)學(xué)生的解決問題和總結(jié)歸納的能力。)
4.導(dǎo)學(xué)達(dá)標(biāo)之二:針對(duì)問題、舉例講解、形成技能
例一:課本61頁例3
(創(chuàng)設(shè)意境:,練習(xí)是使學(xué)生明白數(shù)學(xué)來源于實(shí)際又運(yùn)用于實(shí)際,同時(shí)使學(xué)生進(jìn)初步應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。)
6.鞏固目標(biāo):
練習(xí)一:學(xué)生做課堂練習(xí)P64例4
(叫學(xué)生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實(shí)際意義,考慮取值范圍。造成新的認(rèn)知沖突,從而研究探索,得到整點(diǎn)最優(yōu)解的一種求法。)
練習(xí)二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準(zhǔn)備加工成書桌和書廚出售,他通過調(diào)查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個(gè)書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個(gè)書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)
(設(shè)計(jì)意圖:通過實(shí)際問題,激發(fā)學(xué)生興趣,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),力求學(xué)生能夠?qū)ΜF(xiàn)實(shí)生活中蘊(yùn)含的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。)
7.歸納與小結(jié):
小結(jié)本課的主要學(xué)習(xí)內(nèi)容是什么?(由師生共同來完成本課小結(jié))
(創(chuàng)設(shè)意境:讓學(xué)生參與小結(jié),引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行反思,有利于加強(qiáng)學(xué)生記憶和形成良好的數(shù)學(xué)思維習(xí)慣)
8.布置作業(yè):
P64. 2
五.說板書設(shè)計(jì)
板書設(shè)計(jì)為表格式,這樣的板書簡明清楚,重點(diǎn)突出,加深學(xué)生對(duì)重點(diǎn)知識(shí)的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。
高中數(shù)學(xué)說課稿 篇6
高中數(shù)學(xué)第三冊(cè)(選修)Ⅱ第一章第2節(jié)第一課時(shí)
一、教材分析
教材的地位和作用
期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識(shí)做鋪墊。同時(shí),它在市場(chǎng)預(yù)測(cè),經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):離散型隨機(jī)變量期望的概念及其實(shí)際含義。
難點(diǎn):離散型隨機(jī)變量期望的實(shí)際應(yīng)用。
[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對(duì)離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點(diǎn)。此外,學(xué)生初次應(yīng)用概念解決實(shí)際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點(diǎn)。
二、教學(xué)目標(biāo)
[知識(shí)與技能目標(biāo)]
通過實(shí)例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實(shí)際含義。
會(huì)計(jì)算簡單的離散型隨機(jī)變量的期望,并解決一些實(shí)際問題。
[過程與方法目標(biāo)]
經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會(huì)從特殊到一般的思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。
通過實(shí)際應(yīng)用,培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識(shí)。
[情感與態(tài)度目標(biāo)]
通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實(shí)現(xiàn)自我的價(jià)值。
三、教法選擇
引導(dǎo)發(fā)現(xiàn)法
四、學(xué)法指導(dǎo)
“授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會(huì)怎樣發(fā)現(xiàn)問題、分析問題、解決問題。
五、教學(xué)的基本流程設(shè)計(jì)
高中數(shù)學(xué)第三冊(cè)《離散型隨機(jī)變量的期望》說課教案.rar
高中數(shù)學(xué)說課稿 篇7
一、教材分析
1、教學(xué)內(nèi)容
本節(jié)課內(nèi)容教材共分兩課時(shí)進(jìn)行,這是第一課時(shí),該課時(shí)主要學(xué)習(xí)函數(shù)的單調(diào)性的的概念,依據(jù)函數(shù)圖象判斷函數(shù)的單調(diào)性和應(yīng)用定義證明函數(shù)的單調(diào)性。
2、教材的地位和作用
函數(shù)單調(diào)性是高中數(shù)學(xué)中相當(dāng)重要的一個(gè)基礎(chǔ)知識(shí)點(diǎn),是研究和討論初等函數(shù)有關(guān)性質(zhì)的基礎(chǔ)。掌握本節(jié)內(nèi)容不僅為今后的函數(shù)學(xué)習(xí)打下理論基礎(chǔ),還有利于培養(yǎng)學(xué)生的抽象思維能力,及分析問題和解決問題的能力。
3、教材的重點(diǎn)﹑難點(diǎn)﹑關(guān)鍵
教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念和判斷某些函數(shù)單調(diào)性的方法。明確單調(diào)性是一個(gè)局部概念。
教學(xué)難點(diǎn):領(lǐng)會(huì)函數(shù)單調(diào)性的實(shí)質(zhì)與應(yīng)用,明確單調(diào)性是一個(gè)局部的概念。
教學(xué)關(guān)鍵:從學(xué)生的學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)出發(fā),講清楚概念的形成過程、
4、學(xué)情分析
高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢(shì),所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢(shì);由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng)。
二、目標(biāo)分析
。ㄒ唬┲R(shí)目標(biāo):
1、知識(shí)目標(biāo):理解函數(shù)單調(diào)性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性的方法;了解函數(shù)單調(diào)區(qū)間的概念,并能根據(jù)函數(shù)圖象說出函數(shù)的單調(diào)區(qū)間。
2、能力目標(biāo):通過證明函數(shù)的單調(diào)性的學(xué)習(xí),使學(xué)生體驗(yàn)和理解從特殊到一般的數(shù)學(xué)歸納推理思維方式,培養(yǎng)學(xué)生的觀察能力,分析歸納能力,領(lǐng)會(huì)數(shù)學(xué)的歸納轉(zhuǎn)化的思想方法,增加學(xué)生的知識(shí)聯(lián)系,增強(qiáng)學(xué)生對(duì)知識(shí)的主動(dòng)構(gòu)建的能力。
3、情感目標(biāo):讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動(dòng),在掌握知識(shí)的過程中體會(huì)成功的喜悅,以此激發(fā)求知欲望。領(lǐng)會(huì)用運(yùn)動(dòng)變化的觀點(diǎn)去觀察分析事物的方法。通過滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辨證唯物主義的思想教育。
(二)過程與方法
培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力以及用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì),通過函數(shù)的單調(diào)性的學(xué)習(xí),掌握自變量和因變量的關(guān)系。通過多媒體手段激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解題的邏輯推理能力。
三、教法與學(xué)法
1、教學(xué)方法
在教學(xué)中,要注重展開探索過程,充分利用好函數(shù)圖象的直觀性、發(fā)揮多媒體教學(xué)的優(yōu)勢(shì)。本節(jié)課采用問答式教學(xué)法、探究式教學(xué)法進(jìn)行教學(xué),教師在課堂中只起著主導(dǎo)作用,讓學(xué)生在教師的提問中自覺的發(fā)現(xiàn)新知,探究新知,并且加入激勵(lì)性的語言以提高學(xué)生的積極性,提高學(xué)生參與知識(shí)形成的全過程。
2、學(xué)習(xí)方法
自我探索、自我思考總結(jié)、歸納,自我感悟,合作交流,成為本節(jié)課學(xué)生學(xué)習(xí)的主要方式。
四、過程分析
本節(jié)課的教學(xué)過程包括:問題情景,函數(shù)單調(diào)性的定義引入,增函數(shù)、減函數(shù)的定義,例題分析與鞏固練習(xí),回顧總結(jié)和課外作業(yè)六個(gè)板塊。這里分別就其過程和設(shè)計(jì)意圖作一一分析。
。ㄒ唬﹩栴}情景:
為了激發(fā)學(xué)生的學(xué)習(xí)興趣,本節(jié)課借助多媒體設(shè)計(jì)了多個(gè)生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學(xué)生交流,激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊。(祥見課件)
新課程理念認(rèn)為:情境應(yīng)貫穿課堂教學(xué)的始終。本節(jié)課所創(chuàng)設(shè)的生活情境,讓學(xué)生親近數(shù)學(xué),感受到數(shù)學(xué)就在他們的周圍,強(qiáng)化學(xué)生的感性認(rèn)識(shí),從而達(dá)到學(xué)生對(duì)數(shù)學(xué)的理解。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去關(guān)注生活。
。ǘ┖瘮(shù)單調(diào)性的定義引入
1、幾何畫板動(dòng)畫演示,請(qǐng)學(xué)生認(rèn)真觀察,并回答問題:通過學(xué)生已學(xué)過的函數(shù)y=2x+4,,的圖象的動(dòng)態(tài)形式形象出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。,進(jìn)行比較,分析其變化趨勢(shì)。并探討、回答以下問題:
問題1、觀察下列函數(shù)圖象,從左向右看圖象的變化趨勢(shì)?
問題2:你能明確說出“圖象呈上升趨勢(shì)”的意思嗎?
通過學(xué)生的交流、探討、總結(jié),得到單調(diào)性的“通俗定義”:
從在某一區(qū)間內(nèi)當(dāng)x的值增大時(shí),函數(shù)值y也增大,到圖象在該區(qū)間內(nèi)呈上升趨勢(shì)再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉(zhuǎn)化為數(shù)學(xué)符號(hào)語言。幾何畫板的靈活使用,數(shù)形有機(jī)結(jié)合,引導(dǎo)學(xué)生從圖形語言到數(shù)學(xué)符號(hào)語言的翻譯變得輕松。
設(shè)計(jì)意圖:
、偻ㄟ^學(xué)生熟悉的知識(shí)引入新課題,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情,同時(shí)也可以培養(yǎng)學(xué)生觀察、猜想、歸納的思維能力和創(chuàng)新意識(shí),增強(qiáng)學(xué)生自主學(xué)習(xí)、獨(dú)立思考,由學(xué)會(huì)向會(huì)學(xué)的轉(zhuǎn)化,形成良好的思維品質(zhì)。
、谕ㄟ^學(xué)生已學(xué)過的一次y=2x+4,,的圖象的動(dòng)態(tài)形式形象地反映出x、y間的變化關(guān)系,使學(xué)生對(duì)函數(shù)單調(diào)性有感性認(rèn)識(shí)。
、蹚膶W(xué)生的原有認(rèn)知結(jié)構(gòu)入手,探討單調(diào)性的概念,符合“最近發(fā)展區(qū)的理論”要求。
、軓膱D形、直觀認(rèn)識(shí)入手,研究單調(diào)性的概念,其本身就是研究、學(xué)習(xí)數(shù)學(xué)的一種方法,符合新課程的理念。
。ㄈ┰龊瘮(shù)、減函數(shù)的定義
在前面的基礎(chǔ)上,讓學(xué)生討論歸納:如何使用數(shù)學(xué)語言來準(zhǔn)確描述函數(shù)的單調(diào)性?在學(xué)生回答的基礎(chǔ)上,給出增函數(shù)的概念,同時(shí)要求學(xué)生討論概念中的關(guān)鍵詞和注意點(diǎn)。
定義中的“當(dāng)x1x2時(shí),都有f(x1) 注意: (1)函數(shù)的單調(diào)性也叫函數(shù)的增減性; (2)注意區(qū)間上所取兩點(diǎn)x1,x2的任意性; 。3)函數(shù)的單調(diào)性是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念。 讓學(xué)生自已嘗試寫出減函數(shù)概念,由兩名學(xué)生板演。提出單調(diào)區(qū)間的概念。 設(shè)計(jì)意圖:通過給出函數(shù)單調(diào)性的嚴(yán)格定義,目的是為了讓學(xué)生更準(zhǔn)確地把握概念,理解函數(shù)的單調(diào)性其實(shí)也叫做函數(shù)的增減性,它是對(duì)某個(gè)區(qū)間而言的,它是一個(gè)局部概念,同時(shí)明確判定函數(shù)在某個(gè)區(qū)間上的單調(diào)性的一般步驟。這樣處 理,同時(shí)也是讓學(xué)生感悟、體驗(yàn)學(xué)習(xí)數(shù)學(xué)感念的方法,提高其個(gè)性品質(zhì)。 。ㄋ模├}分析 在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。 2、例2、證明函數(shù)在區(qū)間(—∞,+∞)上是減函數(shù)。 在本題的解決過程中,要求學(xué)生對(duì)照定義進(jìn)行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結(jié)證明單調(diào)性問題的一般方法。 變式一:函數(shù)f(x)=—3x+b在R上是減函數(shù)嗎?為什么? 變式二:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 變式三:函數(shù)f(x)=kx+b(k<0)在R上是減函數(shù)嗎?你能用幾種方法來判斷。 錯(cuò)誤:實(shí)質(zhì)上并沒有證明,而是使用了所要證明的結(jié)論 例題設(shè)計(jì)意圖:在理解概念的基礎(chǔ)上,讓學(xué)生總結(jié)判別函數(shù)單調(diào)性的方法:圖象法和定義法。例1是教材中例題,它的解決強(qiáng)化學(xué)生應(yīng)用數(shù)形結(jié)合的思想方法解題的意識(shí),進(jìn)一步加深對(duì)概念的理解,同時(shí)也是依托具體問題,對(duì)單調(diào)區(qū)間這一概念的再認(rèn)識(shí);要了解函數(shù)在某一區(qū)間上是否具有單調(diào)性,從圖上進(jìn)行觀察是一種常用而又粗略的方法。嚴(yán)格地說,它需要根據(jù)單調(diào)函數(shù)的定義進(jìn)行證明。例2是教材練習(xí)題改編,通過師生共同總結(jié),得出使用定義證明的一般步驟:任取—作差(變形)—定號(hào)—下結(jié)論,通過例2的解決是學(xué)生初步掌握運(yùn)用概念進(jìn)行簡單論證的基本方法,強(qiáng)化證題的規(guī)范性訓(xùn)練,從而提高學(xué)生的推理論證能力。例3是教材例2抽象出的數(shù)學(xué)問題。目的是進(jìn)一步強(qiáng)化解題的規(guī)范性,提高邏輯推理能力,同時(shí)讓學(xué)生學(xué)會(huì)一些常見的變形方法。 (五)鞏固與探究 1、教材p36練習(xí)2,3 2、探究:二次函數(shù)的單調(diào)性有什么規(guī)律? 。◣缀萎嫲逖菔,學(xué)生探究)本問題作為機(jī)動(dòng)題。時(shí)間不允許時(shí),就為課后思考題。 設(shè)計(jì)意圖:通過觀察圖象,對(duì)函數(shù)是否具有某種性質(zhì)作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發(fā)現(xiàn)和解決問題的一種常用數(shù)學(xué)方法。 通過課堂練習(xí)加深學(xué)生對(duì)概念的理解,進(jìn)一步熟悉證明或判斷函數(shù)單調(diào)性的方法和步驟,達(dá)到鞏固,消化新知的目的。同時(shí)強(qiáng)化解題步驟,形成并提高解題能力。對(duì)練習(xí)的思考,讓學(xué)生學(xué)會(huì)反思、學(xué)會(huì)總結(jié)。 。┗仡櫩偨Y(jié) 通過師生互動(dòng),回顧本節(jié)課的概念、方法。本節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的知識(shí),同學(xué)們要切記:單調(diào)性是對(duì)某個(gè)區(qū)間而言的,同時(shí)在理解定義的基礎(chǔ)上,要掌握證明函數(shù)單調(diào)性的方法步驟,正確進(jìn)行判斷和證明。 設(shè)計(jì)意圖:通過小結(jié)突出本節(jié)課的重點(diǎn),并讓學(xué)生對(duì)所學(xué)知識(shí)的結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí),學(xué)會(huì)一些解決問題的思想與方法,體會(huì)數(shù)學(xué)的和諧美。 (七)課外作業(yè) 1、教材p43習(xí)題1。3A組1(單調(diào)區(qū)間),2(證明單調(diào)性); 2、判斷并證明函數(shù)在上的單調(diào)性。 3、數(shù)學(xué)日記:談?wù)勀惚竟?jié)課中的收獲或者困惑,整理你認(rèn)為本節(jié)課中的最重要的知識(shí)和方法。 設(shè)計(jì)意圖:通過作業(yè)1、2進(jìn)一步鞏固本節(jié)課所學(xué)的增、減函數(shù)的概念,強(qiáng)化基本技能訓(xùn)練和解題規(guī)范化的訓(xùn)練,并且以此作為學(xué)生對(duì)本結(jié)內(nèi)容各項(xiàng)目標(biāo)落實(shí)的評(píng)價(jià)。新課標(biāo)要求:不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)上獲得不同的發(fā)展。作業(yè)3這種新型的作業(yè)形式是其很好的體現(xiàn)。 。ㄆ撸┌鍟O(shè)計(jì)(見ppt) 五、評(píng)價(jià)分析 有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)基礎(chǔ)上,,因此在教學(xué)設(shè)計(jì)過程中注意了: 第一、教要按照學(xué)的法子來教; 第二、在學(xué)生已有知識(shí)結(jié)構(gòu)和新概念間尋找“最近發(fā)展區(qū)”; 第三、強(qiáng)化了重探究、重交流、重過程的課改理念。讓學(xué)生經(jīng)歷“創(chuàng)設(shè)情境——探究概念——注重反思——拓展應(yīng)用——?dú)w納總結(jié)”的活動(dòng)過程,體驗(yàn)了參與數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程,培養(yǎng)“用數(shù)學(xué)”的意識(shí)和能力,成為積極主動(dòng)的建構(gòu)者。 本節(jié)課圍繞教學(xué)重點(diǎn),針對(duì)教學(xué)目標(biāo),以多媒體技術(shù)為依托,展現(xiàn)知識(shí)的發(fā)生和形成過程,使學(xué)生始終處于問題探索研究狀態(tài)之中,激情引趣,并注重?cái)?shù)學(xué)科學(xué)研究方法的學(xué)習(xí),是順應(yīng)新課改要求的,是研究性教學(xué)的一次有益嘗試。 一、說教材: 1、教材的地位與作用 導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對(duì)導(dǎo)數(shù)的概念已經(jīng)有了充分的認(rèn)識(shí),本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進(jìn)行動(dòng)畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運(yùn)用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會(huì)導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。 2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵 教學(xué)重點(diǎn):導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。 教學(xué)難點(diǎn):理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵 1) 從割線到切線的過程中采用的逼近方法; 2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點(diǎn)x附近的變化快慢,導(dǎo)數(shù)是曲線上某點(diǎn)切線的斜率,等等. 二、說教學(xué)目標(biāo): 根據(jù)新課程標(biāo)準(zhǔn)的要求、學(xué)生的認(rèn)知水平,確定教學(xué)目標(biāo)如下: 1、知識(shí)與技能 : 通過實(shí)驗(yàn)探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點(diǎn)的切線的概念,會(huì)求簡單函數(shù)在某點(diǎn)的切線方程。 過程與方法: 經(jīng)歷切線定義的形成過程,培養(yǎng)學(xué)生分析、抽象、概括等思維能力;體會(huì)導(dǎo)數(shù)的思想及內(nèi)涵,完善對(duì)切線的認(rèn)識(shí)和理解 通過逼近、數(shù)形結(jié)合思想的具體運(yùn)用,使學(xué)生達(dá)到思維方式的遷移,了解科學(xué)的思維方法。 3、情感態(tài)度與價(jià)值觀: 滲透逼近、數(shù)形結(jié)合、以直代曲等數(shù)學(xué)思想,激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生領(lǐng)悟特殊與一般、有限與無限,量變與質(zhì)變的辯證關(guān)系,感受數(shù)學(xué)的統(tǒng)一美,意識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值 三、說教法與學(xué)法 對(duì)于直線來說它的導(dǎo)數(shù)就是它的斜率,學(xué)生會(huì)很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對(duì)曲線的切線的概念也有了一些認(rèn)識(shí),基于以上學(xué)情分析,我確定下列教法: 教法:從圓的切線的定義引入本課,再引導(dǎo)學(xué)生討論一般曲線的切線的定義,通過幾何畫板的動(dòng)畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實(shí)驗(yàn)觀察得到導(dǎo)數(shù)的幾何意義和直觀感知“逼近”的數(shù)學(xué)思想.因此,我采用實(shí)驗(yàn)觀察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結(jié)合,以突出重點(diǎn)和突破難點(diǎn); 學(xué)法:為了發(fā)揮學(xué)生的主觀能動(dòng)性,提高學(xué)生的綜合能力,本節(jié)課采取了 自主 、合作、探究的學(xué)習(xí)方法。 教具: 幾何畫板、幻燈片 四、說教學(xué)程序 1.創(chuàng)設(shè)情境 學(xué)生活動(dòng)——問題系列 問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢? 問題2 如圖直線l是曲線C的切線嗎? (1)與 (2)與 還有直線與雙曲線的位置關(guān)系 問題3 那么對(duì)于一般的曲線,切線該如何定義呢? 【設(shè)計(jì)意圖】:通過類比構(gòu)建認(rèn)知沖突。 學(xué)生活動(dòng)——復(fù)習(xí)回顧 導(dǎo)數(shù)的定義 【設(shè)計(jì)意圖】:從理論和知識(shí)基礎(chǔ)兩方面為本節(jié)課作鋪墊。 2.探索求知 學(xué)生活動(dòng)——試驗(yàn)探究 問一;求導(dǎo)數(shù)的步驟是怎樣的? 第一步:求平均變化率;第二步:當(dāng)趨近于0時(shí),平均變化率無限趨近于的常數(shù)就是。 【設(shè)計(jì)意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準(zhǔn)備。 問二;你能借助圖像說說平均變化率表示什么嗎?請(qǐng)?jiān)诤瘮?shù)圖像中畫出來。 【設(shè)計(jì)意圖】:通過學(xué)生動(dòng)手實(shí)踐得到平均變化率表示割線PQ的斜率。 問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請(qǐng)?jiān)趫D像中畫出來。 【設(shè)計(jì)意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點(diǎn)向P點(diǎn)無限趨近,割線PQ趨近于確定的位置,這個(gè)位置的直線叫做曲線在 處的切線。 探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢(shì),教師引導(dǎo)給出一般曲線的切線定義。 【設(shè)計(jì)意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點(diǎn);學(xué)生在過程中,可以體會(huì)逼近的思想方法。能夠同時(shí)從數(shù)與形兩個(gè)角度強(qiáng)化學(xué)生對(duì)導(dǎo)數(shù)概念的理解。 問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎? 【設(shè)計(jì)意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線 PQ的斜率切線PT的斜率。因此,=切線PT的斜率。 五、教學(xué)評(píng)價(jià) 1、通過學(xué)生參加活動(dòng)是否積極主動(dòng),能否與他人合作探索,對(duì)學(xué)生的學(xué)習(xí)過程評(píng)價(jià); 2、通過學(xué)生對(duì)方法的選擇,對(duì)學(xué)生的學(xué)習(xí)能力評(píng)價(jià); 3、通過練習(xí)、課后作業(yè),對(duì)學(xué)生的學(xué)習(xí)效果評(píng)價(jià). 4、教學(xué)中,學(xué)生以研究者的身份學(xué)習(xí),在問題解決的過程中,通過自身的體驗(yàn)對(duì)知識(shí)的認(rèn)識(shí)從模糊到清晰,從直觀感悟到精確掌握; 5、本節(jié)課設(shè)計(jì)目標(biāo)力求使學(xué)生體會(huì)微積分的基本思想,感受近似與精確的統(tǒng)一,運(yùn)動(dòng)和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓. 【高中數(shù)學(xué)說課稿范文集錦8篇】相關(guān)文章: 高中數(shù)學(xué)經(jīng)典說課稿范文06-24 精選高中數(shù)學(xué)說課稿范文集錦9篇08-13 精選高中數(shù)學(xué)說課稿范文集錦六篇08-12 關(guān)于高中數(shù)學(xué)說課稿范文集錦6篇08-11 有關(guān)高中數(shù)學(xué)說課稿范文集錦9篇08-11高中數(shù)學(xué)說課稿 篇8