高中數學說課稿(通用20篇)
作為一名為他人授業解惑的教育工作者,時常需要用到說課稿,借助說課稿可以更好地提高教師理論素養和駕馭教材的能力。如何把說課稿做到重點突出呢?以下是小編為大家收集的高中數學說課稿,歡迎閱讀與收藏。
高中數學說課稿 篇1
我說課的課題是《任意角的三角函數》,內容取自蘇教版高中實驗教科書《數學》第四冊 第1.2節
先對教材進行分析
教學內容:任意角三角函數的定義、定義域,三角函數值的符號。
地位和作用: 任意角的三角函數是本章教學內容的基本概念對三角內容的整體學習至關重要。同時它又為平面向量、解析幾何等內容的學習作必要的準備,通過這部分內容的學習,又可以幫助學生更加深入理解函數這一基本概念。所以這個內容要認真探討教材,精心設計過程。
教學重點:任意角三角函數的定義
教學難點:正確理解三角函數可以看作以實數為自變量的函數、初中用邊長比值來定義轉變為坐標系下用坐標比值定義的觀念的轉換以及坐標定義的合理性的理解;
學情分析:
學生已經掌握的內容,學生學習能力
1、初中學生已經學習了基本的銳角三角函數的定義,掌握了銳角三角函數的一些常見的知識和求法。
2、我們南山區經過多年的初中課改,學生已經具備較強的自學能力,多數同學對數學的學習有相當的興趣和積極性。
3、在探究問題的能力,合作交流的意識等方面發展不夠均衡,尚有待加強必須在老師一定的指導下才能進行
針對對教材內容重難點的和學生實際情況的分析我們制定教學目標如下
知識目標:
(1)任意角三角函數的定義;三角函數的'定義域;三角函數值的符號,
能力目標:
(1)理解并掌握任意角的三角函數的定義;
。2)正確理解三角函數是以實數為自變量的函數;
。3)通過對定義域,三角函數值的符號的推導,提高學生分析探究解決問題的能力。
德育目標:
。1)學習轉化的思想
。2)培養學生嚴謹治學、一絲不茍的科學精神;
針對學生實際情況為達到教學目標須精心設計教學方法
教法學法:溫故知新,逐步拓展
(1)在復習初中銳角三角函數的定義的基礎上一步一步擴展內容,發展新知識,形成新的概念;
(2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
。1)提高直觀性增強趣味性。
教學過程分析
總體來說, 由舊及新,由易及難,
逐步加強,逐步推進
先由初中的直角三角形中銳角三角函數的定義
過度到直角坐標系中銳角三角函數的定義
再發展到直角坐標系中任意角三角函數的定義
給定定義后通過應用定義又逐步發現新知識拓展完善定義。
具體教學過程安排
引入: 復習提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。
我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數的定義能否也放到坐標系去研究呢?
引導學生發現B的坐標和邊長的關系。進一步啟發他們發現由于相似三角形的相似比導致OB上任一P點都可以代換B,把三角函數的定義發展到用終邊上任一點的坐標來表示, 從而銳角三角函數可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數,便考慮放在直角坐標中進行合理進行定義了
從而得到
知識點一:任意一個角的三角函數的定義
提醒學生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關。
精心設計例題,引出新內容深化概念,完善定義
例1已知角A 的終邊經過P(2,—3),求角A的三個三角函數值
(此題由學生自己分析獨立動手完成)
例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數值
結合變式我們發現三個三角函數值的大小與角的大小有關,只會隨角的大小而變化,符合當初函數的定義,而我們又一直稱呼為三角函數,
提出問題:這三個新的定義確實問是函數嗎?為什么?
從而引出函數極其定義域
由學生分析討論,得出結論
知識點二:三個三角函數的定義域
同時教師強調:由于弧度制使角和實數建立了一一對應關系,所以三角函數是以實數為自變量的函數
例題變式2, 已知角A 的終邊經過P(—2a,—3a)( a不為0),求角A的三個三角函數值
解答中需要對變量的正負即角所在象限進行討論, 讓學生意識到三角函數值的正負與角所在象限有關,從而導出第三個知識點
知識點三:三角函數值的正負與角所在象限的關系
由學生推出結論,教師總結符號記憶方法,便于學生記憶
例題2:已知A在第二象限且 sinA=0.2 求cosA,tanA
求cosA,tanA
綜合練習鞏固提高,更為下節的同角關系式打下基礎
拓展,如果不限制A的象限呢,可以留作課外探討
小結回顧課堂內容
課堂作業和課外作業以加強知識的記憶和理解
課堂作業P16 1,2,4
。▽W生演板,后集體討論修訂答案同桌討論,由學生回答答案)
課后分層作業(有利于全體學生的發展)
高中數學說課稿 篇2
一、說教材:
1、 地位及作用:
“橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學習打好基礎,因此本節內容具有承前啟后的作用。
2、 教學目標:
根據《教學大綱》,《考試說明》的要求,并根據教材的具體內容和學生的實際情況,確定本節課的教學目標:
(1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。
。2)能力目標:
。╝)培養學生靈活應用知識的能力。
。╞) 培養學生全面分析問題和解決問題的能力。
。╟)培養學生快速準確的運算能力。
。3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。
3、 重點、難點和關鍵點:
因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由于學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點;坐標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角坐標系是本節的關鍵。
二、 說教材處理
為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的'處理:
1、學生狀況分析及對策:
2、教材內容的組織和安排:
本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:
(1)復習提問
。2)引入新課
。3)新課講解
。4)反饋練習
。5)歸納總結
(6)布置作業
三、 說教法和學法
1、為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學法”。
2、利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。
四、 教學過程
教學環節
3、設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。
例1屬基礎,主要反饋學生掌握基本知識的程度。
例2可強化基本技能訓練和基本知識的靈活運用。
小結
為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。
1、橢圓的定義和標準方程及其應用。
2、橢圓標準方程中a,b,c諸關系。
3、求橢圓方程常用方法和基本思路。
通過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。
布置作業
。1) 77頁——78頁 1,2,3,79頁 11
。2) 預習下節內容
鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。
高中數學說課稿 篇3
我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:
一、教材分析
教材的地位和作用
“曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!
根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。
二、教學目標
根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:
知識目標:
1、了解曲線上的點與方程的解之間的一一對應關系;
2、初步領會“曲線的方程”與“方程的曲線”的.概念;
3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;
4、強化“形”與“數”一致并相互轉化的思想方法。
能力目標:
1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;
2、在形成曲線和方程的概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;
3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。
情感目標:
1、通過概念的引入,讓學生感受從特殊到一般的認知規律;
2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的科學精神。
三、重難點突破
“曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。
四、學情分析
此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。
高中數學說課稿 篇4
說教材
(1)地位和作用
向量是近代數學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理學科中具有廣泛的應用。
平面向量的基本概念是在學生了解了物理學中的有關力,位移等矢量的概念的基礎上進一步對向量的深入學習。為學習向量的知識體系奠定了知識和方法基礎。
。2)教學結構的調整
課本在這一部分內容的教學為一課時,首先從小船航行的距離和方向兩個要素出發,抽象出向量的概念,并重點說明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學中我將教學的順序做如下的調整:將本節教學中認知過程的教學內容適當集中,以突出這節課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成。
。3)重點,難點,關鍵
由于本節課是本章內容的第一節課,是學生學習本章的基礎。為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質:大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點。本節課是為高一后半學期學生設計的,盡管此時的學生已經有了一定的學習方法和習慣,但根據以往的教學經驗,多數學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節課的難點。而解決這一難點的關鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解。
說教學目標的確定
根據本課教材的特點,新大綱對本節課的教學要求,學生身心發展的合理需要,我從三個方面確定了以下教學目標:
。1)基礎知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據圖形判定向量是否平行,共線,相等。
(2)能力訓練目標:培養學生觀察、歸納、類比、聯想等發現規律的一般方法,培養學生觀察問題,分析問題,解決問題的能力。
(3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。
說教學方法的.選擇
、窠虒W方法
本節課我采用了”啟發探究式的教學方法,根據本課教材的特點和學生的實際情況在教學中突出以下兩點:
(1)由教材的特點確立類比思維為教學的主線。
從教材內容看平面向量無論從形式還是內容都與物理學中的有向線段,矢量的概念類似。因此在教學中運用類比作為思維的主線進行教學。讓學生充分體會數學知識與其他學科之間的聯系以及發生與發展的過程。
(2)由學生的特點確立自主探索式的學習方法
通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發學生的學習興趣,另外,學生都有表現自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情。考慮到我校學生的基礎較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創設問題情境,啟發引導學生運用科學的思維方法進行自主探究。將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用。
Ⅱ教學手段
本節課中,除使用常規的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數形結合思想,更易于對概念的理解和難點的突破。
四教學過程的設計
、裰R引入階段———提出學習課題,明確學習目標
。1)創設情境——引入概念
數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。
由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學生思維活躍,想象力豐富的特點,有利于激發學生的學習興趣。
(2)觀察歸納——形成概念
由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進行設計,引導學生概括總結出本課新的知識點:向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進行歸納,深化,之后向學生提出以下三個問題:
、傧蛄康囊厥鞘裁?
②向量之間能否比較大。
、巯蛄颗c數量的區別是什么?
同時指出這就是本節課我們要研究和學習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
(1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線向量,并且規定0與任一向量平行。長度相等且方向相同的向量叫相等向量,規定零向量與零向量相等。平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
(2)即時訓練—鞏固新知
為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。
。劬毩1]判斷下列命題是否正確,若不正確,請簡述理由。
、傧蛄颗c是共線向量,則A、B、C、D四點必在一直線上;
、趩挝幌蛄慷枷嗟;
、廴我幌蛄颗c它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
⑤模為0是一個向量方向不確定的充要條件;
、薰簿的向量,若起點不同,則終點一定不同。
。劬毩2]下列命題正確的是( )
A。a與b共線,b與c共線,則a與c也共線
B。任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點
C。向量a與b不共線,則a與b都是非零向量
D。有相同起點的兩個非零向量不平行
Ⅲ知識應用階段————共線向量,相等向量等概念的初步應用
在本階段的教學中,我采用的是課本上一道典型的例題:在一個復雜圖形中觀察,辨認平行,相等的有向線段。選用本題的目的是讓學生進行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)
具體教學安排如下:
。1)分析解決問題
先引導學生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質:兩個向量只有當它們的模相等,同時方向又相同時,才能稱它們相等。進而進行正確的辨認,直至最終解決問題。
(2)歸納解題方法
主要引導學生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相
等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。
、魧W習,小結階段———歸納知識方法,布置課后作業
本階段通過學習小結進行課堂教學的反饋,組織和指導學生歸納知識,技能,方法的一般規律,為后續學習打好基礎。
具體的教學安排如下:
。1)知識,方法小結在知識層面上我首先引導學生回顧本節課的主要內容,提醒學生要抓住向量的本質:大小與方向,對它們進行類比,加深對每個概念的理解。
在方法層面上我將帶領學生回顧探索過程中用到的思維方法和數學方法如:
類比,數形結合,等價轉化等進行強調。
。2)布置課后作業
閱讀教材96至97頁內容,整理課堂筆記,習題5.1第1,2,3題。
高中數學說課稿 篇5
1、對教材地位與作用的認識
在高中數學教學中,作為數學思想應向學生滲透,強化的有:函數與方程思想;數形結合思想;分類討論思想;等價轉化及運動變化思想。不是所有的課都能把這些思想自然的容納進去,但由于“曲線和方程”這一節在教材中的特殊地位,它把代數和幾何兩個單科自然而緊密地結合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“依形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,用代數的方法研究幾何問題!鼻與方程”是解析幾何中最為重要的基本內容之一。在理論上它是基礎,在應用上它是工具,對全部解析幾何的教學有著深遠的影響,另外在高考中也是考察的重點內容,尤其是求曲線的方程,學生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學習得入門之路。應該認識到這節“曲線和方程”得開頭課是解析幾何教學的“重頭戲”!
2、教學目標的確定及依據
(大綱的要求)通過本小節的學習,要使學生了解解析幾何的基本思想,了解用坐標法研究幾何問題的初步知識和觀點,理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法。所以第一課我在教學目標上是這樣設定的:
1).了解曲線上的點與方程的解之間的一一對應關系,領會“曲線的方程”與“方程的曲線”的概念及其關系,并能作簡單的判斷與推理;
2).在形成概念的過程中,培養分析、抽象和概括等思維能力;
3)會證明已知曲線的方程。
本節課的教學目標定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應在學生的學習行為上,即要求學生能答出曲線與方程間必須滿足的兩個關系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實例進一步明確這二者的區別。知識的學習與能力的培養是同步的,在具體操作上結合圖形分析與反例,來辨析“兩個關系”之間的區別,從認識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養學生分析、抽象、概括的思維能力。會證明已知曲線的方程就能更進一步的理解曲線和方程概念的含義并為下節課求曲線的方程打基礎。
3、如何突破重難點
本小節的重點是理解曲線與方程的有關概念與相互聯系,以及求曲線方程的方法、步驟只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進一步學好后面的內容曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當難度,對學生理解上可能遇到的問題是學生不理解“曲線上的點的坐標都是方程的解”和”“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系各自所起的作用。有的學生只從字面上死記硬背;有的學生甚至誤以為這兩句話是同義反復。要突破這一點,關鍵在于利用充要條件,函數圖象,直線和方程,軌跡等知識,正反兩方面說明問題。
本節課的難點在于對定義中為什么要規定兩個關系(純粹性和完備性)產生困惑,原因是不理解兩者缺任何一個都將擴大概念的外延。
4、對教學過程的設計
今天要講的“曲線和方程”這部分教材的內容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進行教學,具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關系;第二課時講解求曲線的方程一般方法,第三課時為習題課,通過練習來總結、鞏固和深化本節知識。如果以為學生不真正領悟曲線和方程得關系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個基本概念得教學,這不能不說是一種“舍本逐末”得偏見。
在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學生所理解,因而教材中從直線開始,多次,重復地闡述,這說明其重要性同時也說明理解它,掌握它確實需要一個過程數學本身是很抽象,把數學和實際問題相結合才能激發學生的學習興趣,真正達到素質教育的要求。根據以上考慮,確定了這節課教學過程的基本線索是:實際問題引入,提出課題→運用反例,揭示內涵→討論歸納,得出定義→集合表述,強化理解→知識應用,反復辨析。
教材的編寫也往往體現著教法,例如,本節一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關系!睂W生已經有了用方程(有時用函數式的形式出現)表示曲線的感性認識,在本節教學中充分發揮這些感性認識的作用。從人造地球衛星運行的軌道等生動形象的實際問題引入,引起學生的興趣和好奇心以及對數學的'應用有了更高的認識,更激發他們進一步學好數學的決心。(具體……)提出課題。運用學生熟知的知識,1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點和方程的解之間的關系,為形成曲線和方程的概念提供了實際模型,但是如果就此而由教師直接給出結論,那就不僅會失去開發學生思維的機會,影響學生的理解,而且會使教學變得枯燥乏味,抑制了學生學習的主動性和積極性,接著用反例來突破難點。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標的點不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點坐標就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學生對概念表述的嚴格性進行探索,學生自已認識曲線和方程的概念必須要具備的兩個關系,培養學生分析,歸納問題的能力,自然得出定義。并且把這個關系板書到黑板上,以示這就是這節課的重點。為了在重難點有所突破后強化其認識,又用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。
然后通過運用與練習,糾正錯誤的認識,促使對概念的正確理解,通過反復重現,可以不斷領悟,加強識記。所以安排了例1,例2(見課件)目的也在于幫助學生正確理解概念,通過解題辨析“兩個關系”,實現本節課的教學目標,為此題目中的“曲線”和“方程”都力求簡單,由此得出點在曲線上的充要條件。
曲線是符合某種條件的點的軌跡,為了下節課“求曲線的方程”的教學,安排了例3(見課件)證明曲線的方程,增加學生的感性認識,由于教材上有嚴謹的證明過程,讓學生閱讀并總結證明已知曲線的方程的方法和步驟,上升到理論上,可以培養學生獨立思考,閱讀歸納的能力。為了讓學生更深入的理解這節課的主要內容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習:(略)簡單評講后小結本課的主要內容,進一步強化“曲線和方程”概念中兩個關系缺一不可,只有符合關系1)2)才能進行數與形的轉化。由于下節課的內容是求曲線的方程,特地安排了一個思考探索題。
5、對學生學習活動的引導和組織
教案的設計與教案的實施往往有一定的距離,本節課有著概念性強,思維量大,例題與練習題不多的特點,這就決定了整節課將以學生的觀察、思考、討論為主,通過提問,舉例,啟發,互動完成教學,在具體操作上比較靈活,視學生的具體情況而定,把握學生的思維規律于數學思想的基本方法。例如,在概念教學中引導學生看反例,通過正反對比的方法,當學生觀察了例1回答不清為什么,可以舉出幾個點的坐標作檢驗,這就是”從特殊到一般“的方法:或引導學生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發方法符合學生的認識規律,學生的認識活動就會順利展開,而且在認知的過程中訓練了探索的能力。強化數形結合、化歸與轉化的數學思想方法,完善學生的數學的結構,讓學生動手、動腦,以及觀察、聯想、猜測、歸納等合理推理,鼓勵學生多向思維、積極思考,勇于探索,從中培養學生合情推理能力,數學交流與合作能力以及主動參與的精神。
高中數學說課稿 篇6
一、 說教材
(一)教材的地位和作用
本節內容著重介紹了三角形的三種特殊線段,已學過的過直線外一點作已知直線的垂線、線段的中點、角的平分線等知識是學習本節新知識的基礎,其中三角形的高學生從小學起已開始接觸,教材從學生已有認知出發,從高入手,利用圖形,給高作了具體定義,使學生了解三角形的高為線段,進而引出三角形的另外幾種特殊線段——中線、角平分線。通過本節內容學習,可使學生掌握三角形的高、中線、角平分線與垂線、角平分線的聯系與區別。通過學習作圖、觀察與探究,會發現三角形的三條高所在的直線、三條角平分線、三條中線都各自交于一點,這為以后三角形的內心、重心等知識的學習打下一定的基礎,另外,本節內容也是日后學習等腰三角形等特殊三角形的墊腳石。故學好本節內容是十分必要的。因此,對三角的高、中線、角平分線定義的理解及畫法的掌握是本節教學的重點,而三角形的高由于三角形的形狀改變而使其位置呈現多樣性,學生難以掌握,故在各類三角形中作出它們是本課的難點。
。ǘ┙虒W目標分析
本節課的教學設計力圖體現“尊重學生,注重發展”的教學理念,著重培養和發展學生基本作圖能力、語言表達能力、觀察能力等,根據這一目的確定本節教學目標為:
1、理解三角形的高、中線、角平分線的概念
2、能正確作出一個三角形的高、中線、角平分線
3、通過觀察、探究、畫一畫、折一折與描述等數學活動,感受數學語言的準確性,提高觀察能力,語言表達能力,發展推理能力。
重點:掌握三角形的高、中線、角平分線的概念,并能在具體三角形中畫出它們
難點:在各種三角形中作出它們的高
二、 說教法
1、情境創設法 :利用張師傅如何將一塊三角形的地分成面積相等的兩塊三角形地創設問題情境,并引導學生去簡單分析思路,目的使數學能密切聯系實際體現知識的形成和應用過程。以實際問題為出發點和歸宿,更能貼近學生生活,以激發學生對學習本節內容的求知欲,培養他們運用所學知識解決問題的能力。
2、加強學生學習的主動性與探究性 在課堂中要充分調動學生自主學習的潛能,讓他們自由探究中發現,從而發展他們的創新能力,讓他們感受到成功的喜悅。學生在畫一畫、折一折、何三個探究活動中體驗數學知識的形成過程。當學生在探究過程中遇到困難時,才取消組建的交流與合作,充分發揮學生的團隊作用,以更好地激發學生的積極思維,得到更大的收獲。
3、運用多媒體等作為教輔工具,增強學生的直觀感受,掃除學生從形象思維難以跨越到抽象思維的障礙,突出重點,突破難點。
三、說學法
1、本節重點是三角形的三種重要線段,難點是對三角形的角平分線、中線、高的準確理解、作圖與正確運用,而突破難點的關鍵是運用好數形結合的數學思想從畫圖入手,從大量的活動入手獲得三種線段的直觀形象,進一步架起數與形之間的橋梁,加強知識間的相互聯系。
2、小組討論、合作探究,既可讓學生互相啟發,互相促進,積極交流,表達思想又可促進數學思考,擴大和加深對問題的認識,本節課中我讓學生以小組進行探究,歸納圖形特征,做到仔細觀察,大膽探索,勇于發現,抽象概括。讓學生通過探索活動來發現結論,經歷知識的“再發現”過程,從而改變學生學習的方式,發展創新思維能力。
四、說教學過程:
1、創設問題情境,引出新知: 從生活實例引出新問題,調動學生學習積極性
2、預習檢查:以題組的形勢
考點1:三角形的高
1.如圖7.1.2-1,在△ABC中,BC邊上的高是________;在△AFC中,CF邊上的高是________;在△ABE中,AB邊上的高是_________.
2.如圖7.1.2-2,△ABC的三條高AD、BE、CF相交于點H,則△ABH的三條高是_______,這三條高交于________.BD是△________、△________、△________的高.
3.如圖7.1.2-3,在△ABC中EF∥AC,BD⊥AC于D,交EF于G,則下面說話中錯誤的是( )
A.BD是△ABC的高 BD是△BCD的高 C.EG是△ABD的高 D.BG是△BEF的高
7.1.2
圖7.1.2-1 圖7.1.2-2 圖7.1.2-3
4.如果一個三角形的三條高的交點恰是三角形的一個頂點,那么這個三角形是( )
A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定
5.三角形的三條高的交點一定在( )
A.三角形內部 B.三角形的外部 C.三角形的內部或外部 D.以上答案都不對
考點2:三角形的中線與角平分線
6.如圖7.1.2-5所示:(1)AD⊥BC,垂足為D,則AD是________的高,∠________=∠________=90°.
。2)AE平分∠BAC,交BC于E點,則AE叫做△ABC的________,∠________=∠________=7.1.2∠________.
。3)若AF=FC,則△ABC的中線是________,S△ABF=________.
。4)若BG=GH=HF,則AG是________的中線,AH是________的中線.
圖7.1.2-5 圖7.1.2-6 圖7.1.2-7
7.如圖7.1.2-6,DE∥BC,CD是∠ACB的平分線,∠ACB=60°,那么∠EDC=______度.
8.如圖7.1.2-7,BD=DC,∠ABN=7.1.2∠ABC,則AD是△ABC的________線,BN是△ABC的________,
ND是△BNC的________線.
9.下列判斷中,正確的個數為( )
(1)D是△ABC中BC邊上的一個點,且BD=CD,則AD是△ABC的中線
。2)D是△ABC中BC邊上的一個點,且∠ADC=90°,則AD是△ABC的.高
(3)D是△ABC中BC邊上的一個點,且∠BAD=7.1.2∠BAC,則AD是△ABC的角平分線
(4)三角形的中線、高、角平分線都是線段
A.1 B.2 C.3 D.4
3、探究活動1:探究三角形的高,師提出問題,生獨立解答,教師關注學生對高和邊的對應關系是否明確,并結合圖形引出三角形高的定義,并且利用圖形,讓生用語言描述,師加以修正,目的發展學生的觀察力與語言表述能力。在此基礎上讓學生明確三角形的高是一條線段。為了培養學生的繪圖能力,讓小組之間合作完成銳角三角形、直角三角形、鈍角三角形各邊上的高。小組交流,歸納三角形高的特點,再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。
在活動中,師應重點關注:
①學生能否多方位的加以探究
、趯W生能否用流利的語言描述自己的發現
③學生能否對不同的觀點進行質疑,感受數學結論的正確性。之后設計的是鞏固性練習,通過學生練習,對三角形高的的有關知識加以鞏固,讓學生從運用所學知識解決問題的過程,獲得成功的體驗,從而激發他們學習的積極性。
3、探究活動2 : 探究三角形的中線:學生在畫一畫中體會三角形中線的定義,培養學生動腦、動手能力,語言表達能力。
4、探究活動3:探究三角形的角平分線。首先讓學生折一折,在動手操作中體會折痕是否平分三角形的內角,之后分小組折疊銳角三角形、直角三角形、鈍角三角形的角平分線,小組交流,歸納三角形角平分線的特點,再讓他們敘述小組所探究的結論,師加以適當修正與鼓勵。從而很好的培養了學生的動手操作和探究能力。
5、練習鞏固,深化拓展
先以搶答形式解決問題1、問題2,讓學生利用所學知識,進一步鞏固三角形的高、中線、角平分線的有關概念,提高學生獨立解決問題的能力。拓展練習是一個綜合性題目,一方面引導學生從復雜圖形中抽取基本圖形,從而加強學生對概念的掌握,進一步發展學生的思維,拓展能力,運用以增強直觀性。
6、感悟與收獲:進一步提升學生對知識點理解。
7、作業布置:讓學生運用數學知識解決生活實例,是讓學生感受數學和生活的聯系及數學在生活中的重要性,充分體現數學于生活又還原于生活。
高中數學說課稿 篇7
一、說教材
1、從在教材中的地位與作用來看
《等比數列的前n項和》是數列這一章中的一個重要資料,它不僅僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,并且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。
2、從學生認知角度看
從學生的思維特點看,很容易把本節資料與等差數列前n項和從公式的構成、特點等方面進行類比,這是進取因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不一樣,這對學生的思維是一個突破,另外,對于q=1這一特殊情景,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學情分析
教學對象是剛進入高中的學生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹。
4、重點、難點
教學重點:公式的推導、公式的特點和公式的運用。
教學難點:公式的推導方法和公式的靈活運用。
公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。
二、說目標
知識與技能目標:
理解并掌握等比數列前n項和公式的.推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。
過程與方法目標:
經過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事。
情感與態度價值觀:
經過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。
三、說過程
學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的構成與發展過程,結合本節課的特點,我設計了如下的教學過程:
1、創設情境,提出問題
在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢
設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的進取性。故事資料緊扣本節課的主題與重點。
此時我問:同學們,你們明白西薩要的是多少粒小麥嗎引導學生寫出麥?倲。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識構成過程的氛圍,突破學生學習的障礙。同時,構成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。
2、師生互動,探究問題
在肯定他們的思路后,我之后問:1,2,22,…,263是什么數列有何特征應歸結為什么數學問題呢
探討1:,記為(1)式,注意觀察每一項的特征,有何聯系(學生會發現,后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現
設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,所以教學中應著力在這兒做文章,從而抓住培養學生的辯證思維本事的良好契機。
經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。教師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢
設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。
3、類比聯想,解決問題
這時我再順勢引導學生將結論一般化,
那里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。
設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自我探究公式,從而體驗到學習的愉快和成就感。
對不對那里的q能不能等于1等比數列中的公比能不能為1q=1時是什么數列此時sn=(那里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)
再次追問:結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(引導學生得出公式的另一形式)
設計意圖:經過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和理解,變為對知識的主動認識,從而進一步提高分析、類比和綜合的本事。這一環節十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展
高中數學說課稿 篇8
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數概念的第3節函數的基本性質的第2小節。
奇偶性是函數的一條重要性質,教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統地介紹了函數的奇偶性。從知識結構看,它既是函數概念的拓展和深化,又是后續研究指數函數、對數函數、冪函數、三角函數的基礎。所以,本節課起著承上啟下的重要作用。
2、學情分析
從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了必須數量的簡單函數的儲備。同時,剛剛學習了函數單調性,已經積累了研究函數的基本方法與初步經驗。
從學生的思維發展看,高一學生思維本事正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、
3、教學目標
基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:
【知識與技能】
1)能確定一些簡單函數的奇偶性。
2)能運用函數奇偶性的代數特征和幾何意義解決一些簡單的問題。
【過程與方法】
經歷奇偶性概念的構成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。
【情感、態度與價值觀】
經過自主探索,體會數形結合的思想,感受數學的對稱美。
從課堂反應看,基本上到達了預期效果。
4、教學重點和難點
重點:函數奇偶性的概念和幾何意義。
幾年的教學實踐證明,雖然函數奇偶性這一節知識點并不是很難理解,但知識點掌握不全面的學生容易出現下頭的錯誤。他們往往流于表面形式,只根據奇偶性的定義檢驗成立即可,而忽視了研究函數定義域的問題。所以,在介紹奇、偶函數的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。所以,我把函數的奇偶性概念設計為本節課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節課重點問題的講解。
難點:奇偶性概念的數學化提煉過程。
由于,學生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數學化提煉過程設計為本節課的難點。
二、教法與學法分析
1、教法
根據本節教材資料和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發現法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發性和思考性的問題,創設問題情景,誘導學生思考,使學生始終處于主動探索問題的進取狀態,從而培養思維本事。從課堂反應看,基本上到達了預期效果。
2、學法
讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發生、發展、構成的過程,從而使學生掌握知識。
三、教學過程
具體的教學過程是師生互動交流的過程,共分六個環節:設疑導入、觀圖激趣;指導觀察、構成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業,學以致用。下頭我對這六個環節進行說明。
。ㄒ唬┰O疑導入、觀圖激趣
由于本節資料相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的資料,使學生的思維迅速定向,到達開始就明確目標突出重點的效果。
用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數圖象。經過讓學生觀察圖片導入新課,既激發了學生濃厚的學習興趣,又為學習新知識作好鋪墊。
。ǘ┲笇в^察、構成概念
在這一環節中共設計了2個探究活動。
探究1、2數學中對稱的形式也很多,這節課我們就以函數和=︱x︱以及和為例展開探究。這個探究主要是經過學生的自主探究來實現的,由于有圖片的鋪墊,絕大多數學生很快就說出函數圖象關于Y軸(原點)對稱。之后學生填表,從數值角度研究圖象的這種特征,體此刻自變量與函數值之間有何規律引導學生先把它們具體化,再用數學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發現兩個函數的對稱性反應到函數值上具有的特性,然后經過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個都成立。最終給出偶函數(奇函數)定義(板書)。
在這個過程中,學生把對圖形規律的感性認識,轉化成數量的規律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。
(三)學生探索、領會定義
探究3下列函數圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節課的難點)
。ㄋ模┲R應用,鞏固提高
在這一環節我設計了4道題
例1確定下列函數的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下頭完成。
例1設計意圖是歸納出確定奇偶性的步驟:
(1)先求定義域,看是否關于原點對稱;
(2)再確定f(-x)=-f(x)還是f(-x)=f(x)。
例2確定下列函數的奇偶性:
例3確定下列函數的奇偶性:
例2、3設計意圖是探究一個函數奇偶性的可能情景有幾種類型?
例4(1)確定函數的.奇偶性。
。2)如圖給出函數圖象的一部分,你能根據函數的奇偶性畫出它在y軸左邊的圖象嗎?
例4設計意圖加強函數奇偶性的幾何意義的應用。
在這個過程中,我重點關注了學生的推理過程的表述。經過這些問題的解決,學生對函數的奇偶性認識、理解和應用都能提升很大一個高度,到達當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現了啟發式、問題式教學法的特色。
在本節課的最終對知識點進行了簡單回顧,并引導學生總結出本節課應積累的解題經驗。知識在于積累,而學習數學更在于知識的應用經驗的積累。所以提高知識的應用本事、增強錯誤的預見本事是提高數學綜合本事的很重要的策略。
。┓謱幼鳂I,學以致用
必做題:課本第36頁練習第1-2題。
選做題:課本第39頁習題1、3A組第6題。
思考題:課本第39頁習題1、3B組第3題。
設計意圖:面向全體學生,注重個人差異,加強作業的針對性,對學生進行分層作業,既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步到達不一樣的人在數學上得到不一樣的發展。
高中數學說課稿 篇9
一、本節資料的地位與重要性
"分類計數原理與分步計數原理"是《高中數學》一節獨特資料。這一節課與排列、組合的基本概念有著緊密的聯系,經過對這一節課的學習,既能夠讓學生理解、理解分類計數原理與分步計數原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。
二、關于教學目標的確定
根據兩個基本原理的地位和作用,我認為本節課的教學目標是:
。1)使學生正確理解兩個基本原理的概念;
。2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;
。3)提高分析、解決問題的本事
。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。
三、關于教學重點、難點的選擇和處理
中學數學課程中引進的關于排列、組合的計算公式都是以兩個計數原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點資料。
正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,應對復雜的事物和現象學生對分類和分步的選擇容易產生錯誤的認識,所以分類計數原理和分步計數原理的準確應用是本節課的教學難點。必需使學生認清兩個基本原理的實質就是完成一件事需要分類還是分步,才能使學生理解概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。
四、關于教學方法和教學手段的選用
根據本節課的資料及學生的實際水平,我采取啟發引導式教學方法并充分發揮電腦多媒體的輔助教學作用。
啟發引導式作為一種啟發式教學方法,體現了認知心理學的基本理論。貼合教學論中的自覺性和進取性、鞏固性、可理解性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則,教學過程中,教師采用點撥的方法,啟發學生經過主動思考、動手操作來到達對知識的"發現"和理解,進而完成知識的內化,使書本的知識成為自我的知識。
電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,能夠極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現。另外,電腦軟件具有良好的交互性,能夠將教師的思路和策略以軟件的形式來體現,更好地為教學服務。
五、關于學法的指導
"授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養學生主動觀察、主動思考、自我發現的學習本事,增強學生的綜合素質,從而到達教學的目標。教學中,教師創設疑問,學生想辦法解決疑問,經過教師的啟發點撥,類比推理,在進取的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發現"——"解惑"四個環節,學生隨時對所學知識產生有意注意,思想上經歷了從肯定到否定、又從否定到肯定的辨證思維過程,貼合學生認知水平,培養了學習本事。
六、關于教學程序的設計
。ㄒ唬┱n題導入
這是本章的第一節課,是起始課,講起始課時,把這一學科的資料作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下頭的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節的必要性,明確研究計數方法是本章資料的獨特性,從應用的廣泛看學習本章資料的重要性。同時板書課題(分類計數原理與分步計數原理)
這樣做,能使學生明白本節資料的地位和作用,激發其學習新知識的欲望,為順利完成教學任務做好思維上的準備。
。ǘ┬抡n講授
經過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都能夠獨立地把從甲地到乙地這件事辦好。
緊跟著給出:
引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不一樣的走法?
引伸2:若完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不一樣方法?
這個問題的兩個引申由漸入深、循序漸進為學生理解分類計數原理做好了準備。
板書分類計數原理資料:
完成一件事,有類辦法。在第1類辦法中有種不一樣方法,在第2類辦法中有種不一樣的方法,……,在第類辦法中有種不一樣方法,那么完成這件事共有種不一樣的方法。(也稱加法原理)
此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數原理資料,啟發總結得下頭三點注意:(出示幻燈片)
(1)各分類之間相互獨立,都能完成這件事;
。2)根據問題的特點在確定的分類標準下進行分類;
。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不一樣兩類的兩種方法都是不一樣的方法。
這樣做加深學生對分類計數原理的正確理解,突出了重點,突破了難點。
接下來給出問題2:(出示幻燈片)
由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經B村去C村,共有多少種不一樣的走法?
提出問題:問題1與問題2同是研究從甲地到乙地的不一樣走法,請找出這兩個問題的不之處?學生會發現問題1中采用乘火車或乘汽車都能夠從甲地到乙地,而問題2中必須經過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。
問題2的講授采用給出問題,配圖分析,組織討論,強調分步。用多媒體配不一樣的顏色閃現出六種不一樣的走法,讓學生列式求出不一樣走法數,并列舉所有走法。
歸納得出:分步計數原理(板書原理資料)
分步計數原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不一樣的方法,做第二步有m2種不一樣的方法,……,做第n步有mn種不一樣的方法。那么,完成這件事共有
N=m1×m2×…×mn
種不一樣的'方法。
同樣趁學生對定理有必須的認識,引導學生分析分步計數原理資料,啟發總結得下頭三點注意:(出示幻燈片)
。1)各步驟相互依存,僅有各個步驟完成了,這件事才算完成;
。2)根據問題的特點在確定的分步標準下分步;
。3)分步時要注意滿足完成一件事必須并且只需連續完成這N個步驟這件事才算完成。
。ㄈ⿷门e例
教材例1:(書架取書問題)引導學生分析解答,注意區分是分類還是分步。
例2:由數字0,1,2,3,4能夠組成多少個三位整數(各位上的數字允許重復)?本題設置了4個問題:
(1)每一個三位數是由什么構成的?(三個整數字)
(2)023是一個三位數嗎?(百位上不能是0)
。3)組成一個三位數需要怎樣做?(分成三個步驟來完成:第一步確定百位上的數字;第二步確定十位上的數字;第三步確定個位上的數字)
(4)怎樣表述?
教師巡視指導、并歸納
解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法。根據分步計數原理,得到能夠組成的三位整數的個數是N=4×5×5=100.
答:能夠組成100個三位整數。
。ń處煹倪B續發問、啟發、引導,幫忙學生找到正確的解題思路和計算方法,使學生的分析問題本事有所提高。
教師在第二個例題中給出板書示范,能幫忙學生進一步加深對兩個基本原理實質的理解,周密的研究,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的構成有著進取的促進作用,也能夠為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)
。ㄋ模w納小結
師:什么時候用分類計數原理、什么時候用分步計數原理呢?
生:分類時用分類計數原理,分步時用分步計數原理。
師:應用兩個基本原理時需要注意什么呢?
生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。
。ㄎ澹┱n堂練習
P222:練習1~4.學生板演第4題
。▽τ陬}4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
。┎贾米鳂I
P222:練習5,6,7.
補充題:
1.在所有的兩位數中,個位數字小于十位數字的共有多少個?
。ㄌ崾荆喊词簧蠑底值拇笮∧軌蚍譃9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)
2.某學生填報高考志愿,有m個不一樣的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不一樣的志愿,求該生填寫志愿的方式的種數。
。ㄌ崾荆盒枰慈齻志愿分成三步。共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數中,有且僅有兩個數字相同的三位數共有多少個?
(提示:能夠用下頭方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個僅有兩個數字相同的三位數)
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不一樣的選法?
。ㄌ崾荆河捎8+5=13》10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心學習,認真復習,就有可能在高中的戰場上考取自我夢想的成績。
高中數學說課稿 篇10
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節課。本節資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。
二、學情分析:
學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節資料的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。
三、教學目的:
1、經過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。
2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。
3、經過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的本事。
四、教學重、難點
重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。
難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。
五、教學方法
本節采用以下教學方法:
1、類比:由數的加法運算類比向量的加法運算。
2、探究:由力的'合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;經過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。
3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。
4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。
六、數學思想的體現:
1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。
2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。
3、歸納思想:主要體此刻以下三個環節:
、賹W完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。
、谟晒簿向量的加法總結出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。
、蹖ο蛄考臃ǖ慕Y合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。
七、教學過程:
1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要經過講解例1,使學生認識到能夠經過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。
設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發揮了作用,加深了學生對向量加法的平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。
所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。
這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。
設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。
。3)共線向量的加法
方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。
方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做?墒菍W生學過有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數的符號。"類比異號兩數相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導學生嘗試運用三角形法則去做,發現結論正確。
反思過程,學生自然會想到方向相同的兩個向量相加,類似于同號兩數相加。這說明兩個共線向量相加依然可用三角形法則經過以上幾個環節的討論,能夠作個簡單的小結:兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。
設計意圖:經過對共線向量加法的探討,拓寬了學生對三角形法則的認識,使得不一樣位置的向量相加都有了依據,并且采用類比的方法,使學生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。
。4)向量加法的運算律
、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結合三角
形法則得出,理解起來沒什么困難,再一次強化了學生對兩個法則特點及實質的認識。
、诮Y合律:結合律是經過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結果相同。
接下來是對應的兩個練習,運用交換律與結合律計算向量的和。
設計意圖:運算律的引入給加法運算帶來方便,從后面的練習中學生能夠體會到這點。由結合律還使學生發現,多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學生明白,三角形法則適用于任意多個向量相加。
3、小結
先由學生小結,檢查學生對本課重要知識的認識,也給學生一個概括本節知識的機會,然后用課件展示小結資料,使學生印象更深。
。1)平行四邊形法則:起點相同,適用于不共線向量的求和。
。2)三角形法則首尾相接,適用于任意多個向量的求和。
。3)運算律
高中數學說課稿 篇11
一、教材分析:
1、教材的地位與作用。
本節資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。"用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。
在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。
2、重點與難點。
重點:對概率意義的理解,經過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。
難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。
二、目的分析:
知識與技能:掌握用頻率預測概率和用列舉法求概率方法。
過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的`定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。
情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。
三、教法、學法分析:
引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。
四、教學過程分析:
1、引導學生探究
精心設計問題一,學生經過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。
2、歸納概括
學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。
引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題本事,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。
3、舉例應用
、乓龑W生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。
、埔龑W生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。
4、深化發展
⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。
、谱寣W生設計活動資料,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新本事。
高中數學說課稿 篇12
一、教學背景分析
(一)教材地位分析:《橢圓及其標準方程》是繼學習圓以后運用“曲線與方程”思想解決二次曲線問題的又一實例,從知識上說,本節課是對坐標法研究幾何問題的又一次實際運用,同時也是進一步研究橢圓幾何性質的基礎;從方法上說,它為進一步研究雙曲線、拋物線提供了基本模式和理論基礎,因此本節課起到了承上啟下的重要作用。
(二)重點、難點分析:本節課的重點是橢圓的定義及其標準方程,標準方程的推導是本節課的難點,要突破這一難點,關鍵是引導學生正確選擇去根式的策略。
(三)學情分析:在學習本節課前,學生已經學習了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運用的經驗,對坐標法研究幾何問題也有了初步的認識,因此,學生已經具備探究有關點的軌跡問題的知識基礎和學習能力,但由于學生學習解析幾何時間還不長、學習程度也較淺,并且還受到高二這一年齡段學習心理和認知結構的影響,在學習過程中難免會有些困難。如:由于學生對運用坐標法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學生思維上會存在障礙。
二、教學目標設計
。ㄒ唬┲R目標:掌握橢圓的定義及其標準方程;會根據條件寫出橢圓的標準方程;通過對橢圓標準方程的探求,再次熟悉求曲線方程的一般方法。
。ǘ┠芰δ繕耍簩W生通過動手畫橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過程,提高動手能力、合作學習能力和運用知識解決實際問題的能力。
。ㄈ┣楦心繕耍涸谛纬芍R、提高能力的過程中,激發學生學習數學的興趣,提高學生的審美情趣,培養學生勇于探索、敢于創新的精神。
三、教法學法設計
(一)教學方法設計:為了更好地培養學生自主學習能力,提高學生的綜合素質,我主要采用探究式教學方法。一方面我通過設置情境、問題誘導充分發揮主導作用;另一方面學生通過對我提供的素材進行直觀觀察→動手操作→討論探究→歸納抽象→總結規律的過程充分體現主體地位。
使用多媒體輔助教學與自制教具相結合的設計方案,實現多媒體快捷、形象、大容量的優勢與自制教具直觀、實用的優勢的結合,既突出了知識的產生過程,又增加了課堂的趣味性。
1、掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;
2、能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;
3、通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;
4。通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;
5。通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識。
四、教學建議
教材分析
1、知識結構
2、重點難點分析
重點是橢圓的定義及橢圓標準方程的兩種形式。難點是橢圓標準方程的建立和推導。關鍵是掌握建立坐標系與根式化簡的方法。
橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程。橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用。先講橢圓也與第七章的圓的方程銜接自然。學好橢圓對于學生學好圓錐曲線是非常重要的。
。1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解。
另外要注意到定義中對“常數”的限定即常數要大于。這樣規定是為了避免出現兩種特殊情況,即:“當常數等于時軌跡是一條線段;當常數小于時無軌跡”。這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質。但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的`準確性。
。2)根據橢圓的定義求標準方程,應注意下面幾點:
①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方。應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔。
、谠O橢圓的焦距為,橢圓上任一點到兩個焦點的距離為,令,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會。
、墼诜匠痰耐茖н^程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點。要注意說明這類方程的化簡方法:
、俜匠讨兄挥幸粋根式時,需將它單獨留在方程的一側,把其他項移至另一側;
、诜匠讨杏袃蓚根式時,需將它們分別放在方程的兩側,并使其中一側只有一項。
教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程“而沒有證明,”方程的解為坐標的點都在橢圓上”。這實際上是方程的同解變形問題,難度較大,對同學們不作要求。
。3)兩種標準方程的橢圓異同點
中心在原點、焦點分別在軸上,軸上的橢圓標準方程分別為:,。它們的相同點是:形狀相同、大小相同,都有,。不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同。
橢圓的焦點在軸上標準方程中項的分母較大;
橢圓的焦點在軸上標準方程中項的分母較大。
另外,形如中,只要,,同號,就是橢圓方程,它可以化為。
。4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法。例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓。
高中數學說課稿 篇13
一、教材分析
本節知識是必修五第一章《解三角形》的第一節資料,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,并且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。
根據上述教材資料分析,研究到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
本事目標:引導學生經過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維本事,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,經過學生之間、師生之間的交流、合作和評價,調動學生的主動性和進取性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的資料,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數。
二、教法
根據教材的.資料和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究資料,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,進取探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的本事線聯系方法與技能使學生較易證明正弦定理,另外經過例題和練習來突破難點
三、學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自我所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維本事,構成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四、教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,構成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創設情境,布疑激趣
“興趣是最好的教師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫忙別人的熱情和學習的興趣,從而進入今日的學習課題。
(二)探尋特例,提出猜想
1、激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2、那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3、讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
。ㄈ┻壿嬐评,證明猜想
1、強調將猜想轉化為定理,需要嚴格的理論證明。
2、鼓勵學生經過作高轉化為熟悉的直角三角形進行證明。
3、提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4。思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
。ㄋ模w納總結,簡單應用
1、讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2、正弦定理的資料,討論能夠解決哪幾類有關三角形的問題。
3、運用正弦定理求解本節課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1、例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形
例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2、例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
。┱n堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2.在△ABC中,已知下列條件,解三角形
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,教師巡視,及時發現問題,并解答。
。ㄆ撸┬〗Y反思,提高認識
經過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1、用向量證明了正弦定理,體現了數形結合的數學思想。
2、它表述了三角形的邊與對角的正弦值的關系。
3、定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
。◤膶嶋H問題出發,經過猜想、實驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生進取性,使數學教學成為數學活動的教學。)
。ò耍┤蝿蘸笱,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發現正弦定理不適用了,那么自然過渡到下一節資料,余弦定理。布置作業,預習下一節資料。
高中數學說課稿 篇14
一、教材分析
1、《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節資料,是在學習了《指數》一節資料之后編排的。經過本節課的學習,既能夠對指數和函數的概念等知識進一步鞏固和深化,又能夠為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅僅是本章《函數》的重點資料,也是高中學段的主要研究資料之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體此刻細胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學習這部分知識還有著廣泛的現實意義。本節資料的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2、教學目標、重點和難點
經過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了必須的認知結構,主要體此刻三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有必須的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知本事的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
、谡莆罩笖岛瘮档膱D象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
、贊B透數形結合的基本數學思想方法;
、谂囵B學生觀察、聯想、類比、猜測、歸納的本事;
(3)情感目標:
、袤w驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題;
②經過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的本事;
、垲I會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖經過這一節課的教學到達不僅僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而到達培養學生學習本事的目的,我根據自我對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1、創設問題情景、按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2、強化“指數函數”概念、引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3、突出圖象的作用、在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家以往說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,所以圖象發揮了主要的'作用。
4、注意數學與生活和實踐的聯系、數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。
三、學法指導
本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情景,我主要在以下幾個方面做了嘗試:
1、再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫忙學生再現原有認知結構,為理解指數函數的概念做好準備。
2、領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3、在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的理解和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4、注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不一樣難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的構成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。
1、創設情景、導入新課
教師活動:
、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子;
、趯W生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
②回憶指數的概念;
、蹥w納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸惖姆椒。
設計意圖:經過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性,為突破難點做好準備;
2、啟發誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象
②在準備好的小黑板上規范地畫出這兩個指數函數的圖象
、郯鍟笖岛瘮档男再|。
學生活動:
①畫出兩個簡單的指數函數圖象
、诮涣鳌⒂懻
、蹥w納出研究函數性質涉及的方面
、芸偨Y出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的資料有著必須的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,到達進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情景,學生就會很自然的經過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
高中數學說課稿 篇15
一、說教材
1、教材的地位、作用及編寫意圖
《對數函數》出此刻職業高中數學第一冊第四章第四節。函數是高中數學的核心,對數函數是函數的重要分支,對數函數的知識在數學和其他許多學科中有著廣泛的應用;學生已經學習了對數、反函數以及指數函數等資料,這為過渡到本節的學習起著鋪墊作用;"對數函數"這節教材,指出對數函數和指數函數互為反函數,反映了兩個變量的相互關系,蘊含了函數與方程的數學思想與數學方法,是以后數學學習中不可缺少的部分,也是高考的必考資料。
2、教學目標的確定及依據。
依據教學大綱和學生獲得知識、培養本事及思想教育等方面的要求:我制定了如下教育教學目標:
。1)知識目標:理解對數函數的概念、掌握對數函數的圖象和性質。
(2)本事目標:培養學生自主學習、綜合歸納、數形結合的本事。
(3)德育目標:培養學生對待知識的科學態度、勇于探索和創新的精神。
(4)情感目標:在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵
重點:對數函數的概念、圖象和性質;
難點:利用指數函數的圖象和性質得到對數函數的圖象和性質;
關鍵:抓住對數函數是指數函數的反函數這一要領。
二、說教法
大部分學生數學基礎較差,理解本事,運算本事,思維本事等方面參差不齊;同時學生學好數學的自信心不強,學習進取性不高。針對這種情景,在教學中,我引導學生從實例出發啟發指數函數的定義,在概念理解上,用步步設問、課堂討論來加深理解。在對數函數圖像的畫法上,我借助多媒體,演示作圖過程及圖像變化的動畫過程,從而使學生直接地理解并提高學生的學習興趣和進取性,很好地突破難點和提高教學效率。
三、說學法
教給學生方法比教給學生知識更重要,本節課注重調動學生進取思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
。1)對照比較學習法:學習對數函數,處處與指數函數相對照。
。2)探究式學習法:學生經過分析、探索、得出對數函數的定義。
(3)自主性學習法:經過實驗畫出函數圖象、觀察圖象自得其性質。
。4)反饋練習法:檢驗知識的應用情景,找出未掌握的資料及其差距。
這樣可發揮學生的主觀能動性,有利于提高學生的各種本事。
四、說教學程序
1、復習導入
。1)復習提問:什么是對數?如何求反函數?指數函數的圖象和性質如何?學生回答,并利用課件展示一下指數函數的圖象和性質。
設計意圖:設計的提問既與本節資料有密切關系,又有利于引入新課,為學生理解新知識清除了障礙,有意識地培養學生分析問題的本事。
。2)導言:指數函數有沒有反函數?如果有,如何求指數函數的反函數?它的反函數是什么?
設計意圖:這樣的導言可激發學生求知欲,使學生渴望明白問題的答案。
2、認定目標(出示教學目標)
3、導學達標
按"教師為主導,學生為主體,訓練為主線"的原則,安排師生互動活動。
(1)對數函數的概念
引導學生從對數式與指數式的關系及反函數的概念進行分析并推導出,指數函數有反函數,并且y=ax(a》0且a≠1)的反函數是y=logax,見課件。把函數y=logax叫做對數函數,其中a》0且a≠1.從而引出對數函數的概念,展示課件。
設計意圖:對數函數的概念比較抽象,利用已經學過的知識逐步分析,這樣引出對數函數的概念過渡自然,學生易于理解。因為對數函數是指數函數的反函數,讓學生比較它們的定義域、值域、對應法則及圖象間的關系,培養學生參與意識,經過比較充分體現指數函數及對數函數的內在聯系。
。2)對數函數的圖象
提問:同指數函數一樣,在學習了函數的定義之后,我們要畫函數的圖象,應如何畫對數函數的圖象呢?讓學生思考并回答,用描點法畫圖。教師肯定,我們每學習一種新的函數都能夠根據函數的解析式,列表、描點畫圖。再研究一下,我們還能夠用什么方法畫出對數函數的圖象呢?
讓學生回答,畫出指數函數關于直線y=x對稱的圖象,就是對數函數的圖象。
教師總結:我們畫對數函數的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數函數的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=logx)值的對應表,因為對數函數的定義域為x》0,所以可取x=···,,,1,2,4,8···,請計算對應的y值,然后在坐標系內描點、畫出它們的圖象。
方法二(圖象變換法)因為對數函數和指數函數互為反函數,圖象關于直線y=x對稱,所以只要畫出y=ax的'圖象關于直線y=x對稱的曲線,就能夠得到y=logax.的圖象。學生動手做實驗,先描出y=2x的圖象,畫出它關于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=()x的圖象畫出y=logx的圖象,再出示課件,教師加以解釋。
設計意圖:用這種對稱變換的方法畫函數的圖象,能夠加深和鞏固學生對互為反函數的兩個函數之間的認識,便于將對數函數的圖象和性質與指數函數的圖象和性質對照,但使用描點法畫函數圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學生自由選擇畫法。這樣能夠充分調動學生自主學習的進取性。
(3)對數函數的性質
在理解對數函數定義的基礎上,掌握對數函數的圖象和性質是本節的重點,關鍵在于抓住對數函數是指數函數的反函數這一要領,講對數函數的性質,可先在同一坐標系內畫出上述兩個對數函數的圖象,根據圖象讓學生列表分析它們的圖象特征和性質,然后出示課件,教師補充。作了以上分析之后,再分a》1與0《a《1兩種情景列出對數函數圖象和性質表,()體現了從"特殊到一般"、"從具體到抽象"的方法。出示課件并進行詳細講解,把對數函數圖象和性質列成一個表以便讓學生比較著記憶。
設計意圖:這種講法既嚴謹又直觀易懂,還能讓學生主動參與教學過程,對培養學生的創新本事有幫忙,學生易于理解易于掌握,并且利用表格,能夠突破難點。
由于對數函數和指數函數互為反函數,它們的定義域與值域正好互換,為了揭示這兩種函數之間的內在聯系,列出指數函數與對數函數對照表(見課件)
設計意圖:經過比較對照的方法,學生更好地掌握兩個函數的定義、圖象和性質,認識兩個函數的內在聯系,提高學生對函數思想方法的認識和應用意識。
4、鞏固達標(見課件)
這一訓練是為了培養學生利用所學知識解決實際問題的本事,經過這個環節學生能夠加深對本節知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結。充分體現"數形結合"和"分類討論"的思想。
5、反饋練習(見課件)
習題是對學生所學知識的反饋過程,教師能夠了解學生對知識掌握的情景。
6、歸納總結(見課件)
引導學生對主要知識進行回顧,使學生對本節有一個整體的把握,所以,從三方面進行總結:對數函數的概念、對數函數的圖象和性質、比較對數值大小的方法。
7、課外作業:
(1)完成P782、3題
(2)當底數a》1與0《a《1時,底數不一樣,對數函數圖象有什么持點?
五、說板書
板書設計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學生對圖象和性質的理解和掌握,便于記憶,有利于提高教學效果。
高中數學說課稿 篇16
一、教材分析:
1、教材的地位與作用:
線性規劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節內容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數學在解決實際問題中的.應用,體驗數形結合和轉化的思想方法,培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。
2、教學重點與難點:
重點:畫可行域;在可行域內,用圖解法準確求得線性規劃問題的最優解。
難點:在可行域內,用圖解法準確求得線性規劃問題的最優解。
二、目標分析:
在新課標讓學生經歷“學數學、做數學、用數學”的理念指導下,本節課的教學目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行
域和最優解等概念;
2、理解線性規劃問題的圖解法;
3、會利用圖解法求線性目標函數的最優解。
能力目標:
1、在應用圖解法解題的過程中培養學生的觀察能力、理解能力。
2、在變式訓練的過程中,培養學生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線性規劃的理性認識過程中,培養學生運用數形結合思想解題的能力和化歸能力。
情感目標:
1、讓學生體驗數學來源于生活,服務于生活,體驗數學在建設節約型社會中的作用,品嘗學習數學的樂趣。
2、讓學生體驗數學活動充滿著探索與創造,培養學生勤于思考、勇于探索的精神;
3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。
三、過程分析:
數學教學是數學活動的教學。因此,我將整個教學過程分為以下六個教學環節:
1、創設情境,提出問題;
2、分析問題,形成概念;
3、反思過程,提煉方法;
4、變式演練,深入探究;
5、運用新知,解決問題;
6、歸納總結,鞏固提高。
1、創設情境,提出問題:
在課堂教學的開始,我以一組生動的動畫(配圖片)描述出在神奇的數學王國里,有一種算法廣泛應用于工農業、軍事、交通運輸、決策管理與規劃等領域,應用它已節約了億萬財富,還被列為20世紀對科學發展和工程實踐影響最大的十大算法之一。它為何有如此大的魅力?它又是怎樣的一種神奇算法呢?我以景激情,以情激思,點燃學生的求知欲,引領學生進入學習情境。
【高中數學說課稿】相關文章:
高中數學的說課稿04-19
高中數學經典說課稿11-25
高中數學《數列》說課稿01-18
高中數學優秀說課稿03-08
高中數學數列說課稿11-20
高中數學優秀說課稿03-03
高中數學的說課稿范文12-11
高中數學全套說課稿06-08
高中數學說課稿06-12
高中數學數列說課稿06-07