1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-06-22 19:29:38 高中說課稿 我要投稿

        【實用】高中數學說課稿3篇

          作為一無名無私奉獻的教育工作者,就不得不需要編寫說課稿,借助說課稿可以有效提升自己的教學能力。怎樣寫說課稿才更能起到其作用呢?以下是小編為大家收集的高中數學說課稿3篇,僅供參考,希望能夠幫助到大家。

        【實用】高中數學說課稿3篇

        高中數學說課稿 篇1

          各位老師你們好!今天我要為大家講的課題是

          首先,我對本節教材進行一些分析:

          一、教材分析(說教材):

          1. 教材所處的地位和作用:

          本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。

          2. 教育教學目標:

          根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

         。1)知識目標: (2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。

          3. 重點,難點以及確定依據:

          本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點

          重點: 通過 突出重點

          難點: 通過 突破難點

          關鍵:

          下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:

          二、教學策略(說教法)

          1. 教學手段:

          如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點: 應著重采用 的教學方法。

          2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。

          3. 學情分析:(說學法)

          我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。

         。1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學

          生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散

         。2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

          (3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力

          最后我來具體談談這一堂課的教學過程:

          4. 教學程序及設想:

         。1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

         。2)由實例得出本課新的知識點

         。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。

         。4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

         。5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。

         。6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。

         。7)板書

          (8)布置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

          教學程序:

          課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分

        高中數學說課稿 篇2

          1. 教材分析

          1-1教學內容及包含的知識點

          (1) 本課內容是高中數學第二冊第七章第三節《兩條直線的位置關系》的最后一個內容。

          (2) 包含知識點:點到直線的距離公式和兩平行線的距離公式。

          1-2教材所處地位、作用和前后聯系

          本節課是兩條直線位置關系的最后一個內容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的組合圖形中)提供一套工具。

          可見,本課有承前啟后的作用。

          1-3教學大綱要求

          掌握點到直線的距離公式

          1-4高考大綱要求及在高考中的顯示形式

          掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。

          1-5教學目標及確定依據

          教學目標

          (1) 掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。

          (2) 培養學生探究性思維方法和由特殊到一般的研究能力。

          (3) 認識事物之間相互聯系、互相轉化的辯證法思想,培養學生轉化知識的能力。

          (4) 滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發展。

          確定依據:

          中華人民共和國教育部制定的《全日制普通高級中學數學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

          1-6教學重點、難點、關鍵

          (1) 重點:點到直線的距離公式

          確定依據:由本節在教材中的地位確定

          (2) 難點:點到直線的距離公式的推導

          確定依據:根據定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現。

          分析“嘗試性題組”解題思路可突破難點

          (3)關鍵:實現兩個轉化。一是將點線距離轉化為定點到垂足的距離;二是利用等積法將其轉化為直角三角形中三頂點的距離。

          2.教法

          2-1發現法:本節課為了培養學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發學生分析、發現、比較、論證等,從而形成完整的數學模型。

          確定依據:

          (1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。

          (2)事物之間相互聯系,相互轉化的辯證法思想。

          2-2教具:多媒體和黑板等傳統教具

          3. 學法

          3-1發現法:豐富學生的數學活動,學生經過練習、觀察、分析、探索等步驟,自己發現解決問題的方法,比較論證后得到一般性結論,形成完整的數學模型,再運用所得理論和方法去解決問題。

          一句話:還課堂以生命力,還學生以活力。

          3-2學情:

          (1)知識能力狀況,本節為兩線位置關系的最后一個內容,在這之前學生已經系統的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數形結合的思想正逐漸趨于成熟。

          (2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。

          (3)生活經驗:數學源于生活,生活中的點線距隨處可見,怎樣將實際問題數學化,是每個追求成長、追求發展的學生所渴求的一種研究能力。豐富的課堂數學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養能力。

          3-3學具:直尺、三角板

          4. 教學評價

          學生完成反思性學習報告,書寫要求:

          (1) 整理知識結構。

          (2) 總結所學到的基本知識,技能和數學思想方法。

          (3) 總結在學習過程中的經驗,發明發現,學習障礙等,說明產生障礙的原因。

          (4) 談談你對老師教法的建議和要求。

          作用:

          (1) 通過反思使學生對所學知識系統化。反思的過程實際上是學生思維內化,知識深化和認知牢固化的一個心理活動過程。

          (2) 報告的寫作本身就是一種創造性活動。

          (3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調整,及時進行補償性教學。

          5. 板書設計

          (略)

          6. 教學的反思總結

          心理歷練,得意之處,困惑之處,知識的傳承發展,如何修正完善等。

        高中數學說課稿 篇3

          大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。

          一、教材分析

          本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

          根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

          認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。

          能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

          情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的`交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。

          教學重點:正弦定理的內容,正弦定理的證明及基本應用。 教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。

          二、教法

          根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。

          三、學法

          指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

          四、教學過程

          (一)創設情境(3分鐘)

          “興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

          (二)猜想—推理—證明(15分鐘)

          激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。 提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)

          在三角形中,角與所對的邊滿足關系

          注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。

          2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

          3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

          (三)總結--應用(3分鐘)

          1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

          2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

          (四)講解例題(8分鐘)

          1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

          例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

          例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中

          一邊的對角時解三角形的各種情形。完了把時間交給學生。

          (五)課堂練習(8分鐘)

          1.在△ABC中,已知下列條件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm

          2. 在△ABC中,已知下列條件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°

          學生板演,老師巡視,及時發現問題,并解答。

          (六)小結反思(3分鐘)

          1.它表述了三角形的邊與對角的正弦值的關系。

          2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

          3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

          五、教學反思

          從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。

        【【實用】高中數學說課稿3篇】相關文章:

        實用的高中數學說課稿八篇07-28

        實用的高中數學說課稿3篇06-25

        實用的高中數學說課稿四篇06-25

        實用的高中數學說課稿合集5篇08-09

        實用的高中數學說課稿集錦6篇08-06

        實用的高中數學說課稿集錦五篇08-06

        實用的高中數學說課稿匯總八篇07-31

        實用的高中數學說課稿合集8篇07-31

        實用的高中數學說課稿集錦六篇07-31

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>