1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-06 09:08:40 高中說課稿 我要投稿

        實用的高中數學說課稿集錦6篇

          作為一名教學工作者,就不得不需要編寫說課稿,通過說課稿可以很好地改正講課缺點。那要怎么寫好說課稿呢?下面是小編為大家整理的高中數學說課稿6篇,僅供參考,歡迎大家閱讀。

        實用的高中數學說課稿集錦6篇

        高中數學說課稿 篇1

          各位評委:下午好!

          我叫 ,來自 。今天我說課的課題《 》(第 課時)。下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。

          一、教材分析

         。ㄒ唬┙滩牡牡匚缓妥饔

          《 》是人教版出版社 第 冊、第 單元的內容!丁芳仁 在知識上的延伸和發展,又是本章 的運用與鞏固,也為下一章 教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了 的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

          概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。

          (二)、學情分析

          通過前一階段的教學,學生對 的認識已有了一定的認知結構,主要體現在三個層面:

          知識層面:學生在已初步掌握了 。

          能力層面:學生在初步已經掌握了用

          初步具備了 思想。 情感層面:學生對數學新內容的學習有相當的興趣和積極性。但探究問題的能力以及合作交流等方面發展不夠均衡.

         。ㄈ┙虒W課時

          本節內容分 課時學習。(本課時,品味數學中的和諧美,體驗成功的樂趣。)

          二、教學目標分析

          根據教學大綱的要求、本節教材的特點和高中生的認知規律,本節課的教學目標確定為:

          知識與技能:

          過程與方法:

          情感態度:

          (例如:創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。在自主探究與討論交流過程中,培養學生的合作意識和創新精神. 通過 對立統一關系的認識,對學生進行辨證唯物主義教育)

          在探索過程中,培養獨立獲取數學知識的能力。在解決問題的過程中,讓學生感受到成功的喜悅,樹立學好數學的信心。在解答數學問題時,讓學生養成理性思維的品質。

          三、重難點分析

          重點確定為:

          要把握這個重點。關鍵在于理解

          其本質就是

          本節課的難點確定為:

          要突破這個難點,讓學生歸納

          作鋪墊。

          四、教法與學法分析

         。ㄒ唬⿲W法指導

          教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

          (二)教法分析

          本節課設計的指導思想是:現代認知心理學--建構主義學習理論。

          建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

          本節課采用“誘思探究教學法”( 陜西師范大學教育研究所張熊飛教授)。在課堂教學中凸顯學生主體地位的重要性,不再是以教師為中心去設計教學過程,而是以學生為主體去組織教學進程。把課堂真正地交給了學生,學生主體地位得以實現。

          五、說教學過程

          本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

          (一)創設情景………………….

          (二)比舊悟新………………….

         。ㄈw納提煉…………………

         。ㄋ模⿷眯轮,熟練掌握 …………………

         。ㄎ澹┛偨Y…………………

         。┳鳂I布置…………………

         。ㄆ撸┌鍟O計…………………

          以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家批評指正。謝謝

          著名美國數學家和數學教育家波利亞 包括“弄清問題”、“擬定計劃”、“實現計劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發現解法的思維過程進行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發你去聯想。聯想什么?怎樣聯想?

        高中數學說課稿 篇2

          【教材分析】

          1、本節教材的地位與作用

          本節主要研究閉區間上的連續函數最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經會求某些函數的最值,并且已經掌握了性質:“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有最大值和最小值”,以及會求可導函數的極值之后進行學習的,學好這一節,學生將會求更多的函數的最值,運用本節知識可以解決科技、經濟、社會中的一些如何使成本最低、產量最高、效益最大等實際問題。這節課集中體現了數形結合、理論聯系實際等重要的數學思想方法,學好本節,對于進一步完善學生的知識結構,培養學生用數學的意識都具有極為重要的意義。

          2、教學重點

          會求閉區間上連續開區間上可導的函數的最值。

          3、教學難點

          高三年級學生雖然已經具有一定的知識基礎,但由于對求函數極值還不熟練,特別是對優化解題過程依據的理解會有較大的困難,所以這節課的難點是理解確定函數最值的方法。

          4、教學關鍵

          本節課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區間內全部可能的極值點。

          【教學目標】

          根據本節教材在高中數學知識體系中的地位和作用,結合學生已有的認知水平,制定本節如下的教學目標:

          1、知識和技能目標

         。1)理解函數的最值與極值的區別和聯系。

         。2)進一步明確閉區間[a,b]上的連續函數f(x),在[a,b]上必有最大、最小值。

         。3)掌握用導數法求上述函數的最大值與最小值的方法和步驟。

          2、過程和方法目標

          (1)了解開區間內的連續函數或閉區間上的不連續函數不一定有最大、最小值。

          (2)理解閉區間上的連續函數最值存在的可能位置:極值點處或區間端點處。

         。3)會求閉區間上連續,開區間內可導的函數的最大、最小值。

          3、情感和價值目標

         。1)認識事物之間的的區別和聯系。

         。2)培養學生觀察事物的能力,能夠自己發現問題,分析問題并最終解決問題。

         。3)提高學生的數學能力,培養學生的創新精神、實踐能力和理性精神。

          【教法選擇】

          根據皮亞杰的建構主義認識論,知識是個體在與環境相互作用的過程中逐漸建構的結果,而認識則是起源于主客體之間的相互作用。

          本節課在幫助學生回顧肯定了閉區間上的連續函數一定存在最大值和最小值之后,引導學生通過觀察閉區間內的連續函數的幾個圖象,自己歸納、總結出函數最大值、最小值存在的可能位置,進而探索出函數最大值、最小值求解的方法與步驟,并優化解題過程,讓學生主動地獲得知識,老師只是進行適當的引導,而不進行全部的灌輸。為突出重點,突破難點,這節課主要選擇以合作探究式教學法組織教學。

          【學法指導】

          對于求函數的最值,高三學生已經具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數的求最值問題?教學設計中注意激發起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發揮他們作為認知主體的作用。

          【教學過程】

          本節課的教學,大致按照“創設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創新——歸納小結,反饋回授”四個環節進行組織。

        高中數學說課稿 篇3

          尊敬的各位評委、各位老師大家好!我說課的題目是《直線的點斜式方程》,選自人民教育出版社普通高中課程標準試驗教科書數學必修2(A版),是第三章直線與方程中的第2節的第一課時3.2.1直線的點斜式方程的內容。下面我將從教學背景、教學方法、教學過程及教學特點等四個方面具體說明。

          一、教學背景的分析

          1.教材分析

          直線的方程是學生在初中學習了一次函數的概念和圖象及高中學習了直線的斜率后進行研究的。直線的方程屬于解析幾何學的基礎知識,是研究解析幾何學的開始,對后續研究兩條直線的位置關系、圓的方程、直線與圓的位置關系、圓錐曲線等內容,無論在知識上還是方法上都是地位顯要,作用非同尋常,是本章的重點內容之一!爸本的點斜式方程”可以說是直線的方程的形式中最重要、最基本的形式,在此花多大的時間和精力都不為過。直線作為常見的最簡單的曲線,在實際生活和生產實踐中有著廣泛的應用。同時在這一節中利用坐標法來研究曲線的數形結合、幾何直觀等數學思想將貫穿于我們整個高中數學教學。

          2.學情分析

          我校的生源較差,學生的基礎和學習習慣都有待加強。又由于剛開始學習解析幾何,第一次用坐標法來求曲線的方程,在學習過程中,會出現“數”與“形”相互轉化的困難。另外我校學生在探究問題的能力,合作交流的意識等方面更有待加強。

          根據上述教材分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

          3.教學目標

          (1)了解直線的方程的概念和直線的點斜式方程的推導過程及方法;

          (2)明確點斜式、斜截式方程的形式特點和適用范圍;初步學會準確地使用直線的點斜式、斜截式方程 ;

          (3)從實例入手,通過類比、推廣、特殊化等,使學生體會從特殊到一般再到特殊的認知規律;

          (4)提倡學生用舊知識解決新問題,通過體會直線的斜截式方程與一次函數的關系等活動,培養學生主動探究知識、合作交流的意識,并初步了解數形結合在解析幾何中的應用。

          4. 教學重點與難點

          (1)重點: 直線點斜式、斜截式方程的特點及其初步應用。

          (2)難點:直線的方程的概念,點斜式方程的推導及點斜式、斜截式方程的應用。

          二、教法學法分析

          1.教法分析:根據學情,為了能調動學生學習的積極性,本節課采用“實例引導的啟發式”問題教學法。幫助學生將幾何問題代數化,用代數的語言描述直線的幾何要素及其關系,進而將直線的問題轉化為直線方程的問題,通過對直線的方程的研究,最終解決有關直線的一些簡單的問題。另外可以恰當的利用多媒體課件進行輔助教學,激發學生的學習興趣。

          2.學法分析:學生從問題中嘗試、總結、質疑、運用,體會學習數學的樂趣;通過推導直線的點斜式方程的學習,要了解用坐標法求方程的思想;通過一個點和方向可以確定一條直線,進而可求出直線的點斜式方程,要能體會“形”與“數”的轉化思想。

          下面我就對具體的教學過程和設計加以說明:

          三、教學過程的設計及實施

          整個教學過程是由六個問題組成,共分為四個環節,學習或涉及四個概念:

          溫故知新,澄清概念----直線的方程

          深入探究,獲得新知--------點斜式

          拓展知識,再獲新知--------斜截式

          小結引申,思維延續--------兩點式

          平面上的點可以用坐標表示,直線的傾斜程度可以用斜率表示,那么平面上的直線如何表示呢?這就是本節要學習的內容。

          (一)溫故知新,澄清概念----直線的方程

          問題一:畫出一次函數y=2x+1的圖象;y=2x+1是一個方程嗎?若是,那么方程的解與圖象上的點的坐標有何關系?

          [學生活動] 通過動手畫圖,思考并嘗試用語言進行初步的表述。

          [教師活動] 對于不同學生的表述進行分析、歸納,用規范的語言對方程和直線的方程進行描述。

          [設計意圖]從學生熟知的舊知識出發澄清直線的方程的概念,試圖做到“用學生已有的數學知識去學數學”,從而突破難點。通過對這個問題的研究,一方面認識到以方程的解為坐標的點在直線上,另一方面認識到直線上的點的坐標滿足方程;從而使同學意識到直線可以由直線上任意一點P(x,y)的坐標x和y之間的等量關系來表示。

          問題二:若直線經過點A(-1, 3),斜率為-2,點P在直線l上。

          (1) 若點P在直線l上從A點開始運動,橫坐標增加1時,點P的坐標是 ;

          (2)畫出直線l,你能求出直線l的方程嗎?

          (3)若點P在直線l上運動,設P點的坐標為(x,y),你會有什么方法找到x,y滿足的關系式?

          [學生活動]學生獨立思考5分鐘,必要的話可進行分組討論、合作交流。

          [教師活動]巡視?隙▽W生的各種方法及大膽嘗試的行為;并引導學生觀察發現,得到當點P在直線l上運動時(除點 A外),點P與定點A(-1, 3)所確定的直線的斜率恒等于-2,體會“動中有靜”的思維策略。

          [設計意圖]復習斜率公式;待定系數法;初步體會坐標法。同時引導學生注意為什么要把分式化簡?(若不化簡,就少一點),感受數學簡潔的美感和嚴謹性。還要指出這樣的事實:當點P在直線l上運動時,P的坐標(x,y)滿足方程2x+y-1=0.反過來,以方程2x+y-1=0的解為坐標的點在直線l上。把學生的思維引到用坐標法研究直線的方程上來,此時再把問題深入,進入第二環節。

          (二)深入探究,獲得新知----點斜式

          問題三: ① 若直線l經過點P0(x0,y0),且斜率為k,求直線l的方程。

          ②直線的點斜式方程能否表示經過P0(x0,y0)的所有直線?

          [學生活動] ①學生敘述,老師板書,強調斜率公式與點斜式的區別。 ②指導學生用筆轉一轉不難發現,當直線l的傾斜角α=90°時,斜率k不存在,當然不存在點斜式方程;討論k=0的情況;觀察并總結點斜式方程的特征。

          [設計意圖] 由特殊到一般的學習思路,突破難點,培養學生的歸納概括能力。通過對這個問題的探究使學生獲得直線點斜式方程;由②知:當直線斜率k不存在時,不能用點斜式方程表示直線,培養思維的嚴謹性,這時直線l與y軸平行,它上面的每一點的橫坐標都等于x0,直線l的方程是:x=x0;通過學生的觀察討論總結,明確點斜式方程的形式特點和適用范圍,通過下面的例題和基礎練習,突破重難點。

          問題四:分別求經過點且滿足下列條件的直線的方程

          (1) 斜率;(2)傾斜角; (3)與軸平行 ;(4)與軸垂直。

          [練習]P95.1、2。

          [學生活動]學生獨立完成并展示或敘述,老師點評。

          [設計意圖]充分用好教材的例題和習題,因為這些題都是專家精心編排的,充分體現必要性及合理性;做到及時反饋,便于反思本環節的教學,指導下個環節的安排;突破重點內容后,進入第三環節。

          (三)拓展知識,再獲新知----斜截式

          問題五:(1)一條直線與y軸交于點(0,3),直線的斜率為2,求這條直線的方程。

          (2)若直線l斜率為k,且與y軸的交點是 P(0,b),求直線l的方程。

          [學生活動]學生獨立完成后口述,教師板書。

          [設計意圖] 由一般到特殊再到一般,培養學生的推理能力,同時引出截距的概念及斜截式方程,強調截距不是距離。類比點斜式明確斜截式方程的形式特點和適用范圍及幾何意義,并討論其與一次函數的關系。通過下面的基礎練習,突破重點。

          [練習]P95.3。

          [設計意圖]充分用好教材習題,及時反饋本環節的教學情況,指導下個環節的安排。

          (四)小結引申,思維延續----兩點式

          課堂小結 1、有哪些收獲?(點斜式方程:;斜截式方程:;求直線方程的方法:公式法、等斜率法、待定系數法。)

          2、哪些地方還沒有學好?

          問題六:(1)直線l過(1,0)點,且與直線平行,求直線l的方程。

          (2)直線l過點(2,-1)和點(3,-3),求直線l的方程。

          [學生活動]學生獨立思考并嘗試自主完成,可以相互討論,探討解題思路。

          [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,有時間的話,可以讓學生口述解題思路,也可以投影學生的證明過程,糾正出現的錯誤,規范書寫的格式;沒時間就布置分層作業。

          [設計意圖](1)小題與上一節的平行綜合,學生應該有思路求出方程;(2)小題解決方法較多,預設有利用公式法、等斜率法、待定系數法,讓好一點的學生有一些發散思維的機會,以及課后學習的空間,使探究氣氛有一點高潮。另外也為下節課研究直線的兩點式方程作了重要的準備。

          分層作業 必做題:P100.A組:1.(1)(2)(3)、5.

          選做題:P100.A組:1.(4)(5)(6).

          [設計意圖]通過分層作業,做到因材施教,使不同的學生在數學上得到不同的發展,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展。

          四、教學特點分析

          (一)實例引導。在字母運算、公式推導之前,總是用實例作為鋪墊,使學生有學習知識的可能和興趣,關注學困生的成長與發展。

          (二)啟發式教學。教學中總是以提問的方式敘述所學內容,如:1.直角坐標系內的所有直線都有點斜式方程嗎?2.截距是距離嗎?它可以是負數嗎?3.你會求直線在軸上的截距嗎?4.觀察方程 ,它的形式具有什么特點?它與我們學過的一次函數有什么關系?等等。啟發學生的思維,作好與學生的對話與交流活動。

          (三)注重自主探究。設計問題鏈,環環相扣,使學生的探究活動貫穿始終。教師總是站在學生思維的最近發展區上,布設了由淺入深的學習環境突破重點、難點,引導學生逐步發現知識的形成過程。設計了兩次思維發散點,分別是問題二和問題六的第(2)問,要求學生分組討論,合作交流,為學生創造充分的探究空間,學生在交流成果的過程中,高效的完成教學任務。

        高中數學說課稿 篇4

          一、教材分析

          1!吨笖岛瘮怠吩诮滩闹械牡匚、作用和特點

          《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

          此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

          2。教學目標、重點和難點

          通過初中學段的學習和高中對集合、函數等知識的`系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

          知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

          技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

          素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

          鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

         。1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;

         。2)技能目標:①滲透數形結合的基本數學思想方法②培養學生觀察、聯想、類比、猜測、歸納的能力;

         。3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數學科學的應用價值。

         。4)教學重點:指數函數的圖象和性質。

         。5)教學難點:指數函數的圖象性質與底數a的關系。

          突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

          二、教法設計

          由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

          1。創設問題情景。按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

          2。強化“指數函數”概念。引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

          3。突出圖象的作用。在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

          4。注意數學與生活和實踐的聯系。數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

          三、學法指導

          本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

          1。再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

          2。領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

          3。在互相交流和自主探

        高中數學說課稿 篇5

          一、教材分析

          1、從在教材中的地位與作用來看

          《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

          2、從學生認知角度看

          從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

          3、學情分析

          教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

          4、重點、難點

          教學重點:公式的推導、公式的特點和公式的運用。

          教學難點:公式的推導方法和公式的靈活運用。

          公式推導所使用的"錯位相減法"是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

          二、目標分析

          知識與技能目標:

          理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

          過程與方法目標:

          通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉

          化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

          情感與態度價值觀:

          通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

          三、過程分析

          學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

          1、創設情境,提出問題

          在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

          設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。

          此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

          設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

          2、師生互動,探究問題

          在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學問題呢?

          探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

          探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?

          設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變"加"為"減",在教師看來這是"天經地義"的,但在學生看來卻是"不可思議"的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

          經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

          設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

          3、類比聯想,解決問題

          這時我再順勢引導學生將結論一般化,

          這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

          設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

          對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

          再次追問:結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

          設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

          4、討論交流,延伸拓展

          在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,

          那么我們能否利用這個關系而求出sn呢?根據等比數列的定義又有,能否聯想到等比定理從而求出sn呢?

          設計意圖:以疑導思,激發學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關于的一個遞推式,遞推數列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發展有促進作用、

          5、變式訓練,深化認識

          首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結。

          設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數學認知結構的形成。通過以上形式,讓全體學生都參與教學,以此培養學生的參與意識和競爭意識。

          6、例題講解,形成技能

          設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養學生對含有參數的問題進行分類討論的數學思想。

          7、總結歸納,加深理解

          以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法兩方面總結。

          設計意圖:以此培養學生的口頭表達能力,歸納概括能力。

          8、故事結束,首尾呼應

          最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產量的459倍,顯然國王兌現不了他的承諾。

          設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續積極思維。

          9、課后作業,分層練習

          必做:P129練習1、2、3、4

          選作:

          (2)"遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?

          設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。

          四、教法分析

          對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯系。在教學中,我采用"問題――探究"的教學模式,把整個課堂分為呈現問題、探索規律、總結規律、應用規律四個階段。

          利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優化了教學過程,大大提高了課堂教學效率。

          五、評價分析

          本節課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數列前n項和公式。錯位相減:變加為減,等價轉化;遞推思想:縱橫聯系,揭示本質;等比定理:回歸定義,自然樸實。學生從中深刻地領會到推導過程中所蘊含的數學思想,培養了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎上,通過民主和諧的課堂氛圍,培養了學生自主學習、合作交流的學習習慣,也培養了學生勇于探索、不斷創新的思維品質。

        高中數學說課稿 篇6

          各位評委老師好:今天我說課的題目是

          是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。

          一、 教材分析

          是在學習了基礎上進一步研究 并為后面學習 做準備,在整個高中數學中起著承上啟下的作用,因此本節內容十分重要。

          根據新課標要求和學生實際水平我制定以下教學目標

          1、 知識能力目標:使學生理解掌握

          2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力

          3、 情感態度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養善于

          觀察勇于思考的學習習慣和嚴謹 的科學態度

          根據教學目標、本節特點和學生實際情況本節重點是 ,由于學生對 缺少感性認識,所以本節課的重點是

          二、教法學法

          根據教師主導地位和學生主體地位相統一的規律,我采用引導發現法為本節課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。

          三、 教學過程

          1、由……引入:

          把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

          對于本題:……

          2、由實例得出本課新的知識點是:……

          3、講解例題。

          我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:

          4、能力訓練。

          課后練習……

          使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

          5、總結結論,強化認識。

          知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。

          6、變式延伸,進行重構。

          重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。

          四、教學評價

          學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。

        【實用的高中數學說課稿集錦6篇】相關文章:

        實用的高中數學說課稿集錦五篇08-06

        實用的高中數學說課稿集錦六篇07-31

        實用的高中數學說課稿范文集錦9篇08-16

        實用的高中數學說課稿范文集錦7篇08-16

        實用的高中數學說課稿范文集錦六篇08-15

        實用的高中數學說課稿范文集錦5篇08-14

        實用的高中數學說課稿范文集錦八篇08-13

        實用的高中數學說課稿范文集錦九篇08-13

        實用的高中數學說課稿范文集錦10篇08-12

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>