- 相關推薦
用數學的眼光去分析俗語論文
很多俗語,其實都是人們對經驗的概括。它們未必很準確,卻總是有些道理。如果我們嘗試數學的眼光去分析這些俗語,又會得到什么結果呢?上得山多終遇虎
靠山吃山靠水吃水,住在山邊的人,饞了上山打獵,病了上山采藥,總之是經常與大自然親密接觸。但是,在古代,環境還沒有被破壞得這么厲害,山上有老虎是常有的事。盡管一只老虎的領地可達數平方公里,它也不是天天在領地閑逛,所以上山打一次獵遇到老虎的概率也不高。但對于那些天天上山打獵的老獵人來說,在職業生涯中一次老虎都沒有遇到過,倒是件稀有的事。所謂“上得山多終遇虎”,大概就是指的這種情況。
假設獵人每次上山打獵,遇到老虎的概率是p,也就是說遇不到老虎的概率是1-p。那么,在m次打獵中,每次都沒有遇到過老虎的概率就是(1-p)^m。只要有可能遇到老虎,相當于說p>0,當m越來越大時,(1-p)^m就越來越小,趨向于0,也就是說,盡管每次倒霉遇上老虎的概率不高,但如果每天都去打獵的話,總有一天會倒霉的。
可能有人會反過來想:我每次買*票,中頭獎的概率不是0,那么,總有一天我會中頭獎的。這種想法既對又不對,理論上來說,的確一直買下去的話總有一天會中獎,但是大概要買多少遍才會中頭獎呢?以36選7為例,中頭獎的概率是1/C(36,7),所以大概要買C(36,7)期會有一期中頭獎,那是大概八百萬期,也就是大概兩萬年。兩萬年后,福彩是否存在還是個問題。 而對于獵人來說,每次上山遇虎的概率顯然沒有那么低。要是聽到虎嘯也算遇虎的話,千分之一應該算是一個不錯的估算。這樣算來,大概打一千次獵就會有一次遇到老虎,對于經常上山的獵人來說大概十多年就有這個數了,難怪“上得山多終遇虎”。 現在環境破壞得嚴重,要“遇虎“,大概只能到動物園去了,山里反倒非常安全!笆⑹莱雒突ⅰ敝惖,只能是笑話了。
坐吃山空
“坐吃山空”,大概是告誡那些只愿吃閑飯不愿干活的人,無論家里有多少錢,總有一天要吃光的。 在忽略貨幣變化的前提下,假設家里的存款是M,一頓飯只需要花費m,這些存款也只能支撐M/m頓飯,也就是說是不可能永遠吃閑飯吃下去的。 用數學的語言來說,只要m不是0,無論m多么小,將很多同樣的m加起來,我們可以得到要多大有多大的數。這種性質叫做實數的阿基米德性質。
利用阿基米德性質,我們能解釋0.999…=1的問題。假設p=1-0.99…,如果p不等于0的話,p就是一個正實數。根據阿基米德性質,總存在一個整數M,使得M*p>=1。于是p=1-p=0.999…。然而,這是不可能的,因為1/M總會在小數點后某一位開始非0,導致1-1/M不等于0.999…。這個矛盾表明我們的假設是錯誤的,也就是說其實0.999…=1。
很多我們常見的數都有阿基米德性質,比如說有理數,實數,復數。當然,對于復數來說,“要多大有多大”就要重新定義了,一般是用它的范數——也就是在復平面上與原點的距離——來定義的。在復數里邊,就應該講是可以得到范數要多大有多大的數。
久賭必輸
從來只聽過開賭場而富甲一方的,沒聽過有賭徒能通過而過上幸福生活的,反倒是家破人亡的不計其數。在賭場的話,既有抽頭,賭局也是對賭場有利的。說難聽點,去賭場賭錢就相當于直接送錢給賭場老板。就算是一對一機會均等的賭局,要是一直賭下去的話,也總有一天會輸光的。這就是“久賭必輸”。
假設每盤賭局的*注是1,而賭徒的財產是n。在每盤賭局中,賭徒有1/2的概率贏,有1/2的概率輸。那么,如果一直這樣賭下去的話,賭徒輸光的概率是多少呢? 顯然,賭徒的錢越多,輸光需要的局數也越多。當賭徒的財產是n時,我們記輸光的概率為p(n)。因為每次賭局有一半的可能贏,一半的可能輸,贏的時候財產變成n+1,輸的時候變成n-1,所以p(n)=(p(n+1)+p(n-1))/2。當n=0的時候,即使不用賭,所有東西都輸光了,所以p(0)=1。 所以,p可以看作一個滿足下列遞推關系的數列: p(0)=1 p(n+1)=2p(n)-p(n-1),也就是p(n+1)-p(n)=p(n)-p(n-1) 容易驗證p(n)=n*p(1)-(n-1)正好符合上面的遞推關系。因為p(n)>=0,所以對于任意的n,必定有p(1)>=1-1/n,所以p(1)=1,從而對于所有的n,p(n)=1。在無限次的中,賭徒在某一次中輸光的概率是1。
【用數學的眼光去分析俗語論文】相關文章:
數學教學導入分析論文08-22
小學數學解題分析的論文08-30
數學與應用數學就業前景分析論文05-30
對數學思維與教育的分析的論文08-20
有關數學課堂分析的論文10-11
論文分析:數學抽象與概括方法10-02
《用數學》的論文范文09-26
小學數學高效課堂構建分析論文08-05
論文:初中數學解題錯誤及原因分析10-16