1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 五年級方程數(shù)學小論文

        時間:2020-09-27 12:57:37 數(shù)學畢業(yè)論文 我要投稿

        五年級方程數(shù)學小論文

          導(dǎo)語:五年級正是學習方程的時候,那你有沒有從方程中發(fā)現(xiàn)什么奧秘呢?下面是小編為你準備的五年級方程數(shù)學小論文,希望對你有幫助!

        五年級方程數(shù)學小論文

          第1篇:年齡問題

          今天,我在做題時被一道應(yīng)用題給難住了。這道題的題目是:小華今年3歲,今年爸爸26歲,幾年后爸爸的年齡是小華的3倍?我百思不得其解。

          后來媽媽回來了,我就請教媽媽。媽媽幫我分析:根據(jù)這個題目的條件可知,今年爸爸和小華的“年齡差”是26-4=24(歲)。再根據(jù)“爸爸的年齡是小華的3倍”這一關(guān)系,畫張圖試試。我們倆就開始畫了起來。

          畫了圖之后,我馬上明白過來了:他們倆過了幾年后,“年齡差”還是24歲。再根據(jù)差倍問題的解法求出幾年后小華的年齡,用幾年后小華的年齡減去2歲,就可以求出中間經(jīng)過了幾年了。

          解是:26-2=24(歲)

          24÷(3-1)=12(歲)

          12-2=10(年)

          答:10年后爸爸的年齡是小華的3倍。

          媽媽又讓我驗算一下,10年后爸爸的年齡是不是小華的3倍。

         。26+10)÷(2+10)=36÷12=3

          耶!我答對了?磥碜鲱}先得畫圖,畫了圖就能就一目了然了。

          第2篇:數(shù)學小論文

          1證明一個三角形是直角三角形

          2用于直角三角形中的相關(guān)計算

          3有利于你記住余弦定理,它是余弦定理的一種特殊情況。中國最早的一部數(shù)學著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學知識的對話:

          周公問:“我聽說您對數(shù)學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?”

          商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體餓認識。其中有一條原理:當直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時候,那么它的斜邊‘弦’就必定是5。這個原理是大禹在治水的時候就總結(jié)出來的呵!

          從上面所引的`這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方

          用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:

          勾2+股2=弦2

          亦即:

          a2+b2=c2

          勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數(shù)學家兼哲學家畢達哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實,我國古代得到人民對這一數(shù)學定理的發(fā)現(xiàn)和應(yīng)用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學界把它稱為勾股定理,應(yīng)該是非常恰當?shù)摹?/p>

          在稍后一點的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦!卑堰@段話列成算式,即為:

          弦=(勾2+股2)(1/2)

          即:

          c=(a2+b2)(1/2)

          如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a^平方+b^平方=c^平方;即直角三角形兩直角邊的平方和等于斜邊的平方。

          如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是四,斜邊就是3*3+4*4=X*X,X=5。那么這個三角形是直角三角形。(稱勾股定理的逆定理)

          來源:

          畢達哥拉斯樹是一個基本的幾何定理,傳統(tǒng)上認為是由古希臘的畢達哥拉斯所證明。據(jù)說畢達哥拉斯證明了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”。在中國,《周髀算經(jīng)》記載了勾股定理的一個特例,相傳是在商代由商高發(fā)現(xiàn),故又有稱之為商高定理;三國時代的趙爽對《周髀算經(jīng)》內(nèi)的勾股定理作出了詳細注釋,作為一個證明。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短得直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。

          第3篇:數(shù)學小論文

          我每次做數(shù)奧都是拿起一道題拉起來就做,因為我覺得這樣做起來很快?墒墙裉熳鰯(shù)奧時,有一道題改變了我的看法,做得快不一定是做得對,主要還是要做對。

          今天,我做了一道題目把我難住了,我苦思冥想了好幾個小時都沒有想出來,于是我只好乖乖地去看基礎(chǔ)提煉,讓它來幫我分析。這道題目是這樣的:求3333333333的平方中有多少個奇數(shù)數(shù)字?分析是這樣的:3333333333的平方就是3333333333×3333333333,這道乘法算式由于數(shù)字太多使計算復(fù)雜,我們可以運用轉(zhuǎn)化的方法化繁為簡,也就是把一個因數(shù)擴大3倍,另一個因數(shù)縮小3倍,積不變。使題目轉(zhuǎn)化為求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘積中有十個奇數(shù)數(shù)字。這道題,我們還可以位數(shù)少的兩個數(shù)相乘算起,就能發(fā)現(xiàn)積中奇數(shù)的數(shù)字個數(shù)。即3×3=9→積中有1個奇數(shù)數(shù)字。33×33=1089→積中有2個奇數(shù)數(shù)字。333×333=110889→積中有3個奇數(shù)數(shù)字。3333×3333=11108889→積中有4個奇數(shù)數(shù)字。……

          從上面試算中,容易發(fā)現(xiàn)積是由1,0,8,9四個數(shù)字組成的,1和8的個數(shù)相同,比一個因數(shù)中的3的個數(shù)少1,0和9各一個,分別在1和8的后面。積中奇數(shù)的數(shù)字個數(shù)與一個因數(shù)中3的個數(shù)相同,可以推導(dǎo)出原題的積是:11111111108888888889,積中有10個奇數(shù)數(shù)字。

          做了這道題,我知道做數(shù)奧不能求快,要求懂它的方法。

          第4篇:數(shù)學小論文

          生活中,處處都有數(shù)學的身影,超市里,餐廳里,家里,學校里………都離不開數(shù)學。我也有幾次對數(shù)學的親身經(jīng)歷呢,我挑其中兩件事來給大家說一說。

          記得三年級,有一次,我和媽媽逛超市,超市現(xiàn)在正在搞春節(jié)打折活動,每件商品的折數(shù)各不相同。我一眼就看中了一袋旺旺大禮包,凈含量是628克,原價35元,現(xiàn)在打八折,可是打八折怎么算呢?我問媽媽。媽媽告訴我,打八折就是乘以0.8,也就是35*0.8=28(元)。我恍然大悟。我準備把這袋旺旺大禮包買下來,可是,媽媽告訴我,可能后面的旺旺大禮包更便宜,要去后面看看。走著走著,果然,我又看見了賣旺旺大禮包的,凈含量是650克,原價40元,現(xiàn)在也打八折。這下,我犯了愁,凈含量不同,原價也不同,哪個劃算呢?我又問媽媽。媽媽告訴我35*0.8=28(元),40*0.8=32(元),一袋是628克,現(xiàn)價28元,另一袋是650克,現(xiàn)價32元。用28/628≈0.045,32/650≈0。049,0.049>0.045,所以第二袋劃算一點兒,于是,我們買下了第二袋。通過這次購物,我知道了怎樣計算打折數(shù),怎樣計算哪種物品更劃算一些。

          記得四年級,有一次,我和一個朋友出去玩,朋友的媽媽給我們倆出了一道題:1~100報數(shù),每人可以報1個數(shù),2個數(shù),3個數(shù),誰先報到100,誰就獲勝。話音剛落,我便思考怎樣才能獲勝,我想:這肯定是一道數(shù)學策略問題,不能盲目地去報,里面肯定有數(shù)學問題,用1+3=4,100/4=25,我不能當?shù)谝粋報的,只能當最后一個報的,她報X個數(shù),我就報(4-X)個數(shù),就可以獲勝,我抱著疑惑的心理去和她報數(shù),顯然,她沒有思考獲勝的策略,我用我的方法去和她報數(shù),到了最后,我果然報到了100,我獲勝了。原來這道數(shù)學問題是一道典型的對策問題,需要思考,才能獲勝。到了六年級,我也學到了這類知識,只不過,更加難了,通過這次游玩,我喜歡上了對策問題,也更加愛思考,尋找數(shù)學中的奧秘。

          數(shù)學,就像一座高峰,直插云霄,剛剛開始攀登時,感覺很輕松,但我們爬得越高,山峰就變得越陡,讓人感到恐懼。這時候,只有真正喜愛數(shù)學的人才會有勇氣繼續(xù)攀登下去,所以,站在數(shù)學的高峰上的人,都是發(fā)自內(nèi)心喜歡數(shù)學的,站在峰腳的人是望不到峰頂?shù)摹V挥性谏钪邪l(fā)現(xiàn)數(shù)學,感受數(shù)學,才能讓自己的視野更加開闊!

        【五年級方程數(shù)學小論文】相關(guān)文章:

        1.數(shù)學小論文

        2.五年級數(shù)學小論文

        3.數(shù)學小論文600字

        4.數(shù)學小論文400字

        5.數(shù)學小論文15篇

        6.數(shù)學小論文怎么寫

        7.數(shù)學小論文小學作文

        8.方程在數(shù)學建模中的思想及應(yīng)用論文

        9.數(shù)學小論文寫作提綱

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>