淺析應(yīng)用數(shù)學(xué)建模思想
隨著計(jì)算機(jī)網(wǎng)絡(luò)在社會(huì)生活中的廣泛運(yùn)用,人們對(duì)于實(shí)踐問(wèn)題的解決要求越來(lái)越精確,下面是小編搜集整理的一篇探究應(yīng)用數(shù)學(xué)發(fā)展現(xiàn)狀的論文范文,供大家閱讀查看。
【摘 要】文章闡述了我們應(yīng)用數(shù)學(xué)的發(fā)展現(xiàn)狀,分析了應(yīng)用數(shù)學(xué)建模的意義,提出在應(yīng)用數(shù)學(xué)中滲透建模思想的措施,以期能夠?qū)Ξ?dāng)前應(yīng)用數(shù)學(xué)建模思想的發(fā)展提供參考。
【關(guān)鍵詞】應(yīng)用數(shù)學(xué); 數(shù)學(xué)建模;建模思想
將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過(guò)程中去,是我們當(dāng)前開(kāi)展應(yīng)用數(shù)學(xué)教育的未來(lái)發(fā)展趨勢(shì),怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會(huì)經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實(shí)際問(wèn)題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問(wèn)題,而建模思想在應(yīng)用數(shù)學(xué)中的運(yùn)用則能夠很好的解決這一問(wèn)題。
1 當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展現(xiàn)狀以及未來(lái)發(fā)展趨勢(shì)
數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國(guó)數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無(wú)用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對(duì)現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實(shí)際問(wèn)題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問(wèn)題的有效方法。事實(shí)上,數(shù)學(xué)發(fā)展的根本原動(dòng)力,它的最初的根源,是來(lái)自客觀實(shí)際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來(lái)龍去脈,揭示數(shù)學(xué)概念和公式的實(shí)際來(lái)源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會(huì)生產(chǎn)力的不斷發(fā)展,多個(gè)學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運(yùn)用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會(huì)經(jīng)濟(jì)發(fā)展的各個(gè)行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的'發(fā)展空間以及展示才能的舞臺(tái),也迎來(lái)了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。
2 開(kāi)展數(shù)學(xué)建模的意義
數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計(jì)算機(jī)網(wǎng)絡(luò)在社會(huì)生活中的廣泛運(yùn)用,人們對(duì)于實(shí)踐問(wèn)題的解決要求越來(lái)越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運(yùn)用帶來(lái)了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個(gè)重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識(shí),開(kāi)展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識(shí),而且還能夠?qū)I(yè)知識(shí)同建模密切結(jié)合在一起,對(duì)于專業(yè)知識(shí)的有效掌握是非常有益的。
3 滲透建模思想的對(duì)策措施
3. 1充分重視建模的橋梁作用
建模是實(shí)現(xiàn)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)問(wèn)題相聯(lián)系的橋梁與紐帶,通過(guò)進(jìn)行建模能夠有效的將實(shí)際問(wèn)題進(jìn)行簡(jiǎn)化。在這一轉(zhuǎn)化的過(guò)程中,應(yīng)當(dāng)深入實(shí)際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對(duì)象的獨(dú)特特征及規(guī)律,構(gòu)建起反映實(shí)際問(wèn)題的數(shù)學(xué)關(guān)系,運(yùn)用數(shù)學(xué)理論進(jìn)行問(wèn)題的解決。這正是各個(gè)學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點(diǎn),通過(guò)引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實(shí)踐問(wèn)題,還能夠推動(dòng)創(chuàng)新意識(shí)的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。
3. 2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來(lái)
我國(guó)當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等幾個(gè)部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對(duì)這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問(wèn)題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們?cè)谡n堂上就能夠獲得更多的思考和討論的機(jī)會(huì),能夠充分調(diào)動(dòng)學(xué)生們的積極性,使其能夠立足實(shí)際進(jìn)行思考,這樣一來(lái)就形成了以實(shí)際問(wèn)題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。
3. 3積極參加“數(shù)學(xué)模型”課等相關(guān)課程與活動(dòng)
數(shù)學(xué)應(yīng)用綜合性的實(shí)驗(yàn),要求我們掌握數(shù)學(xué)知識(shí)的綜合性運(yùn)用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實(shí)例,然后學(xué)生上機(jī)實(shí)踐,強(qiáng)調(diào)學(xué)生的動(dòng)手實(shí)踐。“數(shù)學(xué)實(shí)驗(yàn)” 課應(yīng)該說(shuō)是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。
上述幾個(gè)部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過(guò)程中認(rèn)真掌握數(shù)學(xué)理論知識(shí),還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實(shí)際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實(shí)踐過(guò)程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來(lái)看,加強(qiáng)創(chuàng)新意識(shí)以及將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題能力的培養(yǎng),提升綜合運(yùn)用本專業(yè)知識(shí)以來(lái)解決實(shí)踐問(wèn)題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
參考文獻(xiàn):
[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究 [J].出國(guó)與就業(yè)(就業(yè)版),2011(10).
[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法——高職高專數(shù)學(xué)教 改之趨勢(shì)[J].職大學(xué)報(bào),2005(02).
[3]李傳欣.數(shù)學(xué)建模在工程類專業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究 [J].中國(guó)科教創(chuàng)新導(dǎo)刊,2010(35).
[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[J].吉林省 教育學(xué)院學(xué)報(bào)(學(xué)科版),2009(08).
[5]吳健輝,黃志堅(jiān),汪龍虎.對(duì)數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[J].景德鎮(zhèn)高專學(xué)報(bào),2007(04).
【淺析應(yīng)用數(shù)學(xué)建模思想】相關(guān)文章:
1.中職數(shù)學(xué)教學(xué)中建模思想的應(yīng)用論文
2.方程在數(shù)學(xué)建模中的思想及應(yīng)用論文
3.淺談中職學(xué)生數(shù)學(xué)建模思想研究
4.淺談經(jīng)濟(jì)問(wèn)題中的數(shù)學(xué)建模應(yīng)用
5.概率統(tǒng)計(jì)教學(xué)及數(shù)學(xué)建模思想的融入論文
6.如何將數(shù)學(xué)建模思想融入到經(jīng)濟(jì)數(shù)學(xué)教學(xué)中去論文
7.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想的適時(shí)性論文