- 相關推薦
500 kV惠汕輸電系統內過電壓的研究結果和分析 2
摘 要 惠汕500 kV輸電線路長268 km,由于取消出線斷路器的合閘電阻,使統計操作過電壓和線路閃絡率偏高。為降低統計操作過電壓和線路閃絡率,設計中在線路中間裝設一組線路型444 kV MOA(氧化鋅避雷器),屬國內首創;為限制潛供電流,線路兩側各裝置一組120 Mvar高抗,但投產前有一組高抗因鐵心接地返回制造廠修理。在只有一組高抗,內過電壓和潛供電流比較嚴重條件下,為確;萆蔷按時安全投產,通過反復研究和分析,提出安全措施,使惠汕線順利投產,并為惠汕線和長線路編制運行規程提供了依據。
關鍵詞 輸電 內過電壓 研究
1 研究過程及主要結論
1.1 設計階段的研究結論
1994年,當惠汕輸電工程進入初步設計階段時,廣東省電力設計研究院(下簡稱“設計院”)與原電力部電力科學研究院(下簡稱“電科院”)共同開展對該工程內過電壓的計算研究。該工程踏勘的線路長293 km,研究的關鍵問題是:在線路兩側出線斷路器取消合閘電阻的條件下,如何采取措施把統計操作過電壓和線路閃絡率限制在規程和規定的范圍內,確保輸變電設備的安全。由于惠汕線是國內當前不裝合閘電阻的最長線路,且需要在線路中間裝設一組線路型氧化鋅避雷器(屬國內首創),因此,本工程的內過電壓研究比短線路復雜得多。如果采用常規的計算模型,即線路參數是固定不變的,則統計操作過電壓和線路閃絡率均超過規程的規定值,因此本研究采用復雜的J.MAITI模型。這個模型按桿塔的實際尺寸、對地平均距離以及土壤電阻率來進行計算,并考慮線路參數隨頻率的變化而改變,即顧及線路的高頻特性。這個精確模型計算所需時間較長,每種運行方式需要十幾分鐘(常規模型幾秒鐘即可計算一種方式)。精確模型的計算結果較之常規模型可降低統計操作過電壓10%左右,也相應降低線路閃絡率,也就是說,采用精確模型在運行上減少10%的裕度。計算結果見電科院和設計院于1994年11月編制的《惠州—汕頭500 kV輸電系統內過電壓及絕緣配合研究》,該研究的主要結論為:
a)惠汕線兩側需各裝1臺120 Mvar高壓并聯電抗器(以下簡稱“高抗”),中性點小電抗均取值750 Ω。
b)惠汕線地線材料采用GJ-70型鋼絞線是可行的。
c)在線路不采用快速三相重合閘條件下,惠汕線出線斷路器可以取消并聯合閘電阻。由于取消合閘電阻后線路閃絡率仍較高,因此,必須在線路揭陽側加裝一組444 kV氧化鋅避雷器(MOA)。在三組444 kV MOA投運后,合空線過電壓與線路閃絡率均能滿足要求(兩組母線420 kV MOA在合空線時也投入運行)。
d)在操作過電壓下,MOA的最大能耗為允許值的23%;在故障操作過電壓下,MOA的最大能耗為允許值的19.6%。因此,把MOA作為操作過電壓的主保護,MOA仍有較大的裕度。
e)合汕頭空載變壓器時,應投入該主變低壓側一組低壓電抗器(45 Mvar),以防止主變發生諧振過電壓。
1.2 投產前的補充研究
500 kV惠汕輸變電工程于1997年12月18日投產。投產前設備測試時發現汕頭側高壓并聯電抗器鐵心接地,該高抗必須返回廠家修理,不能與工程同時投產。汕頭側高抗對惠汕工程安全投產和運行調度有較大影響,且惠汕線實際長度為268 km(不是1994年在圖紙上選線的293 km),因此,500 kV惠汕輸變電工程啟動委員會要求對該工程內過電壓進行補充研究。
1997年12月上旬,有關人員對線路的參數進行實測,啟動委員會又要求按實測參數再進行一次過電壓研究,以確保啟動的安全。這次研究,我們將母線型避雷器、線路型避雷器、線路中間的避雷器的實際伏安特性,線路的實際長度,汕頭側高抗無法同步投產等實際因素都考慮了進去,采用實測參數進行研究,并采用實際桿塔尺寸按高頻特性得出的線路參數進行研究。
這兩次補充研究的主要結論是:
a)在汕頭側高抗退出運行時,要延長單相重合閘的重合間隔時間,建議取1.5 s(0 s發生單相故障,0.1 s線路兩側單相開關跳開,1.5兩側單相開關重合);若線路上有兩臺高抗運行時,時間間隔可取為1 s。
b)在汕頭側合空線時,合閘前汕頭站500 kV母線電壓不宜超過530 kV,在系統條件允許的情況下,可以進一步降低合閘前母線電壓水平。
c)汕頭側出線斷路器至惠汕線第一基桿塔之間的相間最小凈距離應大于4.4 m(在不刮風條件下其正常距離為7~8 m,開關操作時如遇刮風,應注意這一距離)。
d)合汕頭空載變壓器時,合閘前變壓器低壓側至少要投入一組低壓電抗器,如合閘前汕頭站母線電壓超過535 kV,宜投入兩組或三組低抗,如果汕頭站母線電壓超過550 kV,或空載變壓器低壓側接有電容器時,不宜進行合空變操作,避免主變發生諧振。
e)應投入過電壓保護裝置,保護整定時間取0.5 s,工頻過電壓倍數取1.4 p.u.。
f)運行時除按上述要求外,還要參照電科院與設計院1994年11月編制的《惠州—汕頭500 kV輸電系統內過電壓及絕緣配合研究》、1997年11月編制的《惠州—汕頭500 kV輸電系統內過電壓及絕緣配合補充研究之二》等研究報告的其他要求。
2 對實測參數及設備參數計算結果的分析
2.1 實測參數的計算結果
1997年12月上旬,有關人員對線路參數進行實測,其中,正序電容的實測值C1=0.015 19 μF/km,按桿塔的實際排列尺寸及接地方式和土壤電阻率并考慮高頻特性計算得到的計算正序電容C1=0.013 17 μF/km,二者相比,實測正序電容大15.34%,即是說,268 km的惠汕線,如按實測電容計,其充電功率相當于309 km的線路。按實測參數進行計算,可得到下列結果:
a)在線路中間有MOA條件下惠汕線合空線最大過電壓值達2.14 p.u.,統計操作過電壓達2.06 p.u.,超過國家標準2.0 p.u.,如果沒有中間MOA(裝于揭陽線路側),則最大過電壓值及統計操作過電壓值比上述數值還高。按照國家標準,則惠汕線兩側出線斷路器均要裝設并聯合閘電阻,否則合空線將不會成功,但該工程已臨近投產,要裝合閘電阻已不可能。
b)由于實測正序電容C1比計算值大15.34%,,造成相間電容相應增大(相間電容Cφ=(C1-C0)/3。在汕頭側高抗退出運行的條件下,潛供電流達46.6 A,而采用計算所得的正序電容,所得計算結果,潛供電流才29.9 A,二者相比,實測參數的潛供電流大56%,單相重合閘的重合間隔時間必須延長,否則重合閘不可能成功。
2.2 對實測參數的分析
本次惠汕線實測正序電容
【500 kV惠汕輸電系統內過電壓的研究結果和分析 2】相關文章:
蒙牛集團供應管理系統的改造和優化05-15
淺論挖掘機液壓系統故障分析及解決措施08-27
北京地區供水系統變頻調速應用例分析05-28
論企業管理培訓生項目實踐的系統學分析05-01
10kV配網線路施工技術的論文05-07
視唱練耳對聲樂技巧的作用和影響分析01-08
分析電力配網管理技術的運行和維護的論文06-20
開放市場中利率平價理論的分析和運用05-12
飛機艙音背景聲特征實時分析系統開發及應用05-05