1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 數(shù)學(xué)建模學(xué)習(xí)心得體會

        時間:2024-07-28 21:10:40 文圣 學(xué)習(xí)心得體會 我要投稿

        數(shù)學(xué)建模學(xué)習(xí)心得體會(精選19篇)

          當(dāng)我們經(jīng)過反思,對生活有了新的看法時,將其記錄在心得體會里,讓自己銘記于心,通過寫心得體會,可以幫助我們總結(jié)積累經(jīng)驗。那么如何寫心得體會才能更有感染力呢?以下是小編整理的數(shù)學(xué)建模學(xué)習(xí)心得體會,歡迎閱讀,希望大家能夠喜歡。

        數(shù)學(xué)建模學(xué)習(xí)心得體會(精選19篇)

          數(shù)學(xué)建模學(xué)習(xí)心得體會 1

          這學(xué)期,我學(xué)習(xí)了數(shù)學(xué)建模這門課,我覺得他與其他科的不同是與現(xiàn)實聯(lián)系密切,而且能引導(dǎo)我們把以前學(xué)得到的枯燥的數(shù)學(xué)知識應(yīng)用到實際問題中去,用建模的思想、方法來解決實際問題,很神奇,而且也接觸了一些計算機(jī)軟件,使問題求解很快就出了答案。

          在學(xué)習(xí)的過程中,我獲得了很多知識,對我有非常大的提高。同時我有了一些感想和體會。

          本來在學(xué)習(xí)數(shù)學(xué)的過程中就遇到過很多困難,感覺很枯燥,很難學(xué),概念抽象、邏輯嚴(yán)密等等,所以我的學(xué)習(xí)積極性慢慢就降低了,而且不知道學(xué)了要怎么用,不知道現(xiàn)實生活中哪里到。通過學(xué)習(xí)了數(shù)學(xué)模型中的好多模型后,我發(fā)現(xiàn)數(shù)學(xué)應(yīng)用的廣泛性。數(shù)學(xué)模型是一種模擬,使用數(shù)學(xué)符號、數(shù)學(xué)式子、程序、圖形等對實際課題本質(zhì)屬性的抽象而又簡潔的刻畫,他或能解釋默寫客觀現(xiàn)象,或能預(yù)測未來的發(fā)展規(guī)律,或能為控制某一現(xiàn)象的發(fā)展提供某種意義下的最優(yōu)策略或較好策略。數(shù)學(xué)模型一般并非現(xiàn)實問題的直接翻版,它的建立常常既需要人們對現(xiàn)實問題深入細(xì)微的觀察和分析,又需要人們靈活巧妙地利用各種數(shù)學(xué)知識。這種應(yīng)用知識從實際課題中抽象、提煉出數(shù)學(xué)模型的過程就稱為數(shù)學(xué)建模。不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實際問題,還是與其他學(xué)科相結(jié)合形成的交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計算求解。數(shù)學(xué)建模和計算機(jī)技術(shù)在知識經(jīng)濟(jì)的作用可謂是如虎添翼。

          數(shù)學(xué)建模屬于一門應(yīng)用數(shù)學(xué),學(xué)習(xí)這門課要求我們學(xué)會如何將實際問題經(jīng)過分析、簡化轉(zhuǎn)化為個數(shù)學(xué)問題,然后用適用的數(shù)學(xué)方法去解決。數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并解決實際問題的一種強(qiáng)有力地數(shù)學(xué)手段。在學(xué)習(xí)中,我知道了數(shù)學(xué)建模的過程,其過程如下:

          (1)模型準(zhǔn)備:了解問題的實際背景,明確其實際意義,掌握對象的各種信息。用數(shù)學(xué)語言來描述問題。

          (2)模型假設(shè):根據(jù)實際對象的特征和建模的目的,對問題進(jìn)行必要的'簡化,并用精確地語言提出一些恰當(dāng)?shù)募僭O(shè)。

          (3)模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻畫各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。

          (4)模型求解:利用或取得的數(shù)據(jù)資料,對模型的所有參數(shù)做出計算。

          (5)模型分析:對所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。

          (6)模型檢驗:將模型分析結(jié)果與實際情形進(jìn)行比較,以此來驗證模型的準(zhǔn)確性、合理性和適用性。如果模型與實際較吻合,則要對計算結(jié)果給出其實際含義,并進(jìn)行解釋。如果模型與實際吻合較差,則應(yīng)該修改假設(shè),再次進(jìn)行建模過程。

          數(shù)學(xué)模型既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析解決實際問題的意識和能力,傳統(tǒng)的數(shù)學(xué)教學(xué)體系和內(nèi)容無疑偏重于前者,而開設(shè)數(shù)學(xué)建模課程則是加強(qiáng)后者的一種嘗試,數(shù)學(xué)建模的初衷是為了幫助大家提升分析問題,解決問題的能力。我認(rèn)為學(xué)習(xí)數(shù)學(xué)模型的意義有如下幾點:一學(xué)習(xí)數(shù)學(xué)模型我們可以參加數(shù)學(xué)建模競賽,而數(shù)學(xué)建模競賽是為了促進(jìn)數(shù)學(xué)建模的發(fā)展而應(yīng)運而生的,它可以培養(yǎng)大家的競賽能力、抗壓能力、問題設(shè)計能力、搜索資料的能力、計算機(jī)運用能力、論文寫作與修改完善能力、語言表達(dá)能力、創(chuàng)新能力等科學(xué)綜合素養(yǎng),它讓大家從傳統(tǒng)的知識培養(yǎng)轉(zhuǎn)變到能力的培養(yǎng),讓我們的思想追求有了質(zhì)的變化!這也是我們現(xiàn)代教育所追求的;二學(xué)習(xí)數(shù)學(xué)可以提升我的邏輯思維能力和運算等抽象能力,但好多人覺得數(shù)學(xué)和實際遙不可及,可是呢,數(shù)學(xué)建模則成為了解決這種現(xiàn)象的殺手锏,因為數(shù)學(xué)建模就是為了培養(yǎng)大家的分析問題和分解決問題的能力。

          在學(xué)習(xí)了數(shù)學(xué)模型后,它所教給我們的不單是一些數(shù)學(xué)方面的知識,比如說一些數(shù)學(xué)計算軟件,學(xué)習(xí)建模的同時,借用各種建模軟件解決問題是必不可少的Matlab,Lingo,等都是非常方便的。數(shù)學(xué)模型是數(shù)學(xué)學(xué)習(xí)的新的方式,他為我們提供了自主學(xué)習(xí)的空間,有助于我們體驗數(shù)學(xué)在解決實際問題中的價值和作用,體驗數(shù)學(xué)與日常生化和其他學(xué)科的聯(lián)系,體驗綜合運用知識和方法解決實際問題的過程,增強(qiáng)應(yīng)用意識;而且數(shù)學(xué)模型還對我們有綜合能力的培養(yǎng)、鍛煉與提高。它培養(yǎng)了我們?nèi)、多角度考慮問題的能力,使我們的邏輯推理能力和量化分析能力得到很好地鍛煉和提高。而且我認(rèn)為數(shù)學(xué)模型帶給我的是發(fā)散性思維,各種研究方法和手段。教會我凡事要有自己的創(chuàng)新,自己的嚴(yán)密思維,不能局限于俗套?傊畬W(xué)習(xí)數(shù)學(xué)模型有利于激發(fā)我們的學(xué)習(xí)數(shù)學(xué)的興趣,豐富我們學(xué)習(xí)數(shù)學(xué)探索的情感體驗;有利于我們自覺體驗、鞏固所學(xué)的的數(shù)學(xué)知識。還鍛煉了我們的耐心和意志力。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 2

          隨著科學(xué)技術(shù)的飛速發(fā)展,人們越來越認(rèn)識到數(shù)學(xué)科學(xué)的重要性:數(shù)學(xué)的思考方式具有根本的重要性,數(shù)學(xué)為組織和構(gòu)造知識提供了方法,將它用于技術(shù)時能使科學(xué)家和工程師生產(chǎn)出系統(tǒng)的、能復(fù)制的、且可以傳播的知識……數(shù)學(xué)科學(xué)對于經(jīng)濟(jì)競爭是必不可少的,數(shù)學(xué)科學(xué)是一種關(guān)鍵性的、普遍的、可實行的技術(shù).

          在當(dāng)今高科技與計算機(jī)技術(shù)日新月異且日益普及的社會里,高新技術(shù)的發(fā)展離不開數(shù)學(xué)的支持,沒有良好的數(shù)學(xué)素養(yǎng)已無法實現(xiàn)工程技術(shù)的創(chuàng)新與突破。因此,如何在數(shù)學(xué)教育的過程中培養(yǎng)人們的數(shù)學(xué)素養(yǎng),讓人們學(xué)會用數(shù)學(xué)的知識與方法去處理實際問題,值得數(shù)學(xué)工作者的思考。大學(xué)生數(shù)學(xué)建;顒蛹叭珖髮W(xué)生數(shù)學(xué)建模競賽正是在這種形勢下開展并發(fā)展起來的,其目的在于激勵學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運用計算機(jī)技術(shù)解決實際問題的綜合能力,拓寬學(xué)生的知識面,培養(yǎng)創(chuàng)造精神及合作意識,推動大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和教學(xué)方法的改革.

          這項極富意義的活動,大學(xué)組隊參加了全國大學(xué)生數(shù)學(xué)建模競賽。為了更好地組織、指導(dǎo)此項活動,讓更多的學(xué)生投入此項活動并從中受益,學(xué)生根據(jù)組織與指導(dǎo)的實踐,對數(shù)學(xué)建模活動的作用與實施談一些認(rèn)識,以期起到深化數(shù)學(xué)教學(xué)改革、推動課程建設(shè)的作用。方法,去近似刻畫、建立相應(yīng)數(shù)學(xué)模型并加以解決的過程。為檢驗大學(xué)生數(shù)學(xué)建模的能力,而我國大學(xué)生數(shù)學(xué)建模競賽。參加過數(shù)學(xué)建;顒拥慕處熍c學(xué)生普遍反映,數(shù)學(xué)建;顒蛹蓉S富了學(xué)生的課外生活,又培養(yǎng)了學(xué)生各方面的能力,同時也促進(jìn)了大學(xué)數(shù)學(xué)教學(xué)的改革。通過數(shù)學(xué)建;顒,教師與學(xué)生對數(shù)學(xué)的作用有了進(jìn)一步的認(rèn)識。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,F(xiàn)今大學(xué)工科數(shù)學(xué)教學(xué)普遍存在內(nèi)容多、學(xué)時少的情況,為此很多教師采取了犧牲應(yīng)用、偏重理論講解以完成教學(xué)進(jìn)度的方法,使學(xué)生對數(shù)學(xué)的重要性認(rèn)識不夠,影響了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,很多學(xué)生進(jìn)入專業(yè)課學(xué)習(xí)階段才感覺到數(shù)學(xué)的重要,但為時已晚。

          數(shù)學(xué)建;顒蛹案傎惖念}目是社會、經(jīng)濟(jì)和生產(chǎn)實踐中經(jīng)過適當(dāng)簡化的實際問題,體現(xiàn)了數(shù)學(xué)應(yīng)用的廣泛性;學(xué)生參與數(shù)學(xué)建模及競賽活動,感受到了數(shù)學(xué)的.生機(jī)與活力,感受到了對自己各方面能力的促進(jìn),從而激發(fā)起他們學(xué)習(xí)數(shù)學(xué)的興趣。培養(yǎng)學(xué)生多方面的能力,培養(yǎng)綜合應(yīng)用數(shù)學(xué)知識及方法進(jìn)行分析、推理、計算的能力。由于數(shù)學(xué)建模的過程是反復(fù)應(yīng)用數(shù)學(xué)知識與方法對實際問題進(jìn)行分析、推理與計算,以得出實際問題的最佳數(shù)學(xué)模型及模型最優(yōu)解的過程,因而學(xué)生明顯感到自己這一方面的能力在具體的建模過程中得到了較大提高學(xué)習(xí)數(shù)學(xué)建模也有一段時間了,說實話在還沒學(xué)數(shù)學(xué)建模時,我以為這門課程是跟幾何圖形相關(guān)的,但在學(xué)了之后才發(fā)現(xiàn)完全理解錯了,通過這段時間的學(xué)習(xí)使得我對數(shù)學(xué)建模有了一個全新的認(rèn)識,數(shù)學(xué)建模就是當(dāng)人們面對各種實際問題時,根據(jù)人們對問題的理解,完成對模型的假設(shè),建立和確定求解問題的方法與途徑,然后建立好方程組,然后再與計算機(jī)的軟件相結(jié)合,最終得到該實際問題的最佳求解答案。

          以前在高中時學(xué)過些簡單的線形規(guī)劃,但那時都是些簡單的問題,在列解出方程后通常只有兩個未知數(shù),但這明顯不符合現(xiàn)實生活中的問題,因為往往涉及到一些實際生產(chǎn)問題時通常都是比較麻煩的,列出方程后的未知數(shù)也不可能只有兩個,因此就要用到數(shù)學(xué)模型與計算機(jī)相結(jié)合來處理了。

          通過對數(shù)學(xué)建模的學(xué)習(xí),使得我對數(shù)學(xué)有了全新的看法,也因此感覺到數(shù)學(xué)這門課程對于生產(chǎn)的利益是密不可分的,開展數(shù)學(xué)建模的學(xué)習(xí)是提升我們綜合能力的好機(jī)會,使得我們不再是紙上談兵了,并且也使得我們又多了一門技能。數(shù)學(xué)建模所解決的問題不是一個單一的數(shù)學(xué)問題,它要求我們除了有扎實的數(shù)學(xué)功底外,還需要我們?nèi)ゲ粩嗟牟殚嗁Y料,并且還要能熟練的應(yīng)用計算機(jī)的軟件。所以它能極大的拓寬我們的知識面,這些知識也能為我們將來的工作打下堅實的基礎(chǔ),也讓我理會到學(xué)習(xí)是不斷發(fā)現(xiàn)真理的過程,并且它給我們帶來的知識面不是任何專業(yè)都能涉及到的.在學(xué)習(xí)數(shù)學(xué)建模的過程中,我充分的體會到了數(shù)學(xué)給人們帶便利實在太大了,在涉及到現(xiàn)實的工業(yè)生產(chǎn)中,它能給企業(yè)的利益最大化,并且也能節(jié)省國內(nèi)的能源,所以人類要是離開了數(shù)學(xué)建模,那后果真是不堪設(shè)想。其實數(shù)學(xué)建模對于我們并不陌生,在我們的日常生活和工作中,經(jīng)常會用到有關(guān)建模的概念,而在學(xué)習(xí)數(shù)學(xué)建模以前,我們面對這些問題時,解決它的方法往往是一種習(xí)慣性的思維方式,只知道要這樣做,卻不知道為什么會這樣做,現(xiàn)在我們這種陳舊的思考方式已經(jīng)被數(shù)學(xué)建模轉(zhuǎn)化成多層次,多角度的從問題的本質(zhì)出發(fā)的一種新穎的思維方式了,這種凝聚了多種優(yōu)秀方法為一體的思考方式一旦被掌握了,它能轉(zhuǎn)化成你自身的素質(zhì),并且能在你以后的生活和工作中繼續(xù)發(fā)揮著作用的。

          數(shù)學(xué)建模是一種運用數(shù)學(xué)符號,數(shù)學(xué)式子,計算機(jī)程序等相結(jié)合的對實際問題做出規(guī)劃而得出最佳的解決方法。不論是用數(shù)學(xué)方法解決在科技和生產(chǎn)領(lǐng)域解決哪類生產(chǎn)實際問題,還是與其他學(xué)科相結(jié)合形成交叉學(xué)科,首先和關(guān)鍵一步是建立研究對象的數(shù)學(xué)模型,并加以計算求解,我就簡單說明一下具體的操作方法:首先是模型的準(zhǔn)備,了解問題的實際背景,明確其實際意義,掌握對像的各種信息,用數(shù)學(xué)語言來描述問題。第二步是模型的假設(shè),根據(jù)實際問題的特征和建模的目的,對問題做出必要的簡化,并用精準(zhǔn)的語言做出恰當(dāng)?shù)募僭O(shè)。第三步是模型的建立,在假設(shè)的基礎(chǔ)上,用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)架構(gòu)。第四步是模型的求解,利用獲取的數(shù)學(xué)資料,對模型所有參數(shù)做出計算。第五步是模型的分析,對所得的結(jié)果做出數(shù)學(xué)上的分析。第六步是模型檢測,將模型的分析結(jié)果與實際情況進(jìn)行比較,以此來確定模型的合理性,如果模型與實際比較吻合,則要對計算結(jié)果給出其實際含義,并做書解釋。第七步是模型應(yīng)用,應(yīng)用的方式因問題的性質(zhì)和建模的目的而異。

          在一般的工程技術(shù)領(lǐng)域,數(shù)學(xué)建模仍然大有用武之地,因此數(shù)學(xué)建模的普遍性和重要性不言而喻,由于新工業(yè)和新技術(shù)的不斷涌現(xiàn),提出了許多需要用數(shù)學(xué)建模來解決的問題,因此使得許多的問題迎刃而解,建立數(shù)學(xué)建模和計算機(jī)的軟件,大量的代替了以前的復(fù)雜的計算問題。隨著數(shù)學(xué)向這儲如經(jīng)濟(jì)了等領(lǐng)域進(jìn)行滲透,人們在計算如何使得經(jīng)濟(jì)利益最大化時,數(shù)學(xué)建模毫無疑問在這里面發(fā)揮出巨大的作用,當(dāng)用數(shù)學(xué)方法研究這些領(lǐng)域中的定量關(guān)系時,數(shù)學(xué)建模就成為首要的。數(shù)學(xué)建模過程是一種創(chuàng)新過程,在思考方法和思維方式上與學(xué)習(xí)其他課程有著較大的區(qū)別,它需要我們在學(xué)習(xí)時能冷靜的單獨思考,并且要有一定的分析問題的能力。

          我相信隨著科技的不斷創(chuàng)新發(fā)展,數(shù)學(xué)建模在其中的地位會越來越高,所以對于一個大學(xué)生來說,學(xué)好數(shù)學(xué)建模固然是非常重要的。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 3

          到目前為止,我們已經(jīng)學(xué)習(xí)科學(xué)計算與數(shù)學(xué)建模這門課程半個學(xué)期了,漸漸的對這門課程有點了解了。我覺得開設(shè)數(shù)學(xué)建模這一門學(xué)科是應(yīng)了時代的發(fā)展要求,因為,隨著科學(xué)技術(shù)的發(fā)展,特別是計算機(jī)技術(shù)的飛速發(fā)展和廣泛應(yīng)用,科學(xué)研究與工程技術(shù)對實際問題的研究不斷精確化、定量化、數(shù)字化,使得數(shù)學(xué)在各學(xué)科、各領(lǐng)域的作用日益增強(qiáng),而數(shù)學(xué)建模在這一過程中的作用尤為突出。在前一階段的學(xué)習(xí)中我了解到它不僅僅是參加數(shù)學(xué)建模比賽的學(xué)生才要學(xué)的,也不僅僅是純理論性的研究學(xué)習(xí),這門課程是在實際生產(chǎn)生活中有很大的應(yīng)用,突破了以前大家對數(shù)學(xué)的誤解,也在一定程度上培養(yǎng)了我們應(yīng)用數(shù)學(xué)工具解決實際問題的能力。

          具體結(jié)合教材內(nèi)容說,在很多時候課本里的都是引用實際生產(chǎn)生活的例子,這樣我們更能夠切切實實感受到這門課程對實際生產(chǎn)生活的幫助,而并非是我們空想著學(xué)這門課有什么作用啊,簡直是浪費時間啊什么的。

          現(xiàn)在我就說說我到目前為止學(xué)到了什么,首先,我知道了數(shù)學(xué)建模的基本步驟:第一步我們肯定是要將現(xiàn)實問題的信息歸納表述為我們的數(shù)學(xué)模型,然后對我們建立的數(shù)學(xué)模型進(jìn)行求解,這一步也可以說是數(shù)學(xué)模型的解答,最后一步我們要需要從那個數(shù)學(xué)世界回歸到現(xiàn)實世界,也就是將數(shù)學(xué)模型的解答轉(zhuǎn)化為對現(xiàn)實問題的解答,從而進(jìn)一步來驗證現(xiàn)實問題的'信息,這一步是非常重要的一個環(huán)節(jié),這些結(jié)果也需要用實際的信息加以驗證。

          這個步驟在一定程度上揭示了現(xiàn)實問題和數(shù)學(xué)建模的關(guān)系,一方面,數(shù)學(xué)建模是將現(xiàn)實生活中的現(xiàn)象加以歸納、抽象的產(chǎn)物,它源于現(xiàn)實,卻又高于現(xiàn)實,另一方面,只有當(dāng)數(shù)學(xué)模型的結(jié)果經(jīng)受住現(xiàn)實問題的檢驗時,才可以用來指導(dǎo)實踐,完成實踐到理論再回歸到實踐的這一循環(huán)。

          在課本第二章的時候我們開始接觸實際問題,在第二章片頭我們看到的就是某城市供水量的預(yù)測問題,在這一章里,老師通過城市供水量的預(yù)測問題介紹了求函數(shù)近似表達(dá)式的插值法和擬合法、城市供水量預(yù)測的簡單方法、供水量增長率估與數(shù)值微分,其中插值法主要介紹Lagrange法、Newton法、分段低次插值和三次樣條插值。至此我們才真正體會了數(shù)學(xué)建模對實際生產(chǎn)的幫助。

          但同時,我們也發(fā)現(xiàn),要學(xué)好數(shù)學(xué)建模這一門學(xué)科,或者說應(yīng)用數(shù)學(xué)建模的知識去解決其他問題,不僅僅只要求我們有扎實的數(shù)學(xué)知識,還需要我們學(xué)習(xí)更多的數(shù)學(xué)分支學(xué)科,例如有時候我們還需要其他的數(shù)學(xué)軟件來幫我們解決問題,同時還要考察實際情況學(xué)會從實際問題中提煉數(shù)學(xué)問題。

          總的來說,學(xué)習(xí)數(shù)學(xué)建模這一門學(xué)科對我們的幫助很大,因為它不僅增強(qiáng)了我的知識面,我們可以在學(xué)習(xí)這一門學(xué)科的過程中鍛煉我們學(xué)習(xí)積極性,逐步培養(yǎng)很強(qiáng)的自學(xué)能力和分析、解決問題的能力,這對于我們師范生以后走上教育工作崗位也是很有幫助的。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 4

          通過對專題七的學(xué)習(xí),我知道了數(shù)學(xué)探究與數(shù)學(xué)建模在中學(xué)中學(xué)習(xí)的重要性,知道了什么是數(shù)學(xué)建模,數(shù)學(xué)建模就是把一個具體的實際問題轉(zhuǎn)化為一個數(shù)學(xué)問題,然后用數(shù)學(xué)方法去解決它,之后我們再把它放回到實際當(dāng)中去,用我們的模型解釋現(xiàn)實生活中的種種現(xiàn)象和規(guī)律。

          知道了數(shù)學(xué)建模的幾點要求:一個是問題一定源于學(xué)生的日常生活和現(xiàn)實當(dāng)中,了解和經(jīng)歷解決實際問題的過程,并且根據(jù)學(xué)生已有的經(jīng)驗發(fā)現(xiàn)要提出的問題。同時,希望同學(xué)們在這一過程中感受數(shù)學(xué)的實用價值和獲得良好的情感體驗。當(dāng)然也希望同學(xué)們在這樣的過程當(dāng)中,學(xué)會通過實際上數(shù)學(xué)探究本身應(yīng)該說在平時教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的,他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個問題就是有點兒全新性,解決的方案不是很明了,這樣學(xué)生要有一個嘗試,一個探索的過程查詢資料等手段來獲取信息,之后采取各種合作的方式解決問題,養(yǎng)成與人交流的能力。

          實際上數(shù)學(xué)探究本身應(yīng)該說在平時教學(xué)當(dāng)中,老師有些在課堂上也是這樣教學(xué)的',他更重要的意義就是引導(dǎo)老師增加一種教學(xué)方式,首先就是這個問題就是有點兒全新性,解決的方案不是很明了,這樣的話學(xué)生要有一個嘗試,一個探索的過程。數(shù)學(xué)探究活動的關(guān)健詞就是探究,探究是一個活動或者是一個過程,也是一種學(xué)習(xí)方式,我們比較強(qiáng)調(diào)是用這樣的方式影響學(xué)生,讓他主動的參與,在這個活動當(dāng)中得到更多的知識。

          探究的結(jié)果我們認(rèn)為不一定是最重要的,當(dāng)然我們希望探究出來一個結(jié)果,通過這種活動影響學(xué)生,改變他的學(xué)習(xí)方式,增加他的學(xué)習(xí)興趣和能力。我們也關(guān)心,大家也可以看到在標(biāo)準(zhǔn)里面,有非常突出的數(shù)學(xué)建模的這些內(nèi)容,但是它的要求、定位和為什么把這些領(lǐng)域加到我的標(biāo)準(zhǔn)當(dāng)中,你應(yīng)該怎么看待這部分內(nèi)容。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 5

          數(shù)學(xué)建模是一個經(jīng)歷觀察、思考、歸類、抽象與總結(jié)的過程,也是一個信息捕捉、篩選、整理的過程,更是一個思想與方法的產(chǎn)生與選擇的過程。它給學(xué)生再現(xiàn)了一種“微型科研”的過程。數(shù)學(xué)建模教學(xué)有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,豐富學(xué)生數(shù)學(xué)探索的情感體驗;有利于學(xué)生自覺檢驗、鞏固所學(xué)的數(shù)學(xué)知識,促進(jìn)知識的深化、發(fā)展;有利于學(xué)生體會和感悟數(shù)學(xué)思想方法。同時教師自身具備數(shù)學(xué)模型的構(gòu)建意識與能力,才能指導(dǎo)和要求學(xué)生通過主動思維,自主構(gòu)建有效的數(shù)學(xué)模型,從而使數(shù)學(xué)課堂彰顯科學(xué)的魅力。

          為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。使用數(shù)學(xué)語言描述的事物就稱為數(shù)學(xué)模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數(shù)學(xué)模型作為實際物體的代替而進(jìn)行相應(yīng)的實驗,實驗本身也是實際操作的一種理論替代。

          1、只有經(jīng)歷這樣的探索過程,數(shù)學(xué)的思想、方法才能沉積、凝聚,從而使知識具有更大的智慧價值。

          動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動應(yīng)當(dāng)是一個主動、活潑的、生動和富有個性的過程。因此,在教學(xué)時我們要善于引導(dǎo)學(xué)生自主探索、合作交流,對學(xué)習(xí)過程、學(xué)習(xí)材料、學(xué)習(xí)發(fā)現(xiàn)主動歸納、提升,力求建構(gòu)出人人都能理解的數(shù)學(xué)模型。教師不應(yīng)只是“講演者”,而應(yīng)不時扮演下列角色:參謀——提一些求解的建議,提供可參考的信息,但并不代替學(xué)生做出決斷。詢問者——故作不知,問原因、找漏洞,督促學(xué)生弄清楚、說明白,完成進(jìn)度。仲裁者和鑒賞者——評判學(xué)生工作成果的價值、意義、優(yōu)劣,鼓勵學(xué)生有創(chuàng)造性的想法和作法。

          2、數(shù)學(xué)建模對教師、對學(xué)生都有一個逐步的學(xué)習(xí)和適應(yīng)的過程。

          教師在設(shè)計數(shù)學(xué)建模活動時,特別應(yīng)考慮學(xué)生的實際能力和水平,起始點要低,形式應(yīng)有利于更多的學(xué)生能參與。在開始的教學(xué)中,在講解知識的同時有意識地介紹知識的應(yīng)用背景,在數(shù)學(xué)模型的應(yīng)用環(huán)節(jié)進(jìn)行比較多的訓(xùn)練;然后逐步擴(kuò)展到讓學(xué)生用已有的數(shù)學(xué)知識解釋一些實際結(jié)果,描述一些實際現(xiàn)象,模仿地解決一些比較確定的應(yīng)用問題;再到獨立地解決教師提供的數(shù)學(xué)應(yīng)用問題和建模問題;最后發(fā)展成能獨立地發(fā)現(xiàn)、提出一些實際問題,并能用數(shù)學(xué)建模的`方法解決它。

          3、老師既要重視實際問題背景的分析、參數(shù)的簡化、假設(shè)的約定,還要重視分析數(shù)學(xué)模型建立的原理、過程,數(shù)學(xué)知識、方法的轉(zhuǎn)化、應(yīng)用。不能僅僅講授數(shù)學(xué)建模結(jié)果,忽略數(shù)學(xué)建模的建立過程。

          4、數(shù)學(xué)應(yīng)用與數(shù)學(xué)建模的目的并不是僅僅為了給學(xué)生擴(kuò)充大量的數(shù)學(xué)課外知識,也不是僅僅為了解決一些具體問題,而是要培養(yǎng)學(xué)生的應(yīng)用意識,提高學(xué)生數(shù)學(xué)能力和數(shù)學(xué)素質(zhì)。

          因此我們不應(yīng)該沿用老師講題、學(xué)生模仿練習(xí)的套路,而應(yīng)該重過程、重參與,從小培養(yǎng)學(xué)數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個重要組成部分和思想庫,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力也已經(jīng)成為數(shù)學(xué)教學(xué)的一個重要方面。而應(yīng)用數(shù)學(xué)去解決各類實際問題就必須建立數(shù)學(xué)模型。小學(xué)數(shù)學(xué)教學(xué)的過程其實就是教師引導(dǎo)學(xué)生不斷建模和用模的過程。因此,用建模思想指導(dǎo)小學(xué)數(shù)學(xué)教學(xué)顯得愈發(fā)重要。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 6

          數(shù)學(xué)建模是一門應(yīng)用數(shù)學(xué)的學(xué)科,通過對實際問題的建模與求解,可以幫助人們更好地理解、分析和解決各種實際問題。作為一門新興的學(xué)科,我在學(xué)習(xí)數(shù)學(xué)建模的過程中有了很多心得體會。

          首先,數(shù)學(xué)建模是一個全新的學(xué)科,需要掌握一定的數(shù)學(xué)知識。在學(xué)習(xí)數(shù)學(xué)建模前,我首先需要掌握一定的數(shù)學(xué)基礎(chǔ)知識,包括高等數(shù)學(xué)、概率論與數(shù)理統(tǒng)計等。這些數(shù)學(xué)基礎(chǔ)知識是建立數(shù)學(xué)模型的`基礎(chǔ),只有掌握了這些知識,才能更好地理解和應(yīng)用數(shù)學(xué)建模的方法和技巧。

          其次,數(shù)學(xué)建模需要具備一定的實際問題解決能力。在學(xué)習(xí)數(shù)學(xué)建模的過程中,我發(fā)現(xiàn)數(shù)學(xué)建模的關(guān)鍵在于解決實際問題。解決實際問題需要具備一定的實踐能力和創(chuàng)新思維,只有將數(shù)學(xué)方法與實際問題相結(jié)合,才能得到切實可行的解決方案。因此,我通過參加實際建模競賽和實踐活動,提升自己的實際問題解決能力。

          另外,數(shù)學(xué)建模需要不斷的學(xué)習(xí)和實踐。數(shù)學(xué)建模是一個不斷學(xué)習(xí)和實踐的過程,我深刻體會到了這一點。在學(xué)習(xí)數(shù)學(xué)建模的過程中,我不僅需要學(xué)習(xí)數(shù)學(xué)知識,還需要不斷研究和了解各種實際問題,并應(yīng)用數(shù)學(xué)方法進(jìn)行建模與求解。通過不斷的學(xué)習(xí)和實踐,我能夠不斷地提高自己的數(shù)學(xué)建模能力,并取得更好的成果。

          此外,數(shù)學(xué)建模需要團(tuán)隊合作。在實際建模過程中,我發(fā)現(xiàn)數(shù)學(xué)建模需要團(tuán)隊合作。解決實際問題需要不同領(lǐng)域的知識和專業(yè)技能,一個人很難完成所有的工作。團(tuán)隊合作可以發(fā)揮每個人的優(yōu)勢,將各種專業(yè)知識和技能有機(jī)地結(jié)合起來,提高工作效率和解決問題的質(zhì)量。因此,我通過參加團(tuán)隊建模和合作項目,鍛煉自己的團(tuán)隊合作能力。

          最后,數(shù)學(xué)建模需要不斷開拓思維和提高創(chuàng)新能力。在學(xué)習(xí)數(shù)學(xué)建模的過程中,我發(fā)現(xiàn)數(shù)學(xué)建模需要不斷開拓思維和提高創(chuàng)新能力。解決實際問題需要靈活運用各種數(shù)學(xué)方法和技巧,并能夠提出新穎的解決方案。因此,我通過自主學(xué)習(xí)、交流和思維訓(xùn)練,不斷開拓思維和提高自己的創(chuàng)新能力。

          總之,數(shù)學(xué)建模是一門應(yīng)用數(shù)學(xué)的學(xué)科,通過對實際問題的建模與求解,可以幫助人們更好地理解、分析和解決各種實際問題。在學(xué)習(xí)數(shù)學(xué)建模的過程中,我不僅需要掌握一定的數(shù)學(xué)基礎(chǔ)知識,還需要具備一定的實際問題解決能力,并進(jìn)行不斷的學(xué)習(xí)和實踐。同時,數(shù)學(xué)建模也需要團(tuán)隊合作和開拓思維,提高創(chuàng)新能力。通過這些經(jīng)歷,我對數(shù)學(xué)建模有了更深刻的理解和認(rèn)識。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 7

          數(shù)學(xué)建模比賽終于告一段落了,這次數(shù)學(xué)建模比賽既彌補了大學(xué)本科時的遺憾,也讓我對數(shù)學(xué)有了更為深刻的理解。

          暑期一個月的培訓(xùn)與我們在建模比賽中取得的成績是密不可分的。首先我們從老師那里學(xué)到了從人口模型、捕食者模型到裝箱問題、延遲問題等等各式各樣新奇、卻又緊貼生活實際的模型和建立方法。并且還有具有豐富數(shù)模競賽審閱經(jīng)驗的老師來為我們講解數(shù)模論文寫作時應(yīng)注意的問題,以及告訴我們通常評分的原則,好讓我們在寫論文時有的放矢,抓住得分點。開學(xué)后,主要以模擬訓(xùn)練為主。模擬訓(xùn)練以真題為主,通過真題,了解建模的基本程序,這時候,就需要組員之間相互協(xié)調(diào),團(tuán)結(jié)合作。任務(wù)的合理安排,及組員之間的密切配合顯得尤為重要,在這里,特別感謝組長,一直默默奉獻(xiàn),起到了模范帶頭作用,并且對我也相當(dāng)?shù)陌荨?/p>

          課堂上老師對知識的系統(tǒng)講述,更多的是教會我們數(shù)學(xué)模型建立的思路。實際建模時對知識的應(yīng)用才是最關(guān)鍵的。比如人口模型,從最開始的指數(shù)增長,到隨著西方世界人口趨向飽和以后增長放緩,模型的嚴(yán)重偏離實際引發(fā)人們修改模型,引入一個限制因子,再到進(jìn)來因為認(rèn)識到人的出生到成熟、交結(jié)異性、繁衍后代以及妊娠期不可避免的會延遲人口的增長,所以又在微分方程組中加入了延遲的因素……人口模型的發(fā)展仍沒有結(jié)束,或許在可見的將來也都不會結(jié)束,但它有最初等的指數(shù)增長一路走過來,凝聚的是一代代人理性思維的光輝。而我們正是踏著這條道路,在僅僅一兩堂課的時間內(nèi),走過這些崎嶇的思想之路,無形中讓我們了解到數(shù)學(xué)建模的精髓,那就是提出模型——驗證模型——修改模型——再驗證——再修改,真正的復(fù)雜問題是不可能只靠空想就能出結(jié)果的,否則也不叫復(fù)雜問題了。只有通過不懈的思考與嘗試,發(fā)現(xiàn)有問題以后及時修改、琢磨新的思路和先前的瑕疵,才能完善模型。因此,在以后的建模過程中,我學(xué)到了這種一步一步、不斷修改的踏實的研究方法,而不再像以前只是懵懵懂懂的絞盡腦汁想個方案,然后就湊合了事,雖然明知有缺陷也不知該從何下手。

          除了對知識點額掌握,數(shù)模讓我了解到團(tuán)隊合作的重要意義和種種挑戰(zhàn)。數(shù)學(xué)建模的考試是3個人組隊參加,因此,如何找到合適的`隊友,親密無間的進(jìn)行交流、工作就是一個重要的課題。在我看來,一個好的團(tuán)隊,最重要的就是隊員之間的信任,其次是隊員之間的積極交流與溝通,發(fā)揮團(tuán)隊的力量。在選擇隊友時,除了對隊友有一定的了解、認(rèn)識時,其次就是要善于與不同專業(yè)的同學(xué)交流,這樣才能最大限度發(fā)揮每個隊員的長處。

          文就是反應(yīng)建模的思路,這兩者必須緊密合作,編程的結(jié)果同樣影響建模,因此,任務(wù)不能絕對性,組間要根據(jù)實際情況調(diào)整,這樣才能保證論文的條理性和高效率。

          以上就是我參加研究生數(shù)學(xué)建模的一些心得。與其說是心得,其實不如說是整理好思路,為自己的下一段征程做好準(zhǔn)備。數(shù)模,教會了我很多很多,而我要做的,就是將建模的思維應(yīng)用于科研中,為研究生生活和學(xué)習(xí)增添光彩。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 8

          自從大二下學(xué)期真正開了數(shù)學(xué)模型這一門課之后,我對數(shù)學(xué)認(rèn)識又進(jìn)一步加深。雖然我是學(xué)純數(shù)學(xué)即數(shù)學(xué)與應(yīng)用數(shù)學(xué),但是在我的認(rèn)知中,數(shù)學(xué)最多的是單純地證明一些定理抑或是反復(fù)的計算一些步驟比較多的題進(jìn)而求解。隨著老師在課堂上一點一點的引導(dǎo)、介紹、講解,我漸漸地發(fā)現(xiàn)數(shù)學(xué)真的是很萬能。ㄔ谖铱磥恚,任何實際問題只要運用數(shù)學(xué)建立模型都可以抽象成一個數(shù)學(xué)方面的問題,進(jìn)而單純的分析、計算、求解。這只是我大體的認(rèn)識。

          首先,通過數(shù)學(xué)模型這一門課我解開了數(shù)學(xué)模型的神秘面紗,與數(shù)學(xué)模型緊密相連的就是數(shù)學(xué)建模,簡而言之來說數(shù)學(xué)建模就是應(yīng)用數(shù)學(xué)模型來解決各種實際問題的過程,也就是通過對實際問題的抽象、簡化、確定變量和參數(shù),并應(yīng)用某些規(guī)律建立變量與參數(shù)之間的關(guān)系的數(shù)學(xué)問題(或稱一個數(shù)學(xué)模型),在借用計算機(jī)求解該數(shù)學(xué)問題,并解釋,檢驗,評價所得的解,從而確定能否將其用于解決實際問題的多次循環(huán),不斷深化的過程。

          以下是我學(xué)習(xí)數(shù)學(xué)模型的一些心得:

          第一,數(shù)學(xué)模型是數(shù)學(xué)的一個分支,它還沒有脫離數(shù)學(xué),眾所周知數(shù)學(xué)是一門比較抽象的課程,主要需要和訓(xùn)練的還是邏輯思維。因此數(shù)學(xué)模型需要和訓(xùn)練的都基本是思維,但和純數(shù)學(xué)區(qū)別的是數(shù)學(xué)模型只要抽象出數(shù)學(xué)問題的本質(zhì),進(jìn)而建模,那之后不是非得自己一步步地演算、求解。

          第二,數(shù)學(xué)模型最后的求解很多時候都不可避免地要用到計算機(jī),比如像matlab,spss,linggo之類的數(shù)學(xué)軟件。因此在學(xué)習(xí)過程中我們也得對這些軟件有一定的了解和認(rèn)識。這也就與平常的學(xué)習(xí)方式產(chǎn)生了區(qū)別,平常的數(shù)學(xué)方式因為其內(nèi)容和講授被限制在了平常的階梯教室,但數(shù)學(xué)模型這一門課就必須通過自己的實踐運用計算機(jī)來達(dá)到自己的目的。因此我們的學(xué)習(xí)方式就多了一項(通過計算機(jī)進(jìn)一步了解數(shù)學(xué)模型的魅力)。

          第三,因為數(shù)學(xué)模型是對現(xiàn)實問題的分析,因此老師在課堂上進(jìn)行的授課通常會是老師引導(dǎo)、師生之間相互商量,因此課堂氛圍一般都比較活潑,學(xué)習(xí)起來會相對的比較輕松。這樣對學(xué)生的思維的開拓有很大的好處。因為我們在生活和學(xué)習(xí)的過程中都接觸過很多問題的數(shù)學(xué)問題的模型,所以思考其整個過程及其影響因素就不會出現(xiàn)無從下手的感覺。相反的,在考慮問題的時候,我們更能提出自己的一些見解并能積極地與老師展開討論。

          第四,數(shù)學(xué)模型充分挖掘了我們的潛能,使我們對自己的能力有了新的認(rèn)識,特別是自學(xué)能力得到了極大的提高,而且思想的交鋒也迸發(fā)了智慧的火花,從而增加了繼續(xù)深入學(xué)習(xí)數(shù)學(xué)的主動性和積極性。再次,它也培養(yǎng)了我們的概括力和想象力,也就是要一眼就能抓住問題的本質(zhì)所在。我們只有先對實際問題進(jìn)行概括歸納,同時在允許的.情況下盡量忽略各種次要因素,僅僅抓住問題的本質(zhì)方面,是問題盡可能簡單化,這樣才能解決問題。

          第五,說到數(shù)學(xué)模型就必不可免得會聯(lián)系到數(shù)學(xué)建模大賽。因為教育必須適應(yīng)社會的需要,數(shù)學(xué)建模進(jìn)入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的需求,對于數(shù)學(xué)教育而言,既應(yīng)該讓學(xué)生掌握準(zhǔn)確快捷的計算方法和嚴(yán)密的邏輯推理,也需要培養(yǎng)學(xué)生用數(shù)學(xué)工具分析和解決實際問題的意識和能力。數(shù)學(xué)建模大賽就是順應(yīng)這一要求,此外,數(shù)學(xué)建模還可以提高學(xué)生的競賽能力,抗壓能力,問題設(shè)計的能力,搜索資料的能力,計算機(jī)運用能力,論文寫作與修改完善能力,語言表達(dá)能力,創(chuàng)新能力等科學(xué)綜合素養(yǎng)。

          第六,雖然我沒參加過數(shù)學(xué)建模大賽,但是我曾去過數(shù)學(xué)建模的培訓(xùn)課程,通過老師的介紹,我知道數(shù)學(xué)建模對團(tuán)隊合作要求很高。一個人的能力畢竟有限,不能把什么都做得很好,即使少數(shù)人能方方面面都顧全到,那得多么的累,況且真正的數(shù)學(xué)建模大賽是對時間有限制的,不會讓你不限時地讓你做。正所謂‘三個臭皮匠,勝過諸葛亮’,可見思想與思想之間的交流產(chǎn)生的結(jié)果是多么的好,此外,每個人因為所處環(huán)境與經(jīng)歷還有專業(yè)的限制,每個人思考問題的角度都不盡相同。所以集結(jié)每個人的優(yōu)點才會使自己的團(tuán)隊所做出來的結(jié)果更優(yōu)秀。

          以上只是我在這短短幾個月對數(shù)學(xué)模型的淺顯的認(rèn)識,不用說大家肯定都只道數(shù)學(xué)模型更像是一個工具,所以說它的魅力作用及影響肯定不會僅僅是這些,有時現(xiàn)實生活中及各個學(xué)科都需要它來解決問題,所以這更要求我們要認(rèn)真學(xué)好這門課。

          通過上課我也有一點建議,就是希望老師可以讓同學(xué)們結(jié)成小組再在課上可以討論某幾道題,這樣可以加強(qiáng)同學(xué)們在這方面的能力,也可以提高課堂氛圍。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 9

          數(shù)學(xué)建模是現(xiàn)代應(yīng)用數(shù)學(xué)中的一項重要技術(shù),它可以將實際問題抽象為數(shù)學(xué)模型,并運用數(shù)學(xué)方法進(jìn)行求解和分析。隨著數(shù)學(xué)建模的應(yīng)用場景不斷擴(kuò)大,越來越多的人開始了解和使用這一技術(shù)。我也通過參與數(shù)學(xué)建模比賽和實踐項目,有了一些使用數(shù)學(xué)建模的心得體會。

          首先,在實際問題中理解數(shù)學(xué)模型的意義是非常重要的。數(shù)學(xué)模型作為抽象工具,能夠?qū)?fù)雜的實際問題簡化為數(shù)學(xué)公式和方程。通過建立數(shù)學(xué)模型,我們可以從更高的角度來理解問題的本質(zhì),并用數(shù)學(xué)的方法進(jìn)行求解。比如,在一次汽車行駛的過程中,我們可以建立關(guān)于汽車速度、油耗等因素的數(shù)學(xué)模型,從而幫助我們預(yù)測汽車的油耗量并優(yōu)化駕駛策略。因此,理解數(shù)學(xué)模型的意義對于正確應(yīng)用數(shù)學(xué)建模技術(shù)非常重要。

          其次,選擇適當(dāng)?shù)那蠼夥椒▽τ跀?shù)學(xué)建模的成功至關(guān)重要。在解決實際問題時,我們常常面臨多種求解方法的選擇,如常規(guī)的代數(shù)求解方法、迭代方法、數(shù)值逼近方法等。不同的問題需要不同的求解方法,選擇合適的方法能夠提高解題效率和準(zhǔn)確性。比如,在優(yōu)化問題中,我們可以運用拉格朗日乘子法或者線性規(guī)劃等方法,從而找到問題的最優(yōu)解。因此,熟悉各種求解方法,并能夠靈活運用,是使用數(shù)學(xué)建模技術(shù)的關(guān)鍵所在。

          此外,合理的問題假設(shè)和精確的數(shù)據(jù)采集對于數(shù)學(xué)建模的成功也至關(guān)重要。在建立數(shù)學(xué)模型時,我們常常需要根據(jù)問題的實際情況進(jìn)行合理的簡化和假設(shè)。合理的問題假設(shè)可以使得模型更加簡潔和易于求解,但也需注意假設(shè)不能過于簡單化導(dǎo)致模型失去實用性。同時,精確的數(shù)據(jù)采集對于數(shù)學(xué)模型的準(zhǔn)確性和可靠性也非常重要。在數(shù)據(jù)采集過程中,我們應(yīng)盡量避免誤差和主觀因素的干擾,保證數(shù)據(jù)的真實性和準(zhǔn)確性。因此,合理的問題假設(shè)和精確的數(shù)據(jù)采集是數(shù)學(xué)建模過程中必要的環(huán)節(jié)。

          最后,在實際問題中多思考并與他人交流,能夠有效提高數(shù)學(xué)建模的質(zhì)量和效果。在數(shù)學(xué)建模過程中,我們常常遇到問題的復(fù)雜性和多樣性,這時候多角度思考和與他人交流可以拓寬思維的空間,并能夠發(fā)現(xiàn)問題的更多解決辦法。通過與他人交流,可以借鑒他人的`思路和經(jīng)驗,提高建模的質(zhì)量和創(chuàng)新性。比如,在參加數(shù)學(xué)建模比賽中,我們常常需要與隊友合作,共同思考問題并交流解決方法,這不僅能夠加強(qiáng)團(tuán)隊的凝聚力,還能夠從中獲得寶貴的學(xué)習(xí)經(jīng)驗。因此,多思考并與他人交流是數(shù)學(xué)建模過程中的重要環(huán)節(jié)。

          總之,使用數(shù)學(xué)建模技術(shù)需要正確理解模型的意義,選擇合適的求解方法,進(jìn)行合理的問題假設(shè)和精確的數(shù)據(jù)采集,同時多思考并與他人交流。通過不斷的實踐和學(xué)習(xí),我深刻認(rèn)識到數(shù)學(xué)建模的重要性和應(yīng)用價值。今后,我期待在更多的實踐項目中應(yīng)用數(shù)學(xué)建模技術(shù),為解決實際問題做出更大的貢獻(xiàn)。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 10

          數(shù)學(xué)建模是當(dāng)今社會中越來越受重視的一門學(xué)科,通過數(shù)學(xué)方法解決實際問題,對于培養(yǎng)學(xué)生的邏輯思維、創(chuàng)新能力和實踐能力起著重要的作用。在我參與數(shù)學(xué)建模的過程中,我深刻地體會到,數(shù)學(xué)建模不僅需要良好的數(shù)學(xué)基礎(chǔ),還需要堅持、努力和合作的精神,以及對實際問題的敏感性和獨立思考的能力。

          首先,數(shù)學(xué)建模需要良好的數(shù)學(xué)基礎(chǔ)。在解決實際問題的過程中,需要運用到多種數(shù)學(xué)方法和模型,如概率統(tǒng)計、線性規(guī)劃、微分方程等。而這些都要求我們具備扎實的'數(shù)學(xué)基礎(chǔ)。因此,在參與數(shù)學(xué)建模之前,我們要加強(qiáng)對數(shù)學(xué)基礎(chǔ)知識的學(xué)習(xí),同時要注重數(shù)學(xué)的實際應(yīng)用,培養(yǎng)數(shù)學(xué)思維和解決實際問題的能力。

          其次,數(shù)學(xué)建模需要堅持、努力和合作的精神。數(shù)學(xué)建模不是一蹴而就的過程,需要耐心和毅力去面對問題和困難。在實際操作中,往往會遇到數(shù)據(jù)收集不全、模型構(gòu)建不準(zhǔn)確等問題,這時候我們要保持積極樂觀的心態(tài),不斷嘗試和改進(jìn)。同時,在團(tuán)隊合作中,我們要尊重他人意見,共同努力,形成優(yōu)勢互補的合作關(guān)系,才能最終完成一個優(yōu)秀的數(shù)學(xué)模型。

          此外,數(shù)學(xué)建模需要對實際問題的敏感性和獨立思考的能力。在解決實際問題時,我們要對問題本身有敏銳的觸覺,能夠發(fā)現(xiàn)問題背后的本質(zhì)和規(guī)律。同時,我們也要具備獨立思考的能力,不僅僅依靠他人的意見和經(jīng)驗,而是要從自己的角度去分析和解決問題。只有這樣才能在數(shù)學(xué)建模中取得令人滿意的結(jié)果。

          最后,數(shù)學(xué)建模是一個不斷學(xué)習(xí)和提高的過程。在每一次實踐中,我們都可以從中汲取經(jīng)驗,了解到不同領(lǐng)域、不同問題的特點和要點。同時,我們也要關(guān)注前沿的數(shù)學(xué)建模成果和方法,及時補充自己的知識和技能。通過不斷學(xué)習(xí)和提高,我們才能在數(shù)學(xué)建模的道路上越走越遠(yuǎn),取得更出色的成就。

          總之,數(shù)學(xué)建模是一門需要我們付出努力和智慧的學(xué)科。通過我自己的經(jīng)歷,我深刻地認(rèn)識到數(shù)學(xué)建模不僅僅是一種學(xué)習(xí)方法,更是一種鍛煉自己解決實際問題能力的機(jī)會。在今后的學(xué)習(xí)和實踐中,我將繼續(xù)努力,加強(qiáng)自己的數(shù)學(xué)基礎(chǔ),培養(yǎng)堅持、努力和合作的精神,提高對實際問題的敏感性和獨立思考的能力,不斷學(xué)習(xí)和提高,以更好地應(yīng)對數(shù)學(xué)建模所帶來的挑戰(zhàn)。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 11

          讀數(shù)學(xué)建模課程是我大學(xué)三年級的必修課程,這門課程讓我感受到了數(shù)學(xué)的實用性和嚴(yán)謹(jǐn)性,也讓我深刻理解到數(shù)學(xué)在現(xiàn)實生活中的重要性。在這門課程中,我學(xué)習(xí)了數(shù)學(xué)模型的構(gòu)建、求解和分析方法,我認(rèn)為,這些知識對于我以后的學(xué)習(xí)和工作都有很大的幫助。

          在學(xué)習(xí)數(shù)學(xué)建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學(xué)模型不僅要符合現(xiàn)實,還要有嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)證明。因此,我學(xué)習(xí)了多種數(shù)學(xué)知識,包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等,這些知識讓我能夠更好地構(gòu)建數(shù)學(xué)模型,同時也能夠更好地驗證和分析結(jié)果。

          在實踐建模的過程中,我發(fā)現(xiàn),一個好的數(shù)學(xué)模型不僅需要有合適的數(shù)學(xué)公式,還需要有合理的數(shù)據(jù)支持。因此,我學(xué)習(xí)了如何獲取和分析數(shù)據(jù),并學(xué)會了使用MATLAB等計算工具對數(shù)據(jù)進(jìn)行分析和可視化。這些工具不僅方便了我對數(shù)據(jù)的理解,還能夠幫助我更好地展示數(shù)學(xué)模型的結(jié)果。

          通過學(xué)習(xí)數(shù)學(xué)建模,我發(fā)現(xiàn)成功的模型需要具備以下特點:

          1、模型要符合現(xiàn)實;

          2、模型的.數(shù)學(xué)表達(dá)式要嚴(yán)謹(jǐn);

          3、模型需要有合理的數(shù)據(jù)支持;

          4、模型的結(jié)果需要有實際意義。

          這些特點相互為依存,缺一不可。同時,我也認(rèn)識到,在數(shù)學(xué)建模中,靈活性和創(chuàng)新性同樣重要,只有掌握了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識,才能更好地發(fā)揮個人思維的特點,構(gòu)建出更為優(yōu)秀的數(shù)學(xué)模型。

          學(xué)習(xí)數(shù)學(xué)建模的過程中,我不僅學(xué)到了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識,還學(xué)會了如何分析和解決實際問題。在以后的學(xué)習(xí)和工作中,我將不斷運用這些知識和技能,以更好地解決實際問題,為社會做出自己的貢獻(xiàn)。同時,我也希望更多的人能夠認(rèn)識到數(shù)學(xué)的實用性和重要性,從而更好地學(xué)習(xí)和應(yīng)用數(shù)學(xué)。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 12

          數(shù)學(xué)建模是一門應(yīng)用數(shù)學(xué)學(xué)科,通過建立數(shù)學(xué)模型解決實際問題。作為一名數(shù)學(xué)建模愛好者,我在過去的學(xué)習(xí)和實踐中積累了一些心得體會。接下來,我將通過以下五個方面來分享我在數(shù)學(xué)建模中的心得體會。

          首先,數(shù)學(xué)建模讓我意識到數(shù)學(xué)不僅僅是解題的工具。在學(xué)校中,我們通常把數(shù)學(xué)當(dāng)作一門應(yīng)付考試的科目,很難體會到它的實際應(yīng)用。然而,通過參與數(shù)學(xué)建模,我發(fā)現(xiàn)數(shù)學(xué)可以被應(yīng)用于解決現(xiàn)實問題,而不僅僅是在書本中運用。數(shù)學(xué)建模讓我明白數(shù)學(xué)的本質(zhì)是為了解決問題,培養(yǎng)了我從多個角度思考問題的能力。

          其次,數(shù)學(xué)建模培養(yǎng)了我的團(tuán)隊合作精神。在數(shù)學(xué)建模中,我們往往需要和團(tuán)隊成員一起合作解決問題。每個團(tuán)隊成員都有各自的思路和見解,我們需要互相交流和協(xié)作,才能最終得出一個完整的解決方案。通過和團(tuán)隊成員的討論和合作,我學(xué)會了傾聽他人的觀點和取長補短,并且意識到團(tuán)隊協(xié)作的重要性。

          第三,數(shù)學(xué)建模讓我注重實際問題的建模過程。在過去,在解決數(shù)學(xué)問題時,我常常只注重最終的.答案,而忽視了問題的建模過程。然而,通過數(shù)學(xué)建模的實踐,我明白了問題的建模過程對于最終結(jié)果的影響。合適的模型選擇以及準(zhǔn)確的參數(shù)設(shè)定是確保結(jié)果有效的重要因素。因此,我學(xué)會了在解決問題時注重建模過程,而不僅僅關(guān)注結(jié)果。

          第四,數(shù)學(xué)建模培養(yǎng)了我的邏輯思維能力。在數(shù)學(xué)建模中,我們需要將實際問題抽象成數(shù)學(xué)模型,再通過建模思路解決問題。這要求我們在問題分析和建模過程中具備較強(qiáng)的邏輯思維能力。通過數(shù)學(xué)建模,我的邏輯思維能力得到了訓(xùn)練和提高,我學(xué)會了提煉問題中的關(guān)鍵因素,并能夠合理組織思路,從而解決問題。

          最后,數(shù)學(xué)建模提高了我解決復(fù)雜問題的能力,F(xiàn)實生活中的問題往往存在多種因素的影響,這使得問題變得復(fù)雜和困難。通過數(shù)學(xué)建模,我學(xué)會了分析復(fù)雜問題,并將其拆解成較為簡單的子問題。然后,我們再逐步解決這些子問題,并最終得到整個問題的解決方案。這種解決問題的方法也讓我在其他領(lǐng)域遇到復(fù)雜問題時能夠更加從容地應(yīng)對。

          總結(jié)起來,數(shù)學(xué)建模是一門能夠培養(yǎng)多方面能力的學(xué)科。通過參與數(shù)學(xué)建模,我意識到數(shù)學(xué)在實際生活中的應(yīng)用,提高了團(tuán)隊合作能力,注重問題建模過程,鍛煉了邏輯思維能力,同時也提高了解決復(fù)雜問題的能力。我相信,在今后的學(xué)習(xí)和工作中,這些心得體會將對我產(chǎn)生積極的影響。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 13

          通過一個月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識到數(shù)學(xué)建模的實質(zhì)和對參賽隊員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運用數(shù)學(xué)知識解決實際問題的能力。它要求參賽隊員有較強(qiáng)的 創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊員之間有良好的團(tuán)隊精神和相互協(xié)作意識。在一個月里,我們學(xué)了許多知識放方法,可以說數(shù)學(xué)建模需要的知識我們都了解了一點,關(guān)鍵在于如何應(yīng)用這些知識。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。

          隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊員他們建模完全依靠找資料,建出來的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過的東西,連一點改進(jìn)也沒有。如果這樣的.話,數(shù)學(xué)建模就失去了意義。我始終堅持一個觀點:數(shù)學(xué)建模最重要的是創(chuàng)新。無論是你創(chuàng)造一種新方法還是創(chuàng)造性的運用一種方法,還是改進(jìn)別人的方法都是很重要的。沒有創(chuàng)新,模型就失去了靈魂;沒有創(chuàng)新,模型就不是你的模型。

          我們隊配合不是很理想。主要是有個隊員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點、思想思想無論正確與否,他總是會反對一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 14

          在得知20xx年全國大學(xué)生數(shù)學(xué)建模競賽中,我們隊(隊員:)獲得xxxx省賽區(qū)二等獎的時候,我并不喜出望外,反而覺得有點遺憾,有點可惜,因為我們沒有完全發(fā)揮出水平,這樣成績對我們來說并不理想。其實這也是在我的預(yù)料之中的。以下是我個人在這次比賽中的感受:

          在數(shù)模競賽中想獲得好成績,進(jìn)軍全國評選并非易事。首先模型要建得好,其次文本要寫得好,即敘述要簡潔,文字要流暢,邏輯嚴(yán)謹(jǐn)?梢龅竭@兩點并不容易,每個問題涉及的知識面很廣,要求有扎實的數(shù)學(xué)基礎(chǔ),需要掌握高等數(shù)學(xué),線性代數(shù),離散數(shù)學(xué),概率與數(shù)理統(tǒng)計理論,有時還要涉及物理等等方面的知識,這有賴于我們平時不懈的努力和刻苦的學(xué)習(xí)鉆研。此外,開始建立的模型并不是最優(yōu)的,需要反復(fù)修改,不斷優(yōu)化,最后才能求出最優(yōu)解。建立好數(shù)學(xué)模型后,接下來是寫文本,文本必須簡潔,讓人容易看懂,如果文本寫得不好,不能把模型正確表達(dá)出來,也不能取得好成績。因為文本在評分中占了很大的`比例,直接影響我們的論文是否能夠獲得高分。

          比賽的形式是以三人為一對的,隊員之間分工合理、科學(xué)與否直接影響比賽成績。如果能充分發(fā)揮各個隊員的優(yōu)勢,那么這是最好的。例如,文筆好的負(fù)責(zé)寫文本,數(shù)學(xué)好的負(fù)責(zé)建立模型,查資料,編程好的負(fù)責(zé)編程求解。也就是團(tuán)隊精神,在意見有分歧的時候,要顧全大局,而不要各做各的,互不謙讓,這一點無論做什么都是至關(guān)重要的。

          在這次比賽中,我們隊合作得很愉快,配合也很默契,所以我們很順利的建立了模型,并求出了模型的解。在與同學(xué)們和老師討論過程中,我們發(fā)現(xiàn)很多他們討論的問題,是我們小組討論過,并證明過不是最優(yōu)解的模型?梢哉f我們是最早建立模型的,并得出模型的解的。但我總覺得我們的文本寫得不理想,不滿意,這也沒辦法,因為我們花在第三個問題的時間太多了。以至到快要交卷的時候我們還忙于修改文本。

          我已參加過兩次比賽,兩次的成績都不錯,因此我們組比別人有優(yōu)勢,有參賽的經(jīng)驗,除外,對于做題我們都很有經(jīng)驗,知道如何去查資料,怎樣與指導(dǎo)老師討論問題,可以說,有一種居高臨下的感覺,游刃有余。

          雖然我們沒在全國上獲獎,但我們已經(jīng)盡了力,結(jié)果如何,都無怨無悔。最后我要感謝廣州大學(xué)給我們提供這么一個參賽的機(jī)會,學(xué)校為了這次比賽,準(zhǔn)備了很多人力物力,在比賽前一個月組織參賽的學(xué)生集訓(xùn),這是我校在這次比賽中取得好成績的原因之一。很多老師為了這次比賽花了很多心血,而且在比賽的最后一天,一些老師還陪著學(xué)生一起通宵達(dá)旦,這是難能可貴的精神,我想在我們學(xué)校應(yīng)該大力發(fā)揚。預(yù)祝我校在今年的全國大學(xué)生數(shù)學(xué)建模取得更優(yōu)異的成績。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 15

          說起心得最想說的一句話就是:“年年歲歲花相似,歲歲年年人不同”,去年的時候我也參加了建模培訓(xùn),以為今年老師和去年講的差不多,覺得自己不用怎么聽就行了,反正內(nèi)容差不多,其實不然,在此期間,確實有的老師和去年講的題目一樣,可是卻發(fā)現(xiàn)去年對那些題目根本沒有真的理解,還有去年很難理解的東西今年看著比去年好理解多了,有時心里想去年要是靜下心來,說不定早理解了。今年只要愿意看,就會理解一些東西,發(fā)現(xiàn)并不是像自己想象的那樣難。有時人不是被問題的本身打敗,有時沒進(jìn)入就被自己打敗了。

          今年培訓(xùn)的時候,我們見到了不同的面孔,接觸了不同的老師,不同的風(fēng)格。我是計教班的學(xué)生,培訓(xùn)的老師有的是數(shù)教班的老師,可能要不是建模培訓(xùn),就無法一覽他們的風(fēng)采。我同學(xué)問我:“你在學(xué)校參加培訓(xùn)給你們錢不?”我說:“我們跟老師們學(xué)到了知識,我們不交錢就好了,怎么給我們錢呀?”的確,我們參加了培訓(xùn),可能失掉打工的機(jī)會,但是我不后悔,在培訓(xùn)的過程中我學(xué)到了知識,我們還沒有畢業(yè),最重要的是提高自己各方面的知識。而不應(yīng)該只看到眼前的一點利。

          在培訓(xùn)的過程中,我體驗到了友情的溫暖。那天我生病了,他們陪我一起看病,那給我力量的雙手,那關(guān)愛的眼神,那關(guān)切的話語,那每一個平凡再也不能平凡的動作。我想不僅僅是一杯水的問題,這一切在腦海里都定格了,他們都是我一生的朋友!他們都說我們是大部隊,確實,共同的興趣,共同的追求,永恒的友誼!

          總之,今年的'培訓(xùn),比去年學(xué)到了多了一點,其實學(xué)習(xí)是靠自己的,“師傅領(lǐng)進(jìn)門,關(guān)鍵是靠自己嘛!”老師只是引導(dǎo)我們,要想讓暑期培訓(xùn)的知識起到立竿見影的效果,自己可得好好的“消化”呀!不然的話會覺得用不上,不會用,消化的過程需要靜下心來。這是我從去年的和今年的培訓(xùn)中得到的。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 16

          數(shù)學(xué)建模是一門綜合性學(xué)科,圖論作為其中的一個重要分支,應(yīng)用廣泛且具有深厚的理論基礎(chǔ)。在我小組參加數(shù)學(xué)建模競賽的過程中,我親身體會到了圖論在實際問題中的巨大作用。通過圖論的方法和思想,我們成功地解決了一個復(fù)雜的實際問題,收獲頗豐。以下是我在圖論學(xué)習(xí)和實際應(yīng)用中的心得體會。

          首先,圖論的基本概念和算法是實際問題求解的有力工具。無論是網(wǎng)絡(luò)尋路問題還是最短路徑問題,圖論都為我們提供了清晰的思路。我們在競賽中遇到的一個問題是體育館座位安排問題,我們需要找到最佳的座位安排方案以滿足所有觀眾的需求。通過將座位和觀眾抽象為圖的節(jié)點,座位之間的距離抽象為圖的邊,我們就可以利用圖的最小生成樹算法求解出最佳的座位安排方案。圖論的基本概念和算法是我們解決這一問題的基礎(chǔ)。

          其次,圖論的模型可以靈活地應(yīng)用于各種實際問題。在解決座位安排問題時,我們不僅考慮到了觀眾之間的關(guān)系,還考慮到了觀眾和場館設(shè)施之間的關(guān)系。這樣的模型設(shè)計既考慮到了實際問題的復(fù)雜性,又能夠給出合理的座位安排方案。圖論的模型不僅具有很強(qiáng)的可塑性,還能夠很好地與其他數(shù)學(xué)和計算機(jī)科學(xué)的方法和算法結(jié)合使用,從而更好地解決實際問題。圖論的模型是我們解決實際問題的利器。

          此外,圖論的.思想和方法也是培養(yǎng)團(tuán)隊合作和創(chuàng)新能力的重要手段。在解決座位安排問題的過程中,我們小組成員分工合作,共同研究、討論和改進(jìn)我們的模型。每個人都充分發(fā)揮了自己的才能和特長,充分利用了圖論的思想和方法,最終取得了令人滿意的成果。通過這個過程,我們不僅鍛煉了團(tuán)隊合作的能力,還培養(yǎng)了創(chuàng)新思維和解決實際問題的能力。圖論的思想和方法是我們培養(yǎng)團(tuán)隊合作和創(chuàng)新能力的重要手段。

          最后,圖論的學(xué)習(xí)也提高了我們的數(shù)學(xué)素養(yǎng)和問題解決能力。圖論是一門具有深厚理論基礎(chǔ)的學(xué)科,它的學(xué)習(xí)對于提高我們的數(shù)學(xué)素養(yǎng)和問題解決能力非常有幫助。通過學(xué)習(xí)圖論的基本概念和算法,我們能夠更好地理解圖論模型的構(gòu)建和求解過程。通過解決實際問題,我們能夠?qū)D論的理論知識與實踐相結(jié)合,從而更好地理解和應(yīng)用圖論。圖論的學(xué)習(xí)對于提高我們的數(shù)學(xué)素養(yǎng)和問題解決能力非常重要。

          綜上所述,圖論作為數(shù)學(xué)建模的重要分支,在實際問題解決中發(fā)揮了巨大的作用。通過圖論的基本概念和算法,我們能夠更好地理解和解決實際問題。圖論的模型可以靈活地應(yīng)用于各種實際問題,幫助我們找到合理的問題解決方案。圖論的思想和方法也培養(yǎng)了我們的團(tuán)隊合作和創(chuàng)新能力。通過圖論的學(xué)習(xí),我們提高了數(shù)學(xué)素養(yǎng)和問題解決能力。圖論的學(xué)習(xí)和應(yīng)用給我留下了深刻的印象,也讓我深切地感受到了數(shù)學(xué)的魅力。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 17

          我們是xx屆級專升本的學(xué)生,以前還是?频臅r候,在數(shù)學(xué)系曾兩次參加過數(shù)學(xué)建模?平M競賽。去年九月份,是我們專升本學(xué)生從數(shù)學(xué)系升本考到計算機(jī)系第一個學(xué)期,我很榮幸能代表計算機(jī)系去參加2004年的高教杯全國大學(xué)生數(shù)學(xué)建模本科組的競賽。

          我們隊共有三個隊員,陳曉聰、劉啟銘和蔡漢釣,指導(dǎo)老師是鐘育彬老師。雖說盡力了,但有點遺憾,只取得省級的二等獎而不能進(jìn)入國家獎的評選,究其原因,但還是從中獲益匪淺,積累了不少的經(jīng)驗和教訓(xùn)。

          同我們參加過的?平M的競賽相比,此次的競賽對于我們而言從各方面都上了一個臺階。

          首先是比賽的組織方面,同?茣r的賽前準(zhǔn)備相比,我們本次競賽的賽前準(zhǔn)備經(jīng)歷了二十天的高強(qiáng)度封閉式訓(xùn)練,此外,還舉行了一次比較正規(guī)的模擬競賽,讓同學(xué)們能提早進(jìn)入比賽的的狀態(tài),學(xué)校對于此次比賽也是比較重視的,不僅提供了比較好的訓(xùn)練環(huán)境和上機(jī)環(huán)境,使大家可以在一起討論,交談經(jīng)驗,又可通過上網(wǎng)搜集相關(guān)資料,而且每天均有特派的老師對我們進(jìn)行輔導(dǎo),解答疑問,使我們的訓(xùn)練的效果明顯上了一個臺階,為競賽取得好成績打下基礎(chǔ)。

          其次,是模型的難度和對設(shè)計的要求。記得我們在專科組完成的題目,一個是“足球的最優(yōu)賽程安排”,另一個是“搶渡長江”,都是基于生活中常識的應(yīng)用性問題,或者是涉及相對簡單的運算和優(yōu)化問題,難度一般不是很大,參賽者的答案也基本都能接近于正確,比的是參賽者誰的模型優(yōu)化得更合理,更簡化易懂,更加實用。我們通常能于開始競賽后的第三天中午就完成模型的建立和寫出文本的初稿,剩余時間就是用于處理模型的一些細(xì)節(jié)問題和文本的改進(jìn)問題,時間相對比較充裕。去年我們完成的題目是“奧運會臨時超市網(wǎng)點設(shè)計優(yōu)化模型”,涉及到大規(guī)模的應(yīng)用模型的設(shè)計和優(yōu)化問題,難度較大,涉及學(xué)識的范圍也不僅僅只是數(shù)學(xué)和計算領(lǐng)域,而且是其它眾多的綜合性知識,即使有三天的.建模時間,也總發(fā)覺模型尚有許多改進(jìn)的地方,在時間上都會覺得比較趕,由于此次競賽中我們在建立模型和撰寫文本上分配的時間不合理,分析和建;ㄙM了幾乎全部的時間,文本的編寫及完善方面就顯得不怎么規(guī)范。

          最后,是個人能力的提高。通過參加數(shù)模競賽,參賽者的邏輯分析能力和創(chuàng)新思維能力得到鍛練,動手能力得到明顯的提高;培養(yǎng)了認(rèn)真鉆研的態(tài)度和堅持不懈的精神,這是解決一切難題的關(guān)鍵;培養(yǎng)了團(tuán)隊合作精神和實干的精神,能與各隊員之間配合得較好,合理的分工協(xié)作,互相交流,取長補短,從實干中去尋求解決問題的方法。

          很感謝學(xué)校提供給我們一個這么寶貴的參賽機(jī)會,此次的競賽,我們隊員及指導(dǎo)老師鐘老師都已盡力,結(jié)果并不重要,重要的是我們須在此次競賽中總結(jié)經(jīng)驗和教訓(xùn),為下一次競賽積極作準(zhǔn)備,打開堅實的基礎(chǔ),希望我們在下次的數(shù)學(xué)建模競賽中能取得好的成績。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 18

          技能大賽是我國教育系統(tǒng)的一項重要活動,旨在發(fā)掘和培養(yǎng)學(xué)生的實際操作能力和綜合素質(zhì)。作為一名高中學(xué)生,我有幸參加了今年的技能大賽。在這次比賽中,我不僅學(xué)到了很多知識和技能,還獲得了寶貴的經(jīng)驗,并對自己的未來職業(yè)規(guī)劃有了更深入的思考。

          一、賽事準(zhǔn)備過程。

          參加技能大賽是一項龐大的工程,需要提前進(jìn)行全面的準(zhǔn)備工作。在賽事開始前,我首先了解了比賽的具體要求和規(guī)則,并針對比賽內(nèi)容制定了詳細(xì)的學(xué)習(xí)和練習(xí)計劃。我參加的是機(jī)械制造與自動化技能大賽,為了提高自己的技能水平,我加入了學(xué)校的相關(guān)社團(tuán),參與了許多與比賽相關(guān)的實踐活動。我還利用課余時間進(jìn)行自主學(xué)習(xí),通過閱讀專業(yè)書籍和網(wǎng)上資料,不斷提升自己的專業(yè)知識。

          二、比賽過程及成果。

          在技能大賽當(dāng)天,我緊張而充滿期待地參加了比賽。比賽以模擬實際工作場景的方式進(jìn)行,除了機(jī)械制造方面的操作技能,還考察了我們的`團(tuán)隊協(xié)作能力和應(yīng)對復(fù)雜情況的能力。在比賽過程中,我和我的隊友緊密合作,互相支持,共同解決了各種困難和挑戰(zhàn)。最終,我們成功完成了比賽任務(wù),并取得了優(yōu)異的成績。這次比賽不僅鍛煉了我們的技能,也培養(yǎng)了我們的團(tuán)隊精神和合作意識。

          通過參加技能大賽,我收獲了很多。首先,我學(xué)到了更多的專業(yè)知識和實際操作技能,這些對于我未來的學(xué)習(xí)和職業(yè)發(fā)展都大有裨益。其次,我也認(rèn)識到了自己的不足之處,在比賽過程中遇到的問題讓我反思自己的能力和知識儲備,激發(fā)了我更加努力學(xué)習(xí)的動力。此外,我還結(jié)交了許多志同道合的朋友,在與他們的交流交流中,我拓寬了視野,增強(qiáng)了自信心。更重要的是,參加技能大賽讓我意識到了自己對于某一領(lǐng)域的熱愛和潛力,這對于我未來的職業(yè)規(guī)劃具有重要的指導(dǎo)意義。

          三、展望與反思。

          通過參加技能大賽,我對于自己的未來職業(yè)規(guī)劃有了更具體的想法。我決定在高中畢業(yè)后繼續(xù)深造機(jī)械制造與自動化專業(yè),并爭取參加更高層次的技能競賽或賽事。同時,我也明白了技能比賽不僅僅是為了榮譽和獎項,更是為了提升自身能力和素質(zhì)。我將不斷努力學(xué)習(xí),不斷提高自己的技能水平,為實現(xiàn)自己的職業(yè)夢想做出更大的努力。

          技能大賽是我成長過程中的一次寶貴經(jīng)歷。通過參加這次比賽,我提高了專業(yè)知識和實際操作技能,增強(qiáng)了團(tuán)隊協(xié)作能力,增添了自信心,并對未來的職業(yè)規(guī)劃有了更明確的方向。我相信,只要不斷學(xué)習(xí)和努力,我一定能夠取得更好的成績和更廣闊的發(fā)展空間。

          數(shù)學(xué)建模學(xué)習(xí)心得體會 19

          數(shù)學(xué)建模作為一門綜合性學(xué)科,具有廣泛的應(yīng)用領(lǐng)域和深遠(yuǎn)的影響,對于提高解決實際問題的能力和培養(yǎng)創(chuàng)新思維具有重要意義。通過參與數(shù)學(xué)建模比賽和項目,我深刻地認(rèn)識到數(shù)學(xué)建模的重要性,也積累了一些心得體會。下面我將結(jié)合個人經(jīng)歷,談?wù)勎以跀?shù)學(xué)建模過程中的心得體會。

          一、明確問題與方法。

          在進(jìn)行數(shù)學(xué)建模之前,首先要明確問題的面貌和要解決的目標(biāo),然后選擇適合的方法進(jìn)行分析和求解。在這個過程中,我們要善于抓住問題的關(guān)鍵點,理清問題與已有知識的聯(lián)系,避免偏離主題和走入死胡同。同時,我們也要善于借鑒已有的數(shù)學(xué)工具和模型,不斷開拓創(chuàng)新。

          在一次模擬城市交通擁堵的建模比賽中,我意識到對于這個復(fù)雜的問題,單純的數(shù)學(xué)模型是遠(yuǎn)遠(yuǎn)不夠的。所以,我結(jié)合地理信息系統(tǒng)(GIS)和傳感器技術(shù),將城市道路分隔成小區(qū)域,通過收集實時的交通數(shù)據(jù),建立起更為精確和實用的交通擁堵模型。這一方法不僅使得模型具有了更高的可靠性和準(zhǔn)確度,也增加了我們對解決問題的信心。

          二、合理假設(shè)與模型構(gòu)建。

          在進(jìn)行數(shù)學(xué)建模時,我們往往需要根據(jù)實際情況進(jìn)行一些合理的假設(shè),以簡化復(fù)雜的問題和推動建模的進(jìn)程。但是,這些假設(shè)必須是合理和可行的,不能過于片面或離實際太遠(yuǎn)。同時,在構(gòu)建模型時,我們也要盡量選用簡單而有力的數(shù)學(xué)工具,以便于計算和分析。

          在解決一個涉及醫(yī)學(xué)影像分析的問題時,我們需要對醫(yī)學(xué)影像進(jìn)行處理和分析,還要設(shè)計出一個能夠自動識別和分析影像的數(shù)學(xué)模型。我所參與的團(tuán)隊深入了解醫(yī)學(xué)影像學(xué),分析了不同的影像特征,并基于傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型構(gòu)建了一個高效的醫(yī)學(xué)影像分析模型。在模型的構(gòu)建過程中,我們注意了計算和實施的可行性,將模型的復(fù)雜度降低到合理的范圍內(nèi),并采用了一些有效的算法來提高模型的精確性和準(zhǔn)確度。

          三、數(shù)據(jù)分析與結(jié)果驗證。

          在數(shù)學(xué)建模中,數(shù)據(jù)的分析和結(jié)果的驗證是非常重要的環(huán)節(jié)。通過對數(shù)據(jù)的分析,我們可以揭示問題的本質(zhì)和規(guī)律,進(jìn)而得出解決問題的方法和結(jié)論。而結(jié)果的驗證則是模型可靠性和精確性的檢驗,也是對我們解決問題的能力和方法的評判。

          在一次銀行信用評估的建模過程中,我們基于大量的歷史交易數(shù)據(jù),通過建立一套信用評估模型,對客戶的信用情況進(jìn)行分析和預(yù)測。在對模型進(jìn)行驗證時,我們通過對部分客戶進(jìn)行篩選和測試,對比模型預(yù)測的結(jié)果與實際情況,發(fā)現(xiàn)模型的準(zhǔn)確度達(dá)到了90%以上。這使我們對模型的有效性和可靠性有了更加深刻的'認(rèn)識,并為進(jìn)一步完善和推廣模型提供了依據(jù)。

          四、團(tuán)隊合作與學(xué)習(xí)。

          數(shù)學(xué)建模不僅僅是一個人的事情,更是一個團(tuán)隊的合作。通過和其他隊員的合作,我們可以相互學(xué)習(xí)和借鑒彼此的經(jīng)驗和思維模式,在解決實際問題的過程中形成協(xié)同效應(yīng)。同時,團(tuán)隊合作也是一個學(xué)習(xí)的過程,通過和隊友的交流和探討,我們可以不斷拓寬思維,并且從對方身上學(xué)到更多的知識和技能。

          在一次研究森林生態(tài)系統(tǒng)的建模項目中,我和團(tuán)隊成員們共同制定了研究方案和實驗設(shè)計,并分工協(xié)作。通過團(tuán)隊的合作,我們不斷從實驗數(shù)據(jù)中總結(jié)經(jīng)驗,進(jìn)行模型驗證和修正,并最終成功地建立了一個能夠模擬和預(yù)測森林生態(tài)系統(tǒng)變化的多元模型。這個成功的案例不僅使我們對數(shù)學(xué)建模有了更深入的認(rèn)識,也讓我們領(lǐng)悟到團(tuán)隊合作的重要性和價值。

          五、不斷學(xué)習(xí)和總結(jié)。

          在數(shù)學(xué)建模的過程中,我們要不斷學(xué)習(xí)和總結(jié),積累經(jīng)驗和提高能力。只有不斷的學(xué)習(xí)和實踐,我們才能夠更好地適應(yīng)和解決不同領(lǐng)域的實際問題,并在數(shù)學(xué)建模的道路上不斷成長。

          總的來說,參與數(shù)學(xué)建模是一次很有收獲和意義的經(jīng)歷。通過這次經(jīng)歷,我不僅提高了數(shù)學(xué)建模的能力和素養(yǎng),也深刻領(lǐng)悟到了科學(xué)研究的重要性和技術(shù)創(chuàng)新的意義。我相信,在未來的學(xué)習(xí)和工作中,我會更加努力地學(xué)習(xí)和實踐,用數(shù)學(xué)的力量為解決實際問題做出更大的貢獻(xiàn)。

        【數(shù)學(xué)建模學(xué)習(xí)心得體會】相關(guān)文章:

        數(shù)學(xué)建模學(xué)習(xí)心得體會02-06

        數(shù)學(xué)建模的學(xué)習(xí)心得體會04-01

        數(shù)學(xué)建模學(xué)習(xí)心得05-03

        數(shù)學(xué)建模學(xué)習(xí)心得體會9篇02-06

        數(shù)學(xué)建模學(xué)習(xí)心得體會(精選16篇)01-13

        數(shù)學(xué)建模學(xué)習(xí)心得體會(9篇)02-06

        數(shù)學(xué)建模論文07-06

        數(shù)學(xué)建模論文范本01-01

        數(shù)學(xué)建模論文模板02-12

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>