高中數學的學習方法
在平平淡淡的學習、工作、生活中,大家都在努力,勤奮的學習,想要高效的學習,就一定要掌握正確的學習方法!想要找到正確的學習方法?以下是小編收集整理的高中數學的學習方法,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學的學習方法 篇1
數學是一門講理的學科,具有很強的邏輯性。初中、高中學習的數學都叫做初等數學,是高等數學的基礎。而相對于初中數學來說,高中數學明顯難了很多。因此,很多原本在初中數學成績很好的同學,到了高中就感到吃力了。針對高中數學特點,我特意總結了兩大要素,供同學們參考。
第一大要素:圖是高中數學的生命線圖是初等數學的生命線,能不能用圖支撐思維活動是能否學好初等數學的關鍵。無論是幾何還是代數,拿到題的第一件事都應該是畫圖。有的時候,一些簡單題只要把圖畫出來,答案就直接出來了。遇到難題時就更應該畫圖,圖可以清楚地呈現出已知條件。而且解難題時至少一問畫一個圖,這樣看起來清晰,做題的時候也好捋順思路。首先要在腦中有畫圖的意識,形成條件反射,拿到一道數學題就先畫圖。而且要有用圖的意識,畫了圖而不用,等于沒畫。有了畫圖、用圖的意識后,要具備畫圖的技能。有人說,畫圖還不簡單啊,學數學有誰不會畫圖啊。還真不要小看這一點。很多同學畫圖沒有好習慣,不會用畫圖工具。圓規、尺子不會用,畫出圖來非常難看。不是要求大家把圖畫的多漂亮,而是清晰、干凈、準確,這樣才會對做題有幫助。改正一下自己在畫圖時的一些壞習慣,就能提高畫圖的能力。最重要的,也是高中生最需要培養的就是解圖能力。就是根據給定圖形能否提煉出更多有用信息;反之亦然,根據已知條件能否畫出準確圖形,F在高考中會出現數學實驗題,這是新課標的產物,就是為了考驗學生的綜合能力。題雖然新,但只要細心分析就會發現,其實解題運用的知識都是你學過的。高考題是非常嚴謹的,出題不可能超出教學大綱。
第二大要素:考后總結老師、家長在學生考試后總是關注學生成績于上一次考試比有怎樣的區別。學生們也總是在沒考好時找各種理由,無論是為了安慰自己還是安慰老師和家長。家長們在看到孩子成績下降后不要過分緊張,只要讓學生養成一個很好的考試習慣,不愁成績上不去。學生在考試后應該總結以下三個問題:
第一,這次考試中有什么優點值得表揚。這是自我肯定的過程,太多的人讓學生總結丟分原因了,卻忽略了除了丟的分,學生還得到了很多分呢。學生要客觀分析得分情況,哪些分是靠自己扎實的知識和解題的技巧輕松拿到手的;哪些分是腦中有大概印象再加一點運氣成分拿到手的。不管是怎樣拿到的,只要是得分了,就值得表揚。
第二,自己還有哪方面問題。在肯定自己優點的時候要客觀,分析問題的`時候更要客觀。很多學生喜歡說一句話“我馬虎了,不小心算錯了!蔽蚁嘈,這是實話,但是同學們有沒有想過為什么馬虎?其實究其根源是計算能力不過關。這是小學算術沒學好,我沒有辦法。計算也是一種能力,需要學生反復訓練才能得到的一種能力。發現問題,針對自己的問題制定相應訓練,防止下一次考試時再在同一個問題上丟分。
第三,總結心理。心理因素也是影響考試成績的一部分,例如此次考試是全年級打亂順序,學生坐在陌生的教室中考試感到緊張,這就有可能影響考試的發揮。這種問題不是發現后短時間就能解決的。要知道,高考時不止是打亂班級順序的問題了,你可能到一個你根本沒去過的學校參加考試,身邊的坐的同學是你認識的可能性幾乎為零。所以,學生要學會自我調整,不要讓這些客觀外在條件影響考試水平的發揮。還是那句話,數學是講理的學科,做完題后想一想,你這樣做是不是有道理。數學有三種表現形式,漢語言文字、符號語言和圖形。如果能把數學的這三中表現形式在思維中統一起來,那就說明在你腦海中已經形成了數學思維。在學習數學的過程中要學會聽、看、畫、寫、算,充分利用各種感官,架構數學思維,才能夠學好高中數學。
高中數學的學習方法 篇2
一、基本知識
1.定義:
(1) .數列:按一定次序排序的一列數
(2) 等差數列:一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,則這個數列叫做等差數列
等比數列:一般地,如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,則這個數列叫做等比數列
寫作素材--美句仿寫
1.太陽無語,卻放射出光輝;高山無語,卻體現出巍峨。
藍天無語,卻顯露出高遠;大地無語,卻展示出廣博。
鮮花無語,卻散發出芬芳;青春無語,卻散發出活力。
2.什么樣的年齡最理想?鮮花說,開放的年齡千枝競秀。
什么樣的青春最輝煌?太陽說,燃燒的青春一片光芒。
什么樣的心靈最明亮?月亮說,純潔的心靈晶瑩透亮。
什么樣的人生最美好?海燕說,奮斗的人生快樂無窮。
3.我夢想:來到塞外的大漠,在夕陽的金黃中感受“長河落日圓”的壯麗。
我夢想:來到海邊的沙灘,從波濤的澎湃中感受“亂石穿空,驚濤拍岸,卷起千堆雪”的驚心動魄。
我夢想:來到白雪皚皚的高山,在朝陽的艷麗中,領略“紅裝素裹”的分外妖嬈。
4.幸福是“臨行密密縫,意恐遲遲歸”的牽掛;
幸福是“春種一粒粟,秋收千顆子”的收獲;
幸福是“采菊東籬下,悠然見南山”的閑適;
幸福是“不畏浮云遮望眼,只緣身在最高層”的追求。
5.書是我的精神食糧,它重塑了我的靈魂。
簡愛說過:“我們是平等的,我不是無感情的機器”,我懂得了作為女性的自尊。
白朗寧說過:“拿走愛,世界將變成一座墳墓”,我懂得了為他人奉獻愛心是多么重要。
裴多菲說過:“生命誠可貴,愛情價更高。若為自由故,二者皆可拋”,我懂得了自由的價值。
魯迅說過:“不在沉默中爆發,就在沉默中滅亡”,我懂得了反抗精神的可貴。
每讀完一本書,我就完成了一次生命的感悟。
6.幸福是貧困中相濡以沫的一塊糕餅,
幸福是患難中心心相印的一個眼神;
幸福是父親一次粗糙的`撫摸,
幸福是朋友一個溫馨的字條;
幸福是母親一聲溫柔的叮嚀,
幸福是老師一次親切的問候。
7.愛心是冬日里的一片陽光,使饑寒交迫的人分外感到人間的溫暖。
愛心是沙漠中的一泓泉水,使瀕臨絕境的人重新看到生活的希望。
愛心是夜空中的一輪明月,使孤苦無依的人即刻獲得心靈的慰藉。
愛心是春天里的一場細雨,使心靈枯萎的人特別感到情感的滋潤。
愛心是夏日里的一陣清風,使心急如焚的人感到無比的涼爽。
愛心是黑夜里的一座燈塔,使迷失方向的航船找到?康母蹫。
8.假如生命是一株小草,我愿為春天獻上一點嫩綠。
假如生命是一棵大樹,我愿為大地(夏日)撒下一片綠陰(陰涼);
假如生命是一朵鮮花,我愿為世界奉上一縷馨香;
假如生命是一枚果實,我愿為人間留下一絲甘甜。
9.生命真是一個奇跡。
一枝從污泥里長出的夏荷,竟開出雪一樣潔白純凈的花兒;
一粒細細黑黑的螢火蟲,竟能在茫茫黑夜里發出星星般閃亮的光。
一株微不足道的小草,竟開出像海洋一樣湛藍的花;
一只毫不起眼的鳥兒,竟能在枝頭唱出遠勝小提琴的夜曲;
一條柔軟無骨的蚯蚓,居然能在堅實的土地里如魚在海中似的自由遨游。
10.大自然能給我們許多啟示:
滴水可以穿石,是在告訴我們做事應持之以恒;
大地能載萬物,是在告訴我們求學要廣讀博覽;
青松不懼風雪,是在告訴我們做人要堅毅剛強;
成熟的稻穗低著頭,那是在啟示我們要謙虛;
一群螞蟻抬走骨頭,那是在啟示我們要齊心協力。
11.人們都愛秋天,愛她的天高氣爽,愛她的云淡日麗,愛她的香飄四野。
人們都愛蓮花,愛她的亭亭玉立,愛她的不蔓不枝,愛她的香遠益清。
人們都愛春天,愛她的風和日麗,愛她的花紅柳綠,愛她的雨潤萬物。
12.古往今來,大凡有所建樹者。無不是臨淵之后退而結網者。
如果哥倫布只是“臨淵羨魚”,而不去辟風斬浪,揚帆遠航,他又怎么會有發現新大陸的壯舉?
如果哥白尼只是“臨淵羨魚”,而不去苦心觀測,創立新說,他又怎么會寫出《天體運行》這部巨著?
如果只是 “臨淵羨魚”,而不去開通絲綢之路,張騫怎會有通西域那鞍前的瀟灑?
如果只是“臨淵羨魚”,而不去開辟海上航線,鑒真又怎么會東海那水上風流?
高中數學的學習方法 篇3
關鍵詞:高中;數學;方法
高中階段是學生學習的關鍵時期,這是培養學生良好學習習慣和正確學習方法的重要時期。高中階段的學習一改初中學習的模式,重在學生學習方法的培養。很多在初中學習還不錯的學生到高中時期卻出現學習成績下滑,首先一個重要的標志就是數學成績的下降。這主要是因為很多學生還不能轉變初中的學習思維,不了解高中數學的特點,因此經常事倍功半。因此,要想學好高中數學,必須改變固有的思維,從方法上找原因。
一、了解高中數學的特點,從而轉變思維認知
1.數學概念與語言的抽象化
進入高中階段后,很多學生表現出明顯的不適應,他們很多反映高中數學過于復雜,理解起來很困難。的確,高中數學與初中數學相比,在概念的定義上和語言的描述上都更具有抽象性和專業化。初中數學以形象化的描述為主,而高中數學則是側重于對學生邏輯思維能力和數學方法的探究,因此在表達和定義上更具有專業性特點。
2.思維方法和邏輯能力的培養
在小學和初中階段,是打好數學基礎的階段,因此,這一階段著重對學生數學興趣的激發。在解題方法上,多是有著明晰的步驟,每道題都具有統一的解題方法,比如因式分解題,應該先看什么再看什么,都有著明確的步驟規定,學生只要掌握步驟即可。因此,初中的學習模式基本上是固定的,而高中數學則徹底改變了這一模式,它對學生的思維能力和邏輯能力有著非常高的要求,要求學生能夠創新思維,運用適當的數學方法解題,重在對學生數學能力的培養。
二、養成良好的數學學習方法和習慣
1.依賴心理
很多學生上高中后學習成績下滑,很大程度上是因為在高中以前養成的依賴心理。首先,是對教師的依賴。初中時期數學課都是教師傳授解題方法,學生只要按部就班學好現成的就可以取得很好的成績;其次,是對家長的依賴。很多家長都會在家給孩子輔導,幫助他們解決難題。因此,這些因素都導致了學生產生很強的依賴心理,把這種心理帶到高中學習中,依靠著他們推動著自己學習,而不會主動地去獲取知識,這樣自然導致成績的下滑。
2.思想誤區
很多學生對高中學習在思想上有個誤區,就是普遍認為高一高二不重要,只要高三努力了就可以考上好大學。其實,這種思想是初中以來形成的,由于我們國家采取義務教育,使得很多學生都能輕易地考上高中,但是高中學習并不是如此,目前我們國家的高等教育還未完全普及,大學教育仍然具有很強的選擇性,因此,只有一部分成績優秀的學生才能上得了好大學。而很多高中生并未認識到這種情況,等到高三才努力為時已晚。
3.學不得法
高中數學的學習重在培養學生的思維方法和數學能力,很多學生學習下降在很大方面是由于學習方法不當。教師上課一般都會引導學生學習概念,講析概念的來龍去脈,剖析重點、難點,這就使學生養成了依賴心理,只注重記筆記,而沒有聽教師在講什么。因此導致在課后不能完全消化課堂知識,只能根據概念硬寫作業,這樣必然導致數學的學習效率不高。
三、運用科學的方法學習數學
好的學習方法和學習習慣經常能夠事半功倍,數學學習就是
如此,有的學生花了很多時間和精力,可還是不能提高數學成績,而有的學生輕而易舉就能獲取高分,究其原因在于科學的學習方
法。只有養成一個科學的學習方法,才能把數學知識學以致用。
1.培養科學的數學學習習慣
數學的學習不僅要靠努力,還要有一套科學的學習方法。所謂的科學學習方法,指的是學生能夠把握數學學科的.特點,根據自身的學習情況和思維能力,探索出一套適合自己學習的方法,從而形成自己的學習習慣。良好的數學學習習慣包括學習時間的計劃、課前預習與課后復習、上課專心、獨立完成做作業、虛心請教等,這些良好習慣的培養可以有效提高數學學習成績。
2.循序漸進,切勿急躁
在數學學習中經常會有學生抱怨數學成績見效太慢,自己花了那么長時間卻收效甚微,甚至開始懷疑自己的能力;而有的學生容易大喜大悲,取得一點成績便沾沾自喜,遭遇挫折便灰心喪氣,這種情緒的波動十分不利于數學的學習。其實,數學的學習是項長期的工程,不能盲目追求速度,更不能因為一時的成敗就盲目否定自己。只要大家端正態度,遵循數學學習的方法特點,注重夯實數學基礎,拓展數學思維,就能夠取得良好的數學成績。
綜上所述,高中數學學習重在培養學生思維邏輯能力,側重對學生學習方法的引導,學生只有根據自己的實際情況,選擇適合自己的學習方法,靈活掌握數學知識,做到學以致用,才能使數學學習變得輕而易舉。
高中數學的學習方法 篇4
制定計劃和奮斗目標
復習數學時,要制定好計劃,不但要有本學期大的規劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,如按照老師的復習進度,今天復習到什么知識點,就應該在今天之內掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側面、不同角度。
在每天的復習計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當天講了什么知識,歸納當天所學的知識。可以說,每天的習題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。
嚴防題海戰術
做習題是為了鞏固知識、提高應變能力、思維能力、計算能力。學數學要做一定量的習題,但學數學并不等于做題,在各種考試題中,有相當的習題是靠簡單的.知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過做一定量的習題達到對解題方法的展移而實現的,但,隨著高考的改革,高考已把考查的重點放在創造型、能力型的考查上。
因此要精做習題,注意知識的理解和靈活應用,當你做完一道習題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?實現問題的完全解決我應用了怎樣的解題策略?只有這樣才會培養自己的悟性與創造性,開發其創造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學的方法解決它。
歸納數學大思維
數學學習其主要的目的是為了培養我們的創造性,培養我們處理事情、解決問題的能力,因此,對處理數學問題時的大策略、大思維的掌握顯得特別重要,在平時的學習時應注重歸納它。在平時聽課時,一個明知的學生,應該聽老師對該題目的分析和歸納。但還有不少學生,不注意教師的分析,往往沉靜在老師講解的每一步計算、每一步推證過程。
聽課是認真,但費力,聽完后是滿腦子的計算過程,支離破碎。老師的分析是引導學生思考,啟發學生自己設計出處理這些問題的大策略、大思維。當教師解答習題時,學生要用自己的計算和推理已經知道老師要干什么。另外,當題目的答案給出時,并不代表問題的解答完畢,還要花一定的時間認真總結、歸納理解記憶。要把這些解題策略全部納入自己的腦海成為永久地記憶,變為自己解決這一類型問題的經驗和技能。同時也解決了學生中會聽課而不會做題目的壞毛病。
積累考試經驗
本學期每月初都有大的考試,加之每單元的單元測驗和模擬考試有十幾次,抓住這些機會,積累一定的考試經驗,掌握一定的考試技巧,使自己應有的水平在考試中得到充分的發揮。其實,考試是單兵作戰,它是考驗一個人的承受能力、接受能力、解決問題等綜合能力的戰場。這些能力的只有在平時的考試中得到培養和訓練。
高中數學的學習方法 篇5
1、首先是精選題目,做到少而精。
只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2、其次是分析題目。
解答任何一個數學題目之前,都要先進行分析。相對于比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。
3、最后,題目總結。
解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:
、僭谥R方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。
、苣懿荒軞w納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。
高中數學導數的定義,公式及應用總結
導數的定義:
當自變量的'增量Δx=x-x0,Δx→0時函數增量Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數f在x0點可導,稱之為f在x0點的導數(或變化率)、
函數y=f(x)在x0點的導數f'(x0)的幾何意義:表示函數曲線在P0[x0,f(x0)]點的切線斜率(導數的幾何意義是該函數曲線在這一點上的切線斜率)。
一般地,我們得出用函數的導數來判斷函數的增減性(單調性)的法則:設y=f(x )在(a,b)內可導。如果在(a,b)內,f'(x)>0,則f(x)在這個區間是單調增加的(該點切線斜率增大,函數曲線變得“陡峭”,呈上升狀)。如果在(a,b)內,f'(x)<0,則f(x)在這個區間是單調減小的。所以,當f'(x)=0時,y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值
求導數的步驟:
求函數y=f(x)在x0處導數的步驟:
①求函數的增量Δy=f(x0+Δx)-f(x0)
、谇笃骄兓
③取極限,得導數。
導數公式:
、 C'=0(C為常數函數);
② (x^n)'= nx^(n-1) (n∈Q___);熟記1/X的導數;
③ (sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (x<1) xlna="">0,那么函數y=f(x)在這個區間內單調遞增;如果f'(x)<0,那么函數y=f(x)在這個區間內單調遞減,="">0是f(x)在此區間上為增函數的充分條件,而不是必要條件,如f(x)=x3在R內是增函數,但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數,解題時就必須寫f'(x)≥0。
(2)求函數單調區間的步驟(不要按圖索驥緣木求魚這樣創新何言?1、定義最基礎求法2、復合函數單調性)
、俅_定f(x)的定義域;
②求導數;
、塾(或)解出相應的x的范圍、當f'(x)>0時,f(x)在相應區間上是增函數;當f'(x)<0時,f(x)在相應區間上是減函數。--0,那么函數y=f(x)在這個區間內單調遞減.-->--1)-->
2、函數的極值
(1)函數的極值的判定
、偃绻趦蓚确栂嗤瑒t不是f(x)的極值點;
、谌绻诟浇淖笥覀确柌煌,那么,是極大值或極小值、
3、求函數極值的步驟
、俅_定函數的定義域;
、谇髮担
、墼诙x域內求出所有的駐點與導數不存在的點,即求方程及的所有實根;④檢查在駐點左右的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值、
4、函數的最值
(1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內一點處取得的,顯然這個最大值(或最小值)同時是個極大值(或極小值),它是f(x)在(a,b)內所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點a或b處取得,極值與最值是兩個不同的概念;
(2)求f(x)在[a,b]上的最大值與最小值的步驟①求f(x)在(a,b)內的極值;②將f(x)的各極值與f(a),f(b)比較,其中最大的一個是最大值,最小的一個是最小值。
高中數學的學習方法 篇6
一、“棄重求輕”,培養興趣:女生數學能力的下降,環境因素及心理因素不容忽視。目前社會、家庭、學校對學生的期望值普遍過高。而女生性格較為文靜、內向,心理承受能力較差,加上數學學科難度大,因此導致她們的數學學習興趣淡化,能力下降。
二、“笨鳥先飛”,強化預習:要提高課堂學習過程中的數學能力,課前的預習至關重要。教學中,要有針對性地指導女生課前的預習,可以編制預習提綱,對抽象的概念、邏輯性較強的推理、空間想象能力及數形結合能力要求較高的內容,要求通過預習有一定的了解,便于聽課時有的放矢,易于突破難點。認真預習,還可以改變心理狀態,變被動學習為主動參與。
三、“開門造車”,注重方法。
教師要指導女生“開門造車”,讓她們暴露學習中的問題,有針對地指導聽課,強化雙基訓練,對綜合能力要求較高的'問題,指導她們學會利用等價轉換、類比、化歸等數學思想,將問題轉化為若干基礎問題,還可以組織她們學習他人成功的經驗,改進學習方法,逐步提高能力。
四、“揚長補短”,增加自信:教學中要注意發揮女生的長處,增加其自信心,使其有正視挫折的勇氣和戰勝困難的決心。特別要針對女生的弱點進行教學,多講通解通法和常用技巧,注意速度訓練,分析問題既要“由因導果”,也要“執果索因”,暴露過程,激活思維;注重數形結合,適當增加直觀教學,訓練作圖能力,培養想象力;揭示實際問題的空間形式和數量關系,培養“建!蹦芰。
高中數學的學習方法 篇7
現代數學上的三大難題:
一是有20棵樹,每行四棵,古羅馬、古希臘在16世紀就完成了16行的排列,18世紀高斯猜想能排18行,19世紀美國勞埃德完成此猜想,20世紀末兩位電子計算機高手完成20行紀錄,跨入21世紀還會有新突破嗎?
二是相鄰兩國不同著一色,任一地圖著色最少可用幾色完成著色?五色已證出,四色至今僅美國阿佩爾和哈肯,羅列了很多圖譜,通過電子計算機逐一理論完成,全面的邏輯的人工推理證明尚待有志者。
三是任三人中可證必有兩人同性,任六人中必有三人互相認識或互相不認識(認識用紅線連,不認識用藍線連,即六質點中二色線連必出現單色三角形)。近年來國際奧林匹克數學競賽也圍繞此類熱點題型遴選后備攻堅力量。(如十七個科學家討論三課題,兩兩討論一個題,證至少三個科學家討論同一題;十八個點用兩色連必出現單色四邊形;兩色連六個點必出現兩個單色三角形,等等。)單色三角形研究中,尤以不出現單色三角形的極值圖譜的研究更是難點中之難點,熱門中之熱門。
歸納為20棵樹植樹問題,四色繪地圖問題,單色三角形問題。通稱現代數學三大難題。
高中數學成績下降是什么原因
智者形容數學:“思維的體操,智慧的火花”!白钅芸疾旎蝌炞C一個人具備智慧多少的一門學問或學科”!在當今知識經濟時代,數學正在從幕后走向臺前,它與計算機技術的結合在許多方面直接為社會創造價值,推動了社會生產力的發展。數學是人類文化的重要組成部分之一,它已成為公民所必須具備的一種基本素質。數學在形成人類理性思維的過程中發揮著獨特的、不可替代的作用。于是呼,沖刺高考時選學理者多多,且發誓要用數學拉動高考總成績者眾多?上部少R!作為衡量一個人能力的重要學科---數學。從小學到,對它情有獨鐘的大有人在,且大都投入了大量的時間與精力.然而我們也不能忽視另一種事實:并非人人都是成功者!許多小學、時期的數學成績佼佼者,進入高中階段,第一個跟頭就栽在了數學上。對選學文科的成功者的一項調查也表明,雖然他們高中也很想學好數學,可數學成績就是提不上來,于是折射形成了“最怕”見高中數學老師的現象。這種“懼怕”高中數學的現象目前是比較普遍的,應當引起重視。當然造成這種現象的原因是多方面的。本文僅就學生的學習狀態方面淺談一下影響高中數學成績下降的原因及解決方法面對眾多初中數學學習的成功者淪為高中學習的失敗者,筆者對他們的學習狀態進行了調研。結果表明:造成成績滑坡的主要原因有以下幾個方面.
1.被動學習.許多同學進入高中后,還像初中那樣,有很強的依賴心理:跟隨老師慣性運作。沒有掌握學習的主動權.其表現有:不定計劃,坐等上課,課前不預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”.一切的一切造成沒能真正理解所學內容的無奈表態。
2.學不得法.老師上課一般都要講述知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課不能做到專心聽講,對要點聽不清或聽不全。于是筆記記了一大本,問題留了一大堆。而課后呢,又不能及時鞏固、總結,找不到知識間的聯系,只是一味地趕做作業,亂套題型。對概念、法則、公式、定理一知半解,死記硬背的結果是一味地“機械模仿”。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套。最終是事倍功半,收效甚微.
3.不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,一貫做法是只求知道怎么做,不去認真演算書寫。其心理誘因是僅對難題感興趣,以示自己的“水平”高。這種好高鶩遠,重“量”輕“質”的做法導致的結果是陷入題海,不自拔.而到正規作業或考試中卻是演算出錯或中途“卡殼”.
4.不具備進一步學習條件.高中數學與初中數學相比,知識的廣度、深度更進一程,能力要求更進一步.這就要求必須掌握基礎知識與基本技能,為進一步學習作好充分準備.高中數學很多地方難度大、方法新、分析能力要求高.如:二次函數在閉區間上的最值問題,函數值域的求法問題,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合的應用和實際應用問題解答等.客觀上,這些問題的'能力要求就是數學學習的分化點,更何況有的數學知識點還是高、初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的.
所以,高中學生僅僅有想學的念頭是不夠的,還必須“會學”。要講究科學的學習策略和方法,以此提高學習效率,變被動學習為主動學習.針對學生學習中出現的上述情況,教師應當采取以加強學法指導為主,化解分化點為輔的對策:
1.加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面.
高中數學學習方法
編者按:小編為大家收集了“高中數學學習方法:高一升高二數學學習心得”,供大家參考,希望對大家有所幫助!
度過了貌似很輕松愉快的高一生活,我們昂首闊步來到了高二,對于數學一科,相當多的同學覺得高一階段的知識非?膳,不夸張的說高一階段的知識比整個初中的知識問題還要多。如今到了高二,是不是知識更多更難了呢?
個人認為并不是這樣的,高一階段的知識強調的是理解,而高二階段強調的是功力和技巧。差別莘不在于難度,而在于學習的側重點,可以說高二的很多知識是對高一知識的深化和拓展。舉個例子,高一階段我們學習了函數的相關性質,其中很重要的一條是單調性。高一我們對這個知識點的要求是會用“比較法”判斷單調性,還要通過對圖像的分析來對函數單調性有直觀的感受。這些都昌對函數單調性的理解。到了高二階段,文科和理科學生都要學習一樣新的工具——導數,也就是我們慶不做函數圖像,也不用“取點比較”的情況下直接判斷函數的單調性和單調區間。而這種處理單調性問題的新方法需要的就是熟練掌握技巧和扎實的基本功。
還有幾何方面,高一階段我們大多數同學學過了直線和圓,這是解析幾何的初步,相信很多同學對于解析幾何復雜的運算至今還“意猶未盡”。那么到了高二階段,我們將要學習更加復雜的三類曲線——橢圓、雙曲線、拋物線。運算上難度大大增加,圖形的復雜度也大大增加,但是就本質來說,考察的核心還是“在圖形中尋找線索,在計算中得到結果”的解題思路。另外立體幾何中還要引入空間向量的方法,實際也是把幾何問題代數化,使同學用在復雜的立體圖形中找輔助線了,當然,空間向量法帶來的運算量也是相當大的。
最后在一些小知識上也有所深化,還記得當初在學習概率的時候,我們實際沒有學習任何的計算方法,當時我們算概率的時候只能一個一個的數出來,如果題目的數稍微大一點的話我們就不得不把大量的時間浪費在數數上,在高二我們就會學到高手是怎樣數數的,也就是所謂的計數原理,到時候同學業們就會知道“乘法”比“加法”究竟能快多少。也能徹底搞清楚生活中的隨機事件里究竟蘊含了怎樣的數學原理。
總體來說,高二數學的難度比高一要大,但是如果同學們在高一的時候對知識有深入的理解的話,高二階段的知識也就只是個深化練習的過程了,這就要求同學們在高二的時候造成不要放松,這個時期是最需要大量做題,大量練習的時期,錯過了這個時期就再也沒有機會超越別人了。有人會想高三再努力也不遲,殊不知高三的時候所有好好學習的人都會拼命的做題,拼命地練習,在那時想趕超別人幾乎是不可能完成的任務。高三環境是不努力的人必然跌入谷底。努力的人也只可以保證不下降。也就是說想超過別人,走在別人前面,高二已經是最后的機會了。
對于高一階段知識掌握的不夠扎實的同學,高二也是唯一可能提高的機會了,正像上文所說,高二的知識很多是高一知識的擴展和深化,也就是說如果之前學習的時候沒有掌握好,那么高二的學習就既是學習過程又是復習過程。高中階段學習節奏之快使得一開始落后一點的同學在之后的學習過程中幾乎沒有什么時間再回過頭來重新學習,也就是說如果想補救之知識漏洞,高中階段唯一可行的辦法就是在學習中復習。比如說如果有同學函數沒有學好,沒關系,高二學習導數的時候會再回來研究函數問題:平面向量沒學好,沒關系,學習空間向量的進修也可以順帶復習;直線和圓沒學好,沒關系,圓錐曲線比圓難多了,學好圓錐曲線之后再回去看圓就輕松多了。
總之,在數學學科,如果你想超越別人,高二是最好的機會,如果你想追上別人,高二是最后的機會。我們將迎來高中整個三年中最困難,最有挑戰,也是收益最大的一年。高考中數學的重要性無庸贅述,希望同學們能在高二的時候抓住機會,為了能有一個輕松的高三,也為了能有一個滿意的高考而努力。
高中數學的學習方法 篇8
抓要點提高學習效率。
(1)抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,并將前后知識聯系起來,把握教材,才能掌握學習的'主動性。
(2)抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有針對地起來,注重實效。
(3)抓解題指導。要合理選擇簡捷的運算途徑,要根據問題的條件和要求合理地選擇運算過程,抓住問題的關鍵突破口,提高自己的學習能力。(4)抓思維訓練。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5)抓40分鐘課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄望于課下去補,則會使學習效率大打折扣了。
教授學生重要的數學思想方法
對于學生和教師來說,如果不試著從數學的形式及演算中跳出來,去掌握數學的本質內容,那么挫折就會變得更加嚴重。因此,高中數學的學習,不能滿足于盲目地在題海中奮戰,更加不能就題來論題。特別是高中階段的數學學習,要特別注重掌握數學的思想方法。那么,什么是數學思想方法?筆者認為,數學思想方法如果按層次分,可分為數學一般方法、邏輯學數學方法與數學思想方法。其中,數學一般方法主要是數學解題的具體方法及相關技能、技巧,比如高中數學里的配方法、換元法、待定系數法和判別式法等。
邏輯學數學方法主要是指數學的思維方法,主要有分析法、綜合法、歸納法和試驗法等。數學思想方法主要有函數與方程思想、化歸思想及數形結合思想等。通過對數學解題過程中最富有特色的典型智力活動進行分析和歸納,可以提煉出分析、解決數學問題的規律來,也就是要先弄清問題,再擬定解題計劃,接著實現解題計劃,最后進行回顧這四個階段。在數學教學中,教師要把好審題關、計算關及數學表達關,要求學生對概念、公式和定理等知識點進行準確記憶,并能牢固掌握,還要學會運用這些知識開展計算、證明和邏輯推理。
高中數學的學習方法 篇9
學習程度不同的學生需要不同的學習方法。
如果你正因為數學的學習狀態低迷而苦惱,請按如下要求去做:預習后,帶著問題走進課堂,能讓你的學習事半功倍;想要做出完美的作業是無知的,出錯并認 真訂正才更合理;老師要求的練習并不是“題海”,請認真完成,少動筆而能學好數學的天才即使有,也不是你;考試時,正確率和做題的速度一樣重要,但是合理 地放棄某些題目的想法能幫助你發揮正常水平。
如果你正因為數學的學習成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成 績,給自己定一個能接受的底線,定一個力所能及的奮斗目標;合理的作息時間和良好的學習習慣將有助你獲得穩定的學習成績,所以,請制定好學習計劃并努力堅 持;把很多時間投入到一個科目中去,不如把學習精力合理分配給各個學科。人對于某一知識領域的學習常出現“高原現象”,就是說當達到一定程度,再努力時, 進步開始不明顯。數學重在培養觀察、分析和推斷能力
想成功,學習方法起著至關重要的作用。
學習數學,必須注重靈活精學,聯系題意,針對問題,展開分析與解決,靈活的運用數學公式,不死記硬背。
學好數學,首先做到上課必須認真聽講,對老師提出的問題,深入思考與探究,課后進行題型的加深與反饋,確保知識的鞏固。
而且,數學的知識最為廣泛,題目的`解答有多種的解法,不可能短時間內學完,因此,我們的學習數學時應做到“三心”。即“學好數學的信心、認真學習的決心和持之以恒的恒心!敝挥羞@樣才會讓知識得到發展與思維的飛躍。
由于數學的題型千變萬化、復雜多變。我們不可能把所有的題目解完,對此,做數學題時不須多做,重要的是精選,把一道題的類型完全理解透徹。做到舉一反三、循序漸進、熟能生巧。所謂“寶劍鋒從磨礪出,梅花香自苦寒來”,汗水的付出,必然會得到滿足的回報
高中數學的學習方法 篇10
一、數學學習方法
解題要以基本訓練題為主。復習數學離不開解題。近幾年的高考數學試題,始終堅持以《考試說明》作為高考命題的依據,而《考試說明》中數學科考試的內容又是依據中學數學《教學大綱》和有關中學數學教學的調整意見制定的。不難發現,高考數學試卷中有相當多的試題是從中學數學課本中基本題目的直接引用或稍作變形而來的。
為此,我們在復習的最后階段務必重視基礎,切實抓好基礎知識和基本訓練。對課本和以往用過的復習資料(以一種為限不必多)中的典型例題、基本習題再做一遍,最好能嘗試不同解法,即使進行少量的新的較難題目的訓練時,也要不斷聯系基礎知識和基本訓練,充分體會基礎數學的通性、通法在解題中的作用。
數學基礎知識的復習要充分重視知識的形成過程,解數學題(基礎訓練)要著重研究解題的思維過程,弄清基本數學方法和基本數學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數學問題的多種途徑,注意培養直覺猜想、歸納抽象、邏輯推理、演繹證明、運算求解等理性思維能力。
二、數學應該怎么學
1、制定自己的復習規劃
老老實實從課本開始復習,抓基礎。平時上課的'時候,聽不懂就記下筆記,自己按照課本章節,一章一章的復習,輔以課本后面的習題和配套練習冊題。以基礎簡單題、中等題為主。
一方面鞏固基礎,一方面提升信心。復習前期,不要重視考試分數,不要把精力放在試卷上。要把精力放在課本上。
2、要講究方法
方法是提高效率的先決條件,因為沒有適合的方法,導致備考效率低下,在時間上是不允許的,畢竟高考不是只考察一門學科。
因此在復習過程中一方面講究循序漸進,一方面還要講究方法。尤其是自我復習時,缺乏指導性是比較吃虧的,我們可以多問老師,多問同學。對輔導書的選購,一定要從基礎的學習方法中去選,而不是買大量解題的輔導書。
高中數學的學習方法 篇11
一、勤看書,學研究。
有些“自我感覺良好”的學生,常輕視課本中基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,重“量”輕“質”,陷入題海,到正規作業或考試中不是演算出錯就是中途“卡殼”,變成事倍功半。因此,同學們從高一開始,增強自己從課本入手進行研究的意識:預習,復習。可以把每條定理、每道例題都當作習題,認真地重證、重解,并適當加些批注(如數學符號在不同范疇的含義,不同領域之間的關系),舉個例子:x+y=0可以是二元一次方程,寫成y=-x又可看成一次函數。特別是可以通過對典型例題的講解分析,最后抽象出解決這類問題的數學思想和方法,并做好書面的解題后的反思,總結出解題的一般規律和特殊規律,以便推廣和靈活運用。另外,希望你們要盡可能獨立解題,因為求解過程,也是培養分析問題和解決問題能力的一個過程,同時更是一個研究過程。
二、注重課堂,記好筆記。
首先,在課堂教學中培養好的聽課習慣是很重要的。聽當然是主要的,聽能使注意力集中,注意積極思考、分析問題,要把老師講的關鍵性部分聽懂、聽會。提高數學能力,鍛煉自己的思維,主要也是通過課堂來提高,要充分利用好課堂這塊陣地,學習數學的過程是活的,在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。課堂上通過老師的教學,理解所學內容在教材中的地位,弄清與前后知識的聯系等,只有把握住教材,才能掌握學習的主動。
其次,聽的時候不能光聽,為了往后復習,應適當地有目的性的記好筆記,領會課上老師的主要精神與意圖?茖W的記筆記可以提45鐘課堂效果。
再次,如果數學課沒有一定的速度,那是一種無效學習。慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏(有目的進行訓練),這樣久而久之,思維的敏捷性和數學能力會逐步提高。
最后,在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
三、做好作業,講究規范。
在課堂、課外練習中培養良好的作業習慣也很有必要。在作業中不但做得整齊、清潔,培養一種美感,還要有條理,這是培養邏輯能力的一條有效途徑,必須獨立完成。同時可以培養一種獨立思考和解題正確的責任感。在作業時要提倡效率,應該十分鐘完成的作業,不拖到半小時完成,疲疲憊憊的作業習慣使思維松散、精力不集中,這對培養數學能力是有害而無益的。抓數學學習習慣必須從高一年級主動抓起,無論從年齡增長的心理特征上講,還是從學習的不同階段的要求上講都應該進行學習習慣的培養。
四、寫好總結,把握規律。
一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。"不會總結的'同學,他的能力就不會提高,挫折經驗是成功的基石。"自然界適者生存的生物進化過程便是的例證。學習要經?偨Y規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結”(先預習后聽課,先復習后做作業,寫好每個單元的總結)的學習習慣。善于歸納總結知識間的聯系。
學習數學并非我做題就可以取得好的成績,而是要將精力花在歸納總結上。特別對課本或課堂上出現的例題,只要善于總結,就可以了解這一小節數學內容有哪幾種題型,每種題目的一般解法和思路是什么,從而提高運用所學知識分析解題的能力。同時,每學完一個單元,要建立本單元的知識框架,將本章的主要思路、推理方法及運用技巧等轉變成自己的實際技能。
五、注重反思,提升能力
學習要注重反思,練好悟性。老師上課一般都要講清知識的來龍去脈,剖析概念的內涵外延,分析重點難點,突出思想方法,而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是忙于趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。數學學科必須培養運算能力、邏輯思維能力、空間想象力以及運用所學知識分析問題、解決問題的重任,它的特點是具有高度的抽象性、邏輯性與廣泛的適用性,對能力的要求較高。數學能力只有在數學思想方法不斷地運用反思中才能培養和提高。數學內容的巨變和學習方法的落后,在學習高中數學的過程中,肯定會遇到不少困難和問題,同學們要有克服困難的勇氣和信心,勝不驕,敗不餒,千萬不能讓問題堆積如山,形成惡性循環,而是要在老師的引導下,尋求解決問題的辦法,培養分析問題,解決問題的能力,這就是的悟性。
學會發現問題,并重視質疑在學習中?吹匠煽兒玫耐瑢W,總是有很多問題問老師。提出疑問不僅是發現真知的起點,而且是發明創造的開端。提高學習成績的過程就是發現,提出并解決疑問的過程。大膽向老師質疑,不是笨的反映,而是在追求真知、積極進取的表現。在聽課中,不但要“知其然”,還要“知其所以然”,這樣疑問也就在不斷產生,再加以分析思考使問題得以解決,學習也就得到了長進。
高中數學的學習方法 篇12
一、認清學習能力狀態
1 、心理素質。由于學生在初中特定環境下所具有的榮譽感與成功感能否帶到高中學習,這就要看他(或她)是否具備面對挫折、冷靜分析問題、找出克服困難走出困境的辦法。會學習的學生因學習得法而成績好,成績好又可以激發興趣,增強信心,更加想學,知識與能力進一步發展形成了良性循環,不會學習的學生開始學習不得法而成績不好,如能及時總結教訓,改變學法,變不會學習為會學習,經過一番努力還是可以趕上去的,如果任其發展,不思改進,不作努力,缺乏毅力與信心,成績就會越來越差,能力越得不到發展,形成惡性循環。因此高中學習是對學生心理素質的考驗。
2 、學習方式、習慣的反思與認識
(1)學習的主動性。許多同學進入高中后還象初中那樣有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習的主動性,表現在不訂計劃,坐等上課,課前不作預習,對老師要上課的內容不了解,上課忙于記筆記,忽略了真正聽課的任務,顧此失彼,被動學習。
。2)學習的條理性。老師上課一般都要講清知識的來龍去脈,剖析概念的內涵外延,分析重點難點,突出思想方法,而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是忙于趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背,也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
。3)忽視基礎。有些"自我感覺良好"的學生,常輕視基礎知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的"水平",好高騖遠,重"量"輕"質",陷入題海,到正規作業或考試中不是演算出錯就是中途"卡殼" 。
。4)學生在練習、作業上的不良習慣。主要有對答案、不相信自己的結論,缺乏對問題解決的信心和決心;討論問題不獨立思考,養成一種依賴心理素質;慢騰騰作業,不講速度,訓練不出思維的敏捷性;心思不集中,作業、練習效率不高。
3 、知識的銜接能力。
初中數學教材內容通俗具體,多為常量,題型少而簡單;而高中數學內容抽象,多研究變量、字母,不僅注重計算,而且還注重理論分析,這與初中相比增加了難度。另一方面,高中數學與初中相比,知識的深度、廣度和能力的要求都是一次質的飛躍,這就要求學生必須掌握基礎知識與技能為進一步學習作好準備。由于初中教材知識起點低,對學生能力的要求亦低,由于近幾年教材內容的調整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,有的內容為應付中考而不講或講得較淺(如二次函數及其應用),這部分內容不列入高中教材但需要經常提到或應用它來解決其它數學問題,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數學實際難度沒有降低。因此,從一定意義上講,調整后的教材不僅沒有縮小初高中教材內容的難度差距,反而加大了。如不采取補救措施,查缺補漏,學生的成績的分化是不可避免的。這涉及到初高中知識、能力的銜接問題。
二、努力提高自己的能力
1 、改進學法、培養良好的學習習慣。
不同學習能力的學生有不同的學法,應盡量學習比較成功的同學的學習方法。改進學法是一個長期性的系統積累過程,一個人不斷接受新知識,不斷遭遇挫折產生疑問,不斷地總結,才有不斷地提高。"不會總結的同學,他的能力就不會提高,挫折經驗是成功的基石。"自然界適者生存的生物進化過程便是最好的例證。學習要經?偨Y規律,目的就是為了更一步的發展。通過與老師、同學平時的接觸交流,逐步總結出一般性的學習步驟,它包括:制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面,簡單概括為四個環節(預習、上課、整理、作業)和一個步驟(復習總結)。每一個環節都有較深刻的內容,帶有較強的目的性、針對性,要落實到位。
在課堂教學中培養聽課習慣。聽是主要的,聽能使注意力集中,把老師講的關鍵性部分聽懂、聽會,聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當地筆記,領會課上老師的主要精神與意圖,五官能協調活動是最好的習慣。在課堂、課外練習中培養作業習慣,在作業中不但做得整齊、清潔,培養一種美感,還要有條理,這是培養邏輯能力,必須獨立完成。可以培養一種獨立思考和解題正確的責任感。在作業時要提倡效率,應該十分鐘完成的作業,不拖到半小時完成,疲疲憊憊的作業習慣使思維松散、精力不集中,這對培養數學能力是有害而無益的,抓數學學習習慣必須從高一年級抓起,無論從年齡增長的心理特征上講,還是從學習的不同階段的要求上講都應該進行學習習慣的指導。
2 、加強45分鐘課堂效益。
要提高數學能力,當然是通過課堂來提高,要充分利用好這塊陣地。
(1)抓教材處理。學習數學的過程是活的,老師教學的對象也是活的,都在隨著教學過程的發展而變化,尤其是當老師注重能力教學的時候,教材是反映不出來的。數學能力是隨著知識的發生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應該從不同的能力角度來培養和提高。通過老師的教學,理解所學內容在教材中的地位,弄清與前后知識的聯系等,只有把握住教材,才能掌握學習的主動。
。2)抓知識形成。數學的一個概念、定義、公式、法則、定理等都是數學的基礎知識,這些知識的形成過程容易被忽視。事實上,這些知識的形成過程正是數學能力的培養過程。一個定理的證明,往往是新知識的發現過程,在掌握知識的過程中,就培養了數學能力的發展。因此,要改變重結論輕過程的教學方法,要把知識形成過程看作是數學能力培養的過程。
(3)抓學習節奏。數學課沒有一定的速度是無效學習,慢騰騰的學習是訓練不出思維速度,訓練不出思維的敏捷性,是培養不出數學能力的,這就要求在數學學習中一定要有節奏,這樣久而久之,思維的敏捷性和數學能力會逐步提高。
。4)抓問題暴露。在數學課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是現開銷的,對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結癥遺留下來,甚至沉淀下來,現開銷的問題及時抓,遺留問題有針對性地補,注重實效。
。5)抓課堂練習、抓好練習課、復習課、測試分析課的教學。數學課的課堂練習時間每節課大約占1 / 4 — 1 / 3,有時超過1 / 3,這是對數學知識記憶、理解、掌握的重要手段,堅持不懈,這既是一種速度訓練,又是能力的檢測。學生做題是無心的`,而教師所尋找的例題是有心的,哪些知識需要補救、鞏固、提高,哪些知識、能力需要培養、加強應用。上課應有針對性。
。6)抓解題指導。要合理選擇簡捷運算途徑,這不僅是迅速運算的需要,也是運算準確性的需要,運算的步驟越多,繁度就越大,出錯的可能性就會增大。因而根據問題的條件和要求合理地選擇簡捷的運算途徑不但是提高運算能力的關鍵,也是提高其它數學能力的有效途徑。
(7)抓數學思維方法的訓練。數學學科擔負著培養運算能力、邏輯思維能力、空間想象力以及運用所學知識分析問題、解決問題的重任,它的特點是具有高度的抽象性、邏輯性與廣泛的適用性,對能力的要求較高。數學能力只有在數學思想方法不斷地運用中才能培養和提高。
3、體驗成功,發展學習興趣
"興趣是最好的老師",而學習興趣總是和成功的喜悅緊密相連的。如聽懂一節課,掌握一種數學方法,解出一道數學難題,測驗得到好成績,平時老師對自己的鼓勵與贊賞等,都能使自己從這些"成功"中體驗到成功的喜悅,激發起更高的學習熱情。因此,在平時學習中,要多體會、多總結,不斷從成功(那怕是微不足道的成績)中獲得愉悅,從而激發學習的熱情,提高學習的興趣。
三、幾點注意。
1、提高學生數學能力的過程是循序漸進的過程,要防止急躁心理,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天沖刺一蹴而就,有的取得一點成績沾沾自喜,遇到挫折又一蹶不振,針對這些實際問題要有針對性的教學。
2、知識的積累、能力的培養是長期的過程,正如華羅庚先生倡導的"由薄到厚"和"由厚到薄"的學習過程就是這個道理。同時近幾年高考試題中應用性問題的出現,更對學生把所學數學知識應用到實際生活中解決問題能力提出了更為嚴峻的挑戰,應加強對應用數學意識和創造思維方法與能力的培養與訓練。
高中數學學習方法指導
和初中數學相比,高中數學的內容多,抽象性、理論性強,因為不少同學進入高中之后很不適應,特別是高一年級,進校后,代數里首先遇到的是理論性很強的函數,再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來,這就使一些初中數學學得還不錯的同學不能很快地適應而感到困難,以下就怎樣學好高中數學談幾點意見和建議。
高中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。
一、指導提高聽課的效率是關鍵。
1、課前預習能提高聽課的針對性。
預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。
2、聽課過程中的科學。
首先應做好課前的物質準備和精神準備,以使得上課時不至于出現書、本等物丟三落四的現象;上課前也不應做過于激烈的體育運動或看小書、下棋、激烈爭論等。以免上課后還喘噓噓,或不能平靜下來。
其次就是聽課要全神貫注。
全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。
耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結,另外,還要聽同學們的答問,看是否對自己有所啟發。
眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢等動作,生動而深刻的接受老師所要表達的思想。
心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。
口到:就是在老師的指導下,主動回答問題或參加討論。
手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有創新思維的見解。
若能做到上述“五到”,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。
3、特別注意講課的開頭和結尾。
講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。
4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。
此外還要特別注意老師講課中的提示。
老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。
最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
二、指導做好復習和總結工作。
1、做好及時的復習。
課完課的當天,必須做好當天的復習。
復習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復習:先把書,筆記合起來回憶上課老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
2、做好單元復習。
學習一個單元后應進行階段復習,復習方法也同及時復習一樣,采取回憶式復習,而后與書、筆記相對照,使其內容完善,而后應做好單元小節。
3、做好單元小結。
單元小結內容應包括以下部分。
。1)本單元(章)的知識網絡;
。2)本章的基本思想與方法(應以典型例題形式將其表達出來);
(3)自我體會:對本章內,自己做錯的典型問題應有記載,分析其原因及正確答案,應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
三、指導做一定量的練習題
有不少同學把提高數學成績的希望寄托在大量做題上。我認為這是不妥當的,我認為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養成善于思考的好習慣,這將大大有利于你今后的學習。當然沒有一定量(老師布置的作業量)的練習就不能形成技能,也是不行的。
高中數學的學習方法 篇13
課前預習
一個老生常談的話題,也是提到學習方法必將的一個,話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預習的能有幾人,課前預習可以使我們提前了解將要學習的知識,不至于到課上手足無措,加深我們聽課時的理解,從而能夠很快的吸收新知識。
記筆記
這里主要指的是課堂筆記,因為每節課的.時間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來,一來可以加深我們的理解,好記性不如爛筆頭嗎,二來可以方便我們以后復習查看。如果對課堂講述的知識不理解的同學更應該做筆記,以便課下細細琢磨,直到理解為止。
課后復習
同預習一樣,是個老生常談的話題,但也是行之有效的方法,課堂的幾十分鐘不足以使我們學習和消化所學知識,需要我們在課下進行大量的練習與鞏固,才能真正掌握所學知識。
涉獵課外習題
想要在數學中有所建樹,取得好成績,光靠課本上的知識是遠遠不夠的,因此我們需要多多涉獵一些課外習題,學習它們的解題思路和方法,如果實在不能理解,可以問問老師或者同學。
學會歸類總結
學習數學要記得東西很多,尤其是數學公式,而且知識還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個公式,不但增加記憶量,而且容易忘,此時我們必須學會歸類總結,把經常搭配使用的公式等總結在一起記憶,這樣會大大的減少我們的記憶量,同時提高我們做題效率。
建立糾錯本
我們在學習數學的時候可能會經常因為同樣一類題目而失分,自己也十分懊惱,其實有辦法可以解決這個問題,就是建立糾錯本,幫我們經常會出錯的題目都集中在一起(當然只要是做錯過得都可以記錄上),然后空閑的時候看看,考試之前再看看,這樣考試的時候出現同類題目再出錯的幾率就降低好多。
寫考試總結
寫考試總結是一個好習慣,考試總結可以幫我們找出學習之中不足之處,以及我們知識的薄弱環節,從而及時的彌補不足,以及以后的學習方向。
高中數學的學習方法 篇14
數學是高考科目之一,故從初一開始就要認真地學習數學。進入高中以后,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由于同學們不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點和高中教學經驗,談一談高中數學學習方法,供同學參考。
一:先注意以下三點。
一)、課內重視聽講,課后及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二)、適當多做題,養成良好的解題習慣。
要想學好數學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三)、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
二:初中數學與高中數學的比較。
一)、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是“00—1800”范圍內的,但實際當中也有7200和“--3000”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習“排列組合”知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2= -1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以后的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業,然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(如:高一有八門課同時學習),每天至少上八節課,自習時間四節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,高中數學教師將不能向初中那樣監督每個學生的作業和課外練習,就不能向初中那樣把知識讓每個學生掌握后再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理較多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即使就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由于學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變量的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數學思想。
二)高中數學與初中數學特點的變化。
1、數學語言在抽象程度上突變
初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什么,再看什么等。因此,初中學習中習慣于這種機械的,便于操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。
3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的“量”上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。
4、知識的獨立性大
初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便于記憶,又適合于知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。
三、如何學好高中數學。
一)、培養良好的學習興趣。
兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者!币馑颊f,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中!昂谩焙汀皹贰本褪窃敢鈱W,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?
1、課前預習,對所學知識產生疑問,產生好奇心。
2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
3、思考問題注意歸納,挖掘你學習的潛力。
4、聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?
5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。
二)、建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
三)、有意識培養自己的各方面能力。
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四)、及時了解、掌握常用的數學思想和方法。
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
五)、逐步形成 “以我為主”的學習模式。
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇于探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善于開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足于現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鉆進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
六)、針對自己的學習情況,采取一些具體的措施。
記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中擴展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
經常對知識結構進行梳理,形成板塊結構,實行“整體集裝”,如表格化,使知識結構一目了然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納于同一知識方法。
閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課外題,加大自學力度,拓展自己的知識面。
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏固,消滅前學后忘。學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網絡化。
經常在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的.分析方法與解法,在解其它問題時,是否也用到過。
無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學好數學的重要問題。
七)、認真聽好每一節棵。
在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。
概念課
要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習題課
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進”,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然后再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。
復習課
在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家準備一本數學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到高考時你的數學就沒有什么“病例”了。并且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以“練”代“復”的題海戰術。
四、其它注意事項
1.注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了?梢,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2.學會數學教材的數學思想方法。
數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是_____(符號相反的數)。.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的(相等)。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學好數學的幾個建議。
1.記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。如:我在講課時的注解。
2.建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
3.記憶數學規律和數學小結論。
4.與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。
5.爭做數學課外題,加大自學力度。
6.反復鞏固,消滅前學后忘。
7.學會總結歸類。①從數學思想分類②從解題方法歸類③從知識應用上分類。
總之,對高一新生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。
其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會采用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。
最后,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恒心,更要有一顆平常心。
【高中數學的學習方法】相關文章:
高中數學的學習方法11-15
高中數學的學習方法總結03-21
學高中數學的學習方法10-13
高中數學有效的學習方法04-19
高中數學的學習方法必看12-30
高中數學學習方法08-08
高中數學高效學習方法09-26
關于高中數學的學習方法09-25
高中數學學習方法08-10