1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高二數學學習方法

        時間:2021-12-31 18:37:41 學習方法 我要投稿

        高二數學學習方法精選15篇

          在平時的學習、工作或生活中,大家都在不斷地學習,正確的學習方法,能夠讓我們學習事半功倍!什么樣的學習方法才是真正有效的呢?下面是小編為大家整理的高二數學學習方法,希望對大家有所幫助。

        高二數學學習方法精選15篇

        高二數學學習方法1

          數學,數學是讓很多理科和文科學生頭疼的科目。我也不好把握它應該怎么學習,但是最近我確實償到了學習的快樂。我是這樣學習的。

          數學重要的課本的見解和例題,大家要把握好這個點,一定要注意課本,就是說你剛剛學完一節,作習題時如果沒有思路,你就要好好的回憶課本講了什么,要做到課本與習題的巧妙結合。

          建議高一高二的同學,分幾步走。

          要課前預習,很多書都這么說,可是很多同學都不屑,但是我要告訴你,如果您能落實好預習,你的數學就可以好一半,你預習時的態度要端正,不是看一遍書就完事,而是要認真的思考,看看講解的內容和例題是怎么聯系的。然后看懂后就做書上習題,不要小看書的習題,進幾年高考題目有好多都是根據書的習題改的,這個要做好的。一定要做出數來,對照答案。

          其次要上課認真聽講,看看老師是怎么演繹數學的,看看老師的說法和你預習時的一樣不,最好記下老師的例題,這例題絕對經典,可以當作對象研究的。

          最后就是要課下的習題,認真的完成老師布置的作業,體會課上所講的內容,不會的及時問老師。還有就是課外的練習冊最好別買,因為根據我上了高三的經驗,買的就是浪費的,千萬別買啊!如果你覺得沒有事情做了,那么你就學習英語和語文吧!這兩科如果學好了,高三都可以不用復習的。

          但是大家要記住,數學必須把問題全部落實,不能拖。還要和老師及時的溝通哦。

          數學復習必須掌握的3個方法

          數學是三大主科之一,所占分值比例大,可以說是在考試中最容易拿分也可以說最容易失分的一個科目,讀題粗心大意的學生,往往就丟失不必要的分數,并且這個科目考生也最忌心浮氣躁,需要靜下心來 高一,仔細閱題,由易而難做下來。數學是一門講理的學科,具有很強的邏輯性。相對于初中數學來說,高中數學明顯難了很多。因此,很多原本在初中數學成績很好的同學,到了高中就明顯感到吃力。那么針對20xx年高考數學學生該如何應對,考前需要做哪些準備?解題時需要掌握哪方面技巧,才會讓自己不易失分?

          數學考試答題技巧,可以采用數形結合、直接對照法、篩選法等。

          數形結合法:“數”與“形”是數學這座高樓大廈的兩塊最重要的基石,二者在內容上互相聯系、在方法上互相滲透、在一定條件下可以互相轉化,而數形結合法正是在這一學科特點的基礎上發展而來的。在解答選擇題的過程中,可以先根據題意,做出草圖,然后參照圖形的做法、形狀、位置、性質,綜合圖象的特征,得出結論。用這種方法,既方便解題又容易讓人明白。

        高二數學學習方法2

          制定計劃和奮斗目標

          復習數學時,要制定好計劃,不但要有本學期大的規劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,如按照老師的復習進度,今天復習到什么知識點,就應該在今天之內掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側面、不同角度。

          在每天的復習計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當天講了什么知識,歸納當天所學的知識?梢哉f,每天的習題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。

          嚴防題海戰術

          做習題是為了鞏固知識、提高應變能力、思維能力、計算能力。學數學要做一定量的習題,但學數學并不等于做題,在各種考試題中,有相當的習題是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過做一定量的習題達到對解題方法的展移而實現的,但,隨著高考的改革,高考已把考查的重點放在創造型、能力型的考查上。

          因此要精做習題,注意知識的理解和靈活應用,當你做完一道習題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?實現問題的完全解決我應用了怎樣的解題策略?只有這樣才會培養自己的悟性與創造性,開發其創造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學的方法解決它。

          歸納數學大思維

          數學學習其主要的目的是為了培養我們的創造性,培養我們處理事情、解決問題的能力,因此,對處理數學問題時的大策略、大思維的掌握顯得特別重要,在平時的學習時應注重歸納它。在平時聽課時,一個明知的學生,應該聽老師對該題目的分析和歸納。但還有不少學生,不注意教師的分析,往往沉靜在老師講解的每一步計算、每一步推證過程。

          聽課是認真,但費力,聽完后是滿腦子的計算過程,支離破碎。老師的分析是引導學生思考,啟發學生自己設計出處理這些問題的大策略、大思維。當教師解答習題時,學生要用自己的計算和推理已經知道老師要干什么。另外,當題目的答案給出時,并不代表問題的解答完畢,還要花一定的時間認真總結、歸納理解記憶。要把這些解題策略全部納入自己的腦海成為永久地記憶,變為自己解決這一類型問題的經驗和技能。同時也解決了學生中會聽課而不會做題目的壞毛病。

          積累考試經驗

          本學期每月初都有大的考試,加之每單元的單元測驗和模擬考試有十幾次,抓住這些機會,積累一定的考試經驗,掌握一定的考試技巧,使自己應有的水平在考試中得到充分的發揮。其實,考試是單兵作戰,它是考驗一個人的承受能力、接受能力、解決問題等綜合能力的戰場。這些能力的只有在平時的考試中得到培養和訓練。

        高二數學學習方法3

          高一升高二數學學習方法和計劃

          和高一數學相比,高二數學的內容更多,抽象性、理論性更強,因此不少同學進入高二之后很不適應。代數里首先遇到的是理論性很強的曲線方程,再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來,這就使一些高一數學學得還不錯的同學不能很快地適應而感到困難,以下就怎樣學好高二數學談幾點意見和建議。

          培養濃厚的興趣:

          高中數學的學習其實不會很難,關鍵是你是否愿意去嘗試.當你敢于猜想,說明你擁有數學的思維能力;而當你能驗證猜想,則說明你已具備了學習數學的天賦!認真地學好高二數學,你能領悟到的還有:怎么用最少的材料做滿足要求的物件;如何配置資源并投入生產才能獲得最多利潤;優美的曲線為什么可以和代數方程建立起關系;為什么出車禍比體育中獎容易得多;為什么一個年段的各個班級常常出現生日相同的同學??

          當你陷入數學魅力的"圈套"后,你已經開始走上學好數學的第一步!

          培養分析,推斷能力:

          其實,數學不是知識性,經驗性的學科,而是思維性的學科,高中數學就充分體現了這一特點.所以,數學的學習重在培養觀察,分析和推斷能力,開發學習者的創造能力和創新思維.因此,在學習數學的過程中,要有意識地培養這些能力.

          關于學習方法和效果的關系,可以這樣描述:當你愿意去看懂大部分題目的答案時,你的考試成績應該可以輕松及格;當你熱衷于研究各種題型,定期做出小結的時候,你一定是班級數學方面的優等生;而當你習慣根據數學定義自己出題,并解決它,你的數學水平已經可以和你的老師并駕齊驅了!

          學習程度不同的學生需要不同的學習方法:

          如果你正因為數學的學習狀態低迷而苦惱,請按如下要求去做:預習后,帶著問題走進課堂,能讓你的學習事半功倍;想要做出完美的作業是無知的,出錯并認真訂正才更合理;老師要求的練習并不是"題海",請認真完成,少動筆而能學好數學的天才即使有,也不是你;考試時,正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發揮正常水平.

          如果你正因為數學的學習成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成績,給自己定一個能接受的底線,定一個力所能及的奮斗目標;合理的作息時間和良好的學習習慣將有助你獲得穩定的學習成績,所以,請制定好學習計劃并努力堅持;把很多時間投入到一個科目中去,不如把學習精力合理分配給各個學科.人對于某一知識領域的學習常出現"高原現象",就是說當達到一定程度,再努力時,進步開始不明顯.

          下列學習方法比較經典:

          一、提高聽課的效率是關鍵。

          1.課前預習能提高聽課的針對性。預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。其次就是聽課要全神貫注。

          2、特別注意講課的開頭和結尾。講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。另外,老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。

          3、最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

          二、做好復習和總結工作。

          1、做好及時的復習。課完課的當天,必須做好當天的復習。復習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復習:先把書,筆記合起來回憶上課老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。

          2、做好單元復習。學習一個單元后應進行階段復習,復習方法也同及時復習一樣,采取回憶式復習,而后與書、筆記相對照,使其內容完善,而后應做好單元小節。

          三、指導做一定量的練習題

          有不少同學把提高數學成績的希望寄托在大量做題上。我認為這是不妥當的,我認為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養成善于思考的好習慣,這將大大有利于你今后的學習。當然沒有一定量(老師布置的作業量)的練習就不能形成技能,也是不行的。

        高二數學學習方法4

          在中學,數、理、化是課程中最重要的一部分,如果數學學不好,那么物理、化學也不可能學好。在理工科大學中,數學更是一個基礎。在工農業生產中,我們都希望能夠多、快、好、省地完成任務。例如,在現有條件中,如何合理安排生產過程,使產量最好,使消耗費用最小,而又在最短時間內完成任務,就存在有大量的數學理論和計算問題。所以,數學在我們社會主義建設中能夠并且應該起很大作用。

          有的同學問我學數學有什么秘訣?我覺得學習上沒有捷徑好走,也無秘訣可言,要說有,那就是,首先要有決心、信心和恒心。扎扎實實地打好基礎,練好基本功。從一點一滴做起,日積月累逐步有所提高。在學習中不可平均使用力量,而要把勁特別用在一門新功課,一個新篇章的開頭,用再最基本的內容上。例如,一個中學生加、減、乘、除經常算錯,那他就不可能學好代數、三角、幾何、物理、化學等課程。所以加、減、乘、除,就是一個基礎。打好扎實的基礎,要循序漸進,自然科學,特別是數學,有很強的系統性和連貫性,只有把前面的基礎打牢,才好進入后一步,只有一步一個腳印,學得扎扎實實,才可能逐步提高,最后才有希望達到科學的頂峰。

          第二,要注意獨立思考。拿數學來說,它是一門著重于理解的學科,在學習中要防止不求甚解的傾向,一定要勤分析、多思考。對每部分內容,每個問題,要從正面、反面各個角度多想想,要善于找出它們之間的聯系,總結出規律性的東西。

          另外,不要一遇到不會的東西就馬上去問別人,自己不動腦子,專門依賴別人,要先自己認真地思考一下,這樣就可能依靠自己的努力,克服其中的某些困難,對經過很大努力仍不能解決的問題,再虛心地請教別人,這樣才能對自己有更大的幫助和鍛煉。

          第三,學習態度要端正,要注意培養良好的習慣,刻苦鉆研,要做到專心致志。例如,有些同學,一邊看電視,一邊看數學書或算習題,這樣的效率一定是很低的。所以,不論復習、做題、閱讀參考書籍都要精力集中,要爭分奪妙,切忌分心。學習中還要養成嚴肅認真、踏踏實實的好學風,不要好高鶩遠,更不能夸夸其談。

          第四,知識面要寬些,基礎要打扎實。前些年,在學習上出現了一些偏差,有的同學以為學好數理化就行了,至于語文學得好不好無所謂,這種看法是錯誤的。有的理科大學生數理化還好,但寫實驗報告文理不通,錯別字很多,這樣,即使你很有創造性,別人還是看不懂。數理化固然重要,但語文(包括外語)卻是各門學科最基本的工具。語文學得好,閱讀寫作能力提高了,就有助于學好其他學科,有助于知識的積累和思路的敞開。

          以上是我的一點粗淺的體會,供同學們參考。

        高二數學學習方法5

          一、不等式的基本性質:

          注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。

          (2)注意課本上的幾個性質,另外需要特別注意:

         、偃鬭b0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。

         、谌绻麑Σ坏仁絻蛇呁瑫r乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。

         、蹐D象法:利用有關函數的圖象(指數函數、對數函數、二次函數、三角函數的圖象),直接比較大小。

         、苤薪橹捣ǎ合劝岩容^的代數式與0比,與1比,然后再比較它們的大小

          二、均值不等式:兩個數的算術平均數不小于它們的幾何平均數。

          基本應用:①放縮,變形;

         、谇蠛瘮底钪担鹤⒁猓孩僖徽ㄈ嗟;②積定和最小,和定積最大。

          常用的方法為:拆、湊、平方;

          三、絕對值不等式:

          注意:上述等號=成立的條件;

          四、常用的基本不等式:

         。1)比較法:作差比較:

          作差比較的步驟:

         、抛鞑睿簩σ容^大小的兩個數(或式)作差。

         、谱冃危簩Σ钸M行因式分解或配方成幾個數(或式)的完全平方和。

          ⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。

          注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。

         。2)綜合法:由因導果。

         。3)分析法:執果索因;静襟E:要證只需證,只需證

          (4)反證法:正難則反。

         。5)放縮法:將不等式一側適當的放大或縮小以達證題目的。

          放縮法的方法有:

          ⑴添加或舍去一些項,

         、茖⒎肿踊蚍帜阜糯螅ɑ蚩s。

          ⑶利用基本不等式,

         。6)換元法:換元的目的就是減少不等式中變量,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。

         。7)構造法:通過構造函數、方程、數列、向量或不等式來證明不等式;

        高二數學學習方法6

          一、了解高中數學知識的特點

          經過初中三年的學習,特別是中考前的復習、鞏固,同學們已經熟練地掌握初中知識,并對其中一些數學思想、方法有所體會。而高中的知識無論從深度還是廣度上都比初中有所加強,因此在學習中感到有一定的困難也是正常的。

          解決的方法之一是我們首先要對高中知識的特點有所了解,做到心中有“數”。高中知識及其學習方法具有以下的特點:

          1.概念的抽象性

          進入高中后,同學們覺得數學的概念不易理解。的確,初中階段我們所學的概念很多都是從直觀例子或實際事物的關系中獲得感性認識后才給出定義,而高中的概念的獲得則需要更多的理性思考。

          以函數概念為例,初中階段我們是考慮變量x,y之間的對應關系,即對x每個值都有唯一的y對應;而高中再次接觸函數時,是從兩個非空數集A,B中的元素之間的對應關系來考慮的。通過對比,我們還可以看到兩個階段中對函數的學習是有區別的。首先在符號表示上,初中只要求我們以具體的函數解析式如:等來表示函數,而高中階段我們用更抽象的形式這個形式便于對函數的一般性質進行研究;其次,在初中階段,學習過函數概念后,通過對具體函數的應用來實現對函數概念的鞏固。而在高中階段則是通過對函數一般性質的討論、應用來實現對函數概念的深入理解和鞏固。

          上述分析告訴我們,若能將初、高中的同一概念加以對比、我們就能夠對高中的抽象概念理解得更為透徹。

          2.語言的精煉性

          從集合與函數這章開始,一些數學符號,如 ∩,∪,∈。Φ等等已初廣泛地運用,將繁冗的語言表示得即簡單又精確。

          例如,空集Φ可以表示方程無解;再如,設方程組的解集是F,方程的解集分別是與 .若我們要表示出F、、 之間的關系,用集合語言很容易,即。

          3.知識的綜合性

          高中數學每一章,每一節的知識都不是孤立的,章與章之間,節與節之間有密切的聯系,需要我們綜合運用。

          例如在我們學習了有關解不等式的內容后,我們來看下列問題:

          已知三個不等式:

          要使滿足不等式(3)的x值至少滿足不等式(1)和(2)中的一個,求a的取值范圍。

          這個問題的分析,不僅涉及到不等式解的問題,還涉及到方程根的分布,函數在某一點的取值,幾個不等式解集之間取交還是取并等等,需要我們綜合利用學過的知識。

          二、自覺架起數學知識的過渡橋梁

          1.把握好集合的概念、性質

          集合知識是由初中向高中知識過渡的第一座橋梁。

          首先,集合的表法使初中所學的自然數集、有理數集、實數集等有關的知識的表示更為簡煉,從而簡化了后面復雜問題的表述;其次,集合間的關系運算可以更好地幫助我們理解新學的知識,例如對不等式的解或方程組的解的理解;第三,集合作為一種數學思想滲透于今后所要學習的許多知識中。因此在高中伊始學好有關集合的知識是十分重要的。

          2.加強聯想與類比

          高中知識與初中知識之間的聯系是十分密切的。高中的很多知識可以通過降維、降冪等形式轉化為初中的有關知識,但這需要我們能將它們加以類比、聯想。

          以幾何為例,初中平面幾何中我們有過證明正三角形內任意一點到三邊的距離和等于三角形的高,通過面積和相等很容易證明。

          類比高中立體幾何,我們能否證明一個正面體內任意一點到四個面的距離和等于該四面體的高呢?

          其實同學們能夠看出這個問題與上面平面幾何的問題是十分類似的。這里是將二維的問題推廣到三維。二維的問題可以用面積解決,三維的問題我們能用什么辦法呢?也許用求體積的方法?有興趣的同學可以試一試。

          當然,聯想、類比是以對知識的理解與掌握為前提的。

          3.深化對數學計算的認識

          數學計算在中學各個階段的學習要求有所不同。高中階段要求的不再是簡單的應用運算法則進行運算,而是要求在計算中掌握計算的方法,理解算理,如構造法、拆項法、變量替換法、數學歸納法等的選擇與運用。

          例如當我們學習數列求和時遇到這樣的問題:“求1!+2! 2+3! 3+.。。 . . .+n! n的和”。顯然利用公式是無能為力的。這就需要我們構造算法,不妨從通項n! n入手,找出它與(n+1)!、n! 的關系,不難發現 n! n=(n+1)!-n!,這樣運用拆項法解決了求此和的問題。

          三、幾點學習建議

          1.認真閱讀教材

          想只憑借課堂聽講就學好高中數學,這對大多數同學來說是不太可能的。要求我們在課下認真閱讀教材,在閱讀的同時還要勒于思考,只有這樣才能深入理解知識及知識的聯系。

          2.理解、掌握、運用數學思想方法

          數學思想方法是數學知識的精髓。初中階段同學們對綜合分析法、反證法等有了一些體會。與之相比,高中所涉及的數學思想方法要豐富得多。如:集合思想、函數思想、類比法、數學歸納法、分析法等常用的數學思想方法滲透于各部分知識中,都需要大家認真體會。

          3.注意知識之間的聯系

          在日常的學習中要做到 :①注意思考不同數學知識之間的聯系;②注意例題與習題間的聯系。弄清知識之間的邏輯關系,從而系統、靈活地掌握高中數學。

        高二數學學習方法7

          考察主要還是基礎,難題也不過是在簡單題的基礎上加以綜合。所以課本上的內容是很重要的,如果課本上的都不能掌握,就沒有觸類旁通的資本。

          對課本上的內容,上課之前最好能夠首先一下,否則上課時有一個知識點沒有跟上的步驟,下面的就不知所以然了,如此惡性循環,就會開始厭煩數學,對來說是很重要的。課后針對性的練習題一定要認真做,不能偷懶,高中語文,也可以在課后時把例題反復演算幾遍,畢竟上課的時候,是在進行題目的演算和講解,在聽,這是一個比較機械、比較被動的接受知識的過程。也許你認為自己在上聽懂了,但實際上你對于解題的理解還沒有達到一個比較深入的程度,并且非常容易忽視一些真正的解題過程中必定遇到的難點!昂媚X子不如賴筆頭”。對于數理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經過周密的筆頭計算才能夠發現其中的難點并且掌握化解,最終得到正確的計算結果。

          其次是要善于總結歸類,尋找不同的題型、不同的知識點之間的共性和聯系,把學過的知識系統化。舉個具體的例子:代數的函數部分,我們學習了指數函數、對數函數、冪函數、三角函數等好幾種不同類型的函數。但是把它們對比著總結一下,你就會發現無論哪種函數,我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱性。那么你可以將這些函數的上述內容制作在一張大表格中,對比著進行理解和。在解題時注意函數表達式與圖形結合使用,必定會收到好得多的效果。

          最后就是要加強課后練習,除了作業之外,找一本好的參考書,盡量多做一下書上的練習題(尤其是綜合題和應用題)。熟能生巧,這樣才能鞏固課堂學習的效果,使你的解題速度越來越快。

        高二數學學習方法8

          1.求導法則:

          (c)/=0 這里c是常數。即常數的導數值為0。

          (xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)

          2.導數的幾何物理意義:

          k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。

          V=s/(t) 表示即時速度。a=v/(t) 表示加速度。

          3.導數的應用:

         、偾笄芯的斜率。

          ②導數與函數的單調性的關系

          已知 (1)分析 的定義域;(2)求導數 (3)解不等式 ,解集在定義域內的部分為增區間(4)解不等式 ,解集在定義域內的部分為減區間。

          我們在應用導數判斷函數的單調性時一定要搞清以下三個關系,才能準確無誤地判斷函數的單調性。以下以增函數為例作簡單的分析,前提條件都是函數 在某個區間內可導。

         、矍髽O值、求最值。

          注意:極值≠最值。函數f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。

          f/(x0)=0不能得到當x=x0時,函數有極值。

          但是,當x=x0時,函數有極值 f/(x0)=0

          判斷極值,還需結合函數的單調性說明。

          4.導數的常規問題:

          (1)刻畫函數(比初等方法精確細微);

         。2)同幾何中切線聯系(導數方法可用于研究平面曲線的切線);

         。3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關于 次多項式的導數問題屬于較難類型。

          2.關于函數特征,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

          3.導數與解析幾何或函數圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應引起注意。

        高二數學學習方法9

          一、抓好基礎。

          數學習題無非就是數學概念和數學思想的組合應用,弄清數學基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據。只有概念清楚,方法全面,遇到題目時,就能很快的得到解題方法,或者面對一個新的習題,就能聯想到我們平時做過的習題的方法,達到迅速解答。弄清基本定理是正確、快速解答習題的前提條件,特別是在立體幾何等章節的復習中,對基本定理熟悉和靈活掌握能使習題解答條理清楚、邏輯推理嚴密。反之,會使解題速度慢,邏輯混亂、敘述不清。

          那么如何抓基礎呢?

          1、看課本;

          2、在做練習時遇到概念題是要對概念的內涵和外延再認識,注意從不同的側面去認識、理解概念。

          3、理解定理的條件對結論的約束作用,反問:如果沒有該條件會使定理的結論發生什么變化?

          4、歸納全面的解題方法。要積累一定的典型習題以保證解題方法的完整性。

          5、認真做好我們網校同步課堂里面的每期的練習題,采用循環交替、螺旋式推進的方法,克服對基本知識基本方法的遺忘現象。

          二、制定好計劃和奮斗目標。

          復習數學時,要制定好計劃,不但要有本學期大的規劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,如按照老師的復習進度,今天復習到什么知識點,就應該在今天之內掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側面、不同角度。在每天的復習計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當天講了什么知識,歸納當天所學的知識?梢哉f,每天的習題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。

        高二數學學習方法10

          1.請概括的說一下學習的方法:

          曰:像做其他事一樣,學習數學要研究方法。我為你們推薦的方法是:超前學習,展開聯想,多做總結,找出合情合理。

          2.請談談超前學習的好處:

          曰:首先,超前學習能挖掘出自身的潛力,培養自學能力。經過超前學習,會發現自己能獨立解決許多問題,對提高自信心,培養學習興趣很有幫助。

          其次,夠消除對新知識的隱患。超前學習能夠發現在現有的基礎上,自己對新知識認識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,并非這樣。

          再次,超前學習中的有些內容,當時不能透徹理解,但經過深思之后,即使擱置一邊,大腦也會潛意識加工。當教師進度進行到這塊內容時,我們做第二次理解,會深刻的多。

          最后,超前學習能提高聽課質量。超前學習以后,我們發現新知識中的多數自己完全可以理解。只有少數地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時間放這少數地方的理解上,即好鋼用在刀刃上。事實上,一節課,能集中注意力的時間并不太多。

          3.請談談聯想與總結。

          曰:聯想與總結貫穿與學習過程中的始終。對每一知識的認識,必定要有認識基礎。尋找認識基礎的過程即是聯想,而認識基礎的是對以前知識的總結。以前總結的越簡潔、清晰、合理,越容易聯想。這樣就可以把新知識熔進原來的知識結構中為以后的某次聯想奠定基礎。聯想與總結在解題中特別有效。也許你以前并沒有這樣的認識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認識這一點,你的能力會更強。

          4.那么我們怎樣預習呢?

          曰:先說說學習的目標:

          (1)知道知識產生的背景,弄清知識形成的過程。

          (2)或早或晚的知道知識的地位和作用:

          (3)總結出認識問題的規律(或說出認識問題使用了以前的什么規律)。

          再說具體的做法:

          (1)對概念的理解。數學具有高度的抽象性。通常要借助具體的東西加以理解。有時借助字面的含義:有時借助其他學科知識。有時借助圖形理解概念的最高境界是意會。一定要在理解概念上下一番苦功夫后再做題。

          (2)對公式定理的預習,公式定理是使用最多的規律的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。

          (3)對于例題及習題的處理見上面的(2)及下面的第五條。

          5.請你再談談關于做題。

          曰:做題是學好數學的必要條件。題不在多而在精。你們要注重對基本題解決方法的挖掘和解題規律的總結。如解不等:0由分子分母異號可化為或去分母化為兩個一次不不等式組。它包含了一般的解不等式的思考、解決方法。有時你們會遇到很難解的題。如果做不出來,可模仿別人,但模仿的`不僅僅是形式,更重要的是人家的思考方法,為什么必然發生一樣。就是說,每作一道題都要說出想法,是哪條規律指導著你?具體的做法可落實在一題多解,一法多用,一題多變上,這些最能鍛煉你從多角度思考問題、與其他知識建立聯系的能力。

          經過精心的整理,有關高二數學學習:高手為您講解高二數學學習方法的內容已經呈現給大家,祝大家學習愉快!

        高二數學學習方法11

          高二數學學習:高二數學輕松高效學習方法

          高中的數學概念抽象,習題繁多,教學密度大,因此,高一過后,一些同學對數學望而生畏。其實,只要要培養濃厚的興趣,數學的學習不會很難,關鍵是你是否愿意去嘗試。當你敢于猜想,說明你擁有數學的思維能力;而當你能驗證猜想,則說明你已具備了學習數學的天賦!認真地學好高二數學,你能領悟到的還有:怎么用最少的材料做滿足要求的物件;如何配置資源并投入生產才能獲得最多利潤;優美的曲線為什么可以和代數方程建立起關系;為什么出車禍比體育彩中獎容易得多;為什么一個年段的各個班級常常出現生日相同的同學當你陷入數學魅力的圈套后,你已經開始走上學好數學的第一步!

          要具備培養分析,推斷能力。其實,數學不是知識性,經驗性的學科,而是思維性的學科,高中數學就充分體現了這一特點。所以,數學的學習重在培養觀察,分析和推斷能力,開發學習者的創造能力和創新思維。因此,在學習數學的過程中,要有意識地培養這些能力。關于學習方法和效果的關系,可以這樣描述:當你愿意去看懂大部分題目的答案時,你的考試成績應該可以輕松及格;當你熱衷于研究各種題型,定期做出小結的時候,你一定是班級數學方面的優等生;而當你習慣根據數學定義自己出題,并解決它,你的數學水平已經可以和你的老師并駕齊驅了!

          嘗試這些學習方法,您學習效率將會大力提升。當然,學習程度不同的學生需要不同的學習方法。

          如果你正因為數學的學習狀態低迷而苦惱,請按如下要求去做:預習后,帶著問題走進課堂,能讓你的學習事半功倍;想要做出完美的作業是無知的,出錯并認真訂正才更合理;老師要求的練習并不是題海,請認真完成,少動筆而能學好數學的天才即使有,也不是你;考試時,正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發揮正常水平。

          如果你正因為數學的學習成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成績,給自己定一個能接受的底線,定一個力所能及的奮斗目標;合理的作息時間和良好的學習習慣將有助你獲得穩定的學習成績,所以,請制定好學習計劃并努力堅持;把很多時間投入到一個科目中去,不如把學習精力合理分配給各個學科.人對于某一知識領域的學習常出現高原現象,就是說當達到一定程度,再努力時,進步開始不明顯。

        高二數學學習方法12

          1、反思解題本身是否正確

          由于在解題的過程中,可能會出現這樣或那樣的錯誤,因此在解完一道題后就很有必要進行審查自己的解題是否混淆了概念,是否忽視了隱含條件,是否特殊代替一般,是否忽視特例,邏輯上是否有問題,運算是否正確,題目本身是否有誤等。這樣做是為了保證解題無誤,這是解題后最基本的要求,真正認實到解題后思考的重要性。

          2、反思有無其它解題方法

          對于同一道題,從不同的角度去分析研究,可能會得到不同的啟示,從而引出多種不同的解法,當然,我們的目的不在于去湊幾種解法,而是通過不同的觀察側面,使我們的思維觸角伸向不同的方向,不同層次,發展學生的發散思維能力。例如對函數Y=(X^2—1)/(X^2+1)求值域,那么我們做了判別式法后,想想還有哪些方法可以解決此問題呢?比如反函數法,換元法,分離變量法。把這些方法想到了最后一步就是拿出你的數學財富本,把這幾種方法總結一下,哪種數學模型的求值域可以用這種方法。

          3、反思結論或性質在解題中的作用

          有些題目本身可能很簡單,但是它的結論或做完這道題目本身用到的性質卻有廣泛的應用,如果僅僅滿足于解答題目的本身,而忽視對結論或性質應用的思考、探索,那就可能會“揀到一粒芝麻,丟掉一個西瓜“。一道題中本身必然包含了具體的數學知識和方法,你要通過這道題把本題所蘊涵的知識和方法提煉出來,總結歸納。像函數,研究的不外乎是定義域,值域,單調性,最值等。每做一個題就可以把這些東西復習一下,這樣才能對的起你做的題。

          4、反思題目能否變換引申

          改變題目的條件,會導出什么新結論;保留題目的條件結論能否進一步加強;條件作類似的變換,結論能擴大到一般等等。象這樣富有創造性的全方位思考,常常是發現新知識、認識新知識的突破口。

          5、反思解決問題的思維方法能否遷移

          解完一道題目后,不妨深思一下解題程序,有時會突然發現:這種解決問題的思維模式竟然體現了一訓重要的數學思想方法,它對于解決一類問題大有幫助。這樣,有利于深化對數學知識和方法的認識,真正領悟到數學的思想和知識的結構,促進其創造性思維能力的發展,從而充分發揮自己的智能和潛能。

        高二數學學習方法13

          一、學習問題自我評價

          每一個學習不良者并不一定真的了解自己的問題之所在,要想對癥下藥,解決問題,對學習問題進行自我評價便尤其顯得重要了。對學習問題可主要從如下幾方面進行自我評價:

          l.時間安排問題

          學習不良者應該反省下列幾個問題:

          (1)是否很少在學習前確定明確的目標,比如要在多少時間里完成多少內容。

          (2)學習是否常常沒有固定的時間安排。

          (3)是否常拖延時間以至于作業都無法按時完成。

          (4)學習計劃是否是從來都只能在開頭的幾天有效。

          (5)一周學習時間是否不滿10小時。

          (6)是否把所有的時問都花在學習上了。

          2.注意力問題

          (1)注意力完全集中的狀態是否只能保持10至15分鐘。

          (2)學習時,身旁是否常有小說、雜志等使我分心的東西。

          (3)學習時是否常有想入非非的體驗。

          (4)是否常與人邊聊天邊學習。

          3.學習興趣問題

          (1)是否一見書本頭就發脹。

          (2)是否只喜歡文科,而不喜歡理科。

          (3)是否常需要強迫自己學習。

          (4)是否從未有意識地強化自己的學習行為。

          4.學習方法問題

          (1)是否經常采用題海戰來提高解題能力。

          (2)是否經常采用機械記憶法。

          (3)是否從未向學習好的同學討教過學習方法。

          (4)是否從不向老師請教問題。

          (5)是否很少主動鉆研課外輔助讀物。

          一般而言,回答上述問題,肯定的答案 (回答“是”)越多,學習的效率越低。每個有學習問題的學生都應從上述四類問題中列出自己主要毛病,然后有針對性地進行治療。例如一個學生毛病是這樣的:在時間安排上,他總喜歡把任務拖到第二夫去做;在注意力問題上,他總喜歡在寢室里邊與人聊天邊讀書;在學習興趣上,他對專業課不感興趣,對旁系的某些課卻很感興趣;在學習方法上主要采用機械記憶法。這位學生的病一列出來,我們就能夠采取有效的治療措施了。

        高二數學學習方法14

          你還在為高中數學學習而苦惱嗎?別擔心,看了高二數學學習:專家解讀數學學習方法以后你會有很大的收獲:

          一、全面復習,把書讀薄

          從歷年試卷的內容分布上可以看出,凡是考試大綱中提及的內容,都可能考到,甚至某些不太重要的內容,在某一年可以在大題中出現,如98年數學一中,不但第三題是一道純粹的解析幾何題,而且還有兩道題是與線性代數結合考了解析幾何的內容,可見猜題的復習方法是靠不住的,而應當參照考試大綱,全面復習,不留遺漏。

          全面復習不是生記硬背所有的知識,相反是要抓住問題的實質和各內容,各方法的本質聯系,把要記的東西縮小到最小程度,(要努力使自已理解所學知識,多抓住問題的聯系,少記一些死知識),而且,不記則已,記住了就要牢靠。事實證明,有些記憶是終生不忘的,而其它的知識又可以在記住基本知識的基礎上,運用它們之間的聯系而得到,這就是全面復習的含義。

          二、突出重點,精益求精

          在考試大綱要求中,對內容有理解,了解,知道三個層次的要求;對方法有掌握,會(或者能)兩個層次的要求,一般地說,要求理解的內容,要求掌握的方法,是考試的重點。在歷年考試中,這方面考題出現的概率較大;在同一份試卷中,這方面試題所占有的分數也較多。猜題的人,往往要在這方面下功夫。一般說來,也確能猜出幾分來。但遇到綜合題,這些題在主要內容中含有次要內容。這時,猜題便行不通了。

          我們講的突出重點,不僅要在主要內容和方法上多下功夫,更重要的是要去尋找重點內容與次要內容間的聯系,以主帶次,用重點內容擔挈整個內容。主要內容理解透了,其它的內容和方法迎刃而解,要抓住主要內容,不是放棄次要內容而孤立主要內容,而是從分析各內容的聯系,從比較中自然地突出主要內容。如微分中值定理,有羅爾定理,拉格朗日定理,柯西定理和泰勒公式。由于羅爾定理是拉格朗日定理的特殊情況,而柯西定理和泰勒公式又是拉格朗日定理的推廣。比較這些關系,便自然得到拉格朗日定理是核心,這這個定理搞深搞透,并從聯系中掌握好其它幾個定理,在考試大綱中,羅爾定理與拉格朗日定理都是要求理解的內容,都是考試重點,我們更突出拉氏定理,可謂是精益求精。

          三、基本訓練反復進行

          學習數學,要做一定數量的題,把基本功練熟練透,但我們不主張題海戰術,而是提倡精練,即反復做一些典型的題,做致電一題多解,一題多變。要訓練抽象思維能力,對些基本定理的證明,基本公式的推導,以及一些基本練習題,要作到不用書寫,就象棋手下盲棋一樣,只需用腦子默想,即能得到下確答案。這就是我們在前言中提到的,在20分鐘內完成10道客觀題.其中有些是不用動筆,一眼就能乍出答案的題,這樣才叫訓練有素,熟能生巧,基本功扎實的人,遇到難題辦法也多,不易被難倒。相反,作練習時,眼高手低,總找難題作,結果上了考場,遇到與自己曾經作過的類似的題目都有可能不會。不少考生把會作的題算錯了,歸為粗心大意,確實人會有粗心的,但基本功扎實的人,出了錯立即會發現,很少會粗心地出錯。

          記住了就要牢靠。事實證明,有些記憶是終生不忘的,而其它的知識又可以在記住基本知識的基礎上,運用它們之間的聯系而得到,這就是全面復習的含義。

          人,出了錯立即會發現,很少會粗心地出錯。

        高二數學學習方法15

          培養濃厚的興趣

          高中的數學概念抽象、習題繁多、教學密度大,因此,高一過后,一些同學對數學望而生畏。

          數學的學習其實不會很難,關鍵是你是否愿意去嘗試。當你敢于猜想,說明你擁有數學的思維能力;而當你能驗證猜想,則說明你已具備了學習數學的天賦!認真地學好高二數學,你能領悟到的還有:怎么用最少的材料做滿足要求的物件;如何配置資源并投入生產才能獲得最多利潤;優美的曲線為什么可以和代數方程式建立起關系;為什么出車禍比體彩中獎容易得多;為什么一個年段的各個班級常常出現生日相同的同學……

          當你陷入數學魅力的“圈套”后,你已經開始走上學好數學的第一步!

          培養分析、推斷能力

          其實,數學不是知識性。經驗性的學科,而是思維性的學科,高中數學就充分體現了這一特點。所以,數學的學習重在培養觀察、分析和推斷能力,開發學習者的創造能力和創新思維。因此,在學習數學的過程中,要有意識地培養這些能力。

          關于學習方法和效果的關系,可以這樣描述:當你愿意去看懂部分題目的答案時,你的考試成績應該可以輕松及格;當你熱衷于研究各種題型,,定期做出小結的時候,你一定是班級數學方面的優等生;而當你習慣根據數學定義自己出題,并解決它,你的數學水平已經可以和你的老師并駕齊驅了!

          嘗試這些學習方法

          學習程度不同的學生需要不同的學習方法。

          如果你正因為數學的學習狀態低迷而苦惱,請按如下要求去做:預習后,帶著問題走進課堂,能讓你的學習事半功倍;想要做出完美的作業是無知的,出錯并認真訂正才更合理;老師要求的練習并不是“題!保堈J真完成,少動筆而能學好數學的天才即使有 高中生物,也不是你;考試時,正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發揮正常水平。

          如果你正因為數學的學習成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成績,給自己定一個能接受的底線,定一個力所能及的奮斗目標;合理的作息時間和良好的學習習慣將有助你獲得穩定的學習成績,所以,請制定好學習計劃并努力堅持;把很多時間投入到一個科目中去,不如把學習精力合理分配給各個學科。人對于某一知識領域的學習常出現“高原現象”,就是說當達到一定程度,再努力時,進步開始不明顯。

        【高二數學學習方法精選15篇】相關文章:

        高二數學學習方法(15篇)12-30

        高二數學學習方法15篇12-30

        高二數學學習方法匯編15篇12-30

        數學學習方法(精選15篇)12-30

        數學學習方法精選15篇12-27

        高二語文學習方法(精選15篇)12-25

        數學高效學習方法09-22

        數學如何學習方法12-27

        小學數學學習方法精選15篇12-29

        有關數學的學習方法(精選9篇)12-28

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>