1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數(shù)學說課稿

        時間:2022-11-20 12:21:09 高中說課稿 我要投稿

        高中數(shù)學說課稿匯編15篇

          在教學工作者實際的教學活動中,有必要進行細致的說課稿準備工作,認真擬定說課稿,如何把說課稿做到重點突出呢?以下是小編精心整理的高中數(shù)學說課稿,歡迎大家分享。

        高中數(shù)學說課稿匯編15篇

        高中數(shù)學說課稿1

          本節(jié)課講述的是人教版高一數(shù)學(上)§3.2等差數(shù)列(第一課時)的內(nèi)容。

          一、教材分析

          1、教材的地位和作用:

          數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

          2、教學目標

          根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

          a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;初步引入“數(shù)學建!钡乃枷敕椒ú⒛苓\用。

          b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

          c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

          3、教學重點和難點

          根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:

          ①等差數(shù)列的概念。

         、诘炔顢(shù)列的通項公式的推導過程及應用。

          由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

          二、學情教法分析:

          對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

          針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。

          三、學法指導:

          在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

          四、教學程序

          本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。

          (一)復習引入:

          1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應的一列函數(shù)值,從而數(shù)列的通項公式也就是相應函數(shù)的______。(N﹡;解析式)

          通過練習1復習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

          2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

          3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

          通過練習2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

          (二)新課探究

          1、由引入自然的給出等差數(shù)列的概念:

          如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,

          這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

         、 “從第二項起”滿足條件;

          ②公差d一定是由后項減前項所得;

         、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)”);

          在理解概念的基礎上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:

          an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

          1. 9,8,7,6,5,4,……;√ d=-1

          2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

          3. 0,0,0,0,0,0,…….; √ d=0

          4. 1,2,3,2,3,4,……;×

          5. 1,0,1,0,1,……×

          其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

          由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

          2、第二個重點部分為等差數(shù)列的通項公式

          在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

          若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:

          a2 - a1 =d即:a2 =a1 +d

          a3 – a2 =d即:a3 =a2 +d = a1 +2d

          a4 – a3 =d即:a4 =a3 +d = a1 +3d

          猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:

          an=a1+(n-1)d

          此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

          a2 – a1 =d

          a3 – a2 =d

          a4 – a3 =d

          an – an-1=d

          將這(n-1)個等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)

          當n=1時,(1)也成立,

          所以對一切n∈N﹡,上面的公式都成立

          因此它就是等差數(shù)列{an}的通項公式。

          在迭加法的證明過程中,我采用啟發(fā)式教學方法。

          利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。

          對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

          在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想”的教學要求

          接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2,

          即an=2n-1以此來鞏固等差數(shù)列通項公式運用

          同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

         。ㄈ⿷门e例

          這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

          例1(1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

         。2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

          在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.

          例2在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

          在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

          例3是一個實際建模問題

          建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

          這道題我采用啟發(fā)式和討論式相結(jié)合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導學生將該實際問題轉(zhuǎn)化為數(shù)學模型------等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

          設置此題的目的:

          1.加強同學們對應用題的綜合分析能力,2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;3.再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建!钡臄(shù)學思想方法

          (四)反饋練習

          1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

          2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

          目的:對學生加強建模思想訓練。

          3、若數(shù)例{an}是等差數(shù)列,若bn = k an,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

          此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

          (五)歸納小結(jié)(由學生總結(jié)這節(jié)課的收獲)

          1.等差數(shù)列的概念及數(shù)學表達式.

          強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

          2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一

          3.用“數(shù)學建!彼枷敕椒ń鉀Q實際問題

          (六)布置作業(yè)

          必做題:課本P114習題3.2第2,6題

          選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。

        高中數(shù)學說課稿2

          各位老師大家好!

          我說課的內(nèi)容是人教 版 A版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。

          (一) 教材分析

          本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。

          (二) 學情分析

          本節(jié)課的 教學 對象是高二學生,這個年齡段的學生天性活潑,求知欲強,并且學習主動,在知識儲備上 知道兩點確定一條直線, 知道點與坐標的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學生的認知規(guī)律,還沒有形成自覺地把數(shù)學問題抽象化的能力。所以在教學設計時需 從 學生的最近發(fā)展區(qū)進行探究學習,盡量讓不同層次的學生都經(jīng)歷概念的形成、 鞏固 和應用過程。

          (三)教學目標

          1. 理解直線的傾斜角和斜率的概念, 理解直線的傾斜角的唯一性和斜率的存在性;

          2. 掌握過兩點的直線斜率的計算公式 ;

          3. 通過經(jīng) 歷從具體實例抽象出數(shù)學概念的過程,培養(yǎng)學生觀察、分析和概括能力;

          4 . 通過斜率概念的建立以及斜率公式的構(gòu)建,幫助學生進一步體會數(shù)形結(jié)合的思想,培養(yǎng)學

          生嚴謹求簡的數(shù)學精神。

          重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。

          難點: 直線的傾斜角與斜率的概念的形成 ,斜率公式的構(gòu)建。

          (四)教法和學法

          課堂教學應有利于學生的數(shù)學素質(zhì)的形成與發(fā)展,即在課堂教學過程中,創(chuàng)設問題的情景,激發(fā)學生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學生學習的主動性、積極性;有效的滲透數(shù)學思想方法,發(fā)展學生個性思維品質(zhì),這是本節(jié)課的教學原則。 根據(jù)這樣的教學原則,考慮到學生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用 設置問題串 的形式 , 啟發(fā)引導 學生 類比、聯(lián)想,產(chǎn)生知識遷移 ;通過 幾何畫板演示實驗、探索交流 相結(jié)合的教學方法激發(fā)學生 觀察、實驗,體驗知識的形成過程 ;由此循序漸進 , 使學生很自然達到本節(jié)課的學習目標。

          ( 五) 教學過程

          環(huán)節(jié) 1.指明研究方向 (3min)

          平面上的點可以用坐標表示,也就是幾何問題代數(shù)化。那么我們生活中見到的很多優(yōu)美的曲線能否用數(shù)來刻畫呢?

          簡介17 世紀法國數(shù)學家笛卡爾和費馬的數(shù)學史 。

          【設計意圖】 使學生對解析幾何的歷史以及它的研究方向有一個大致的了解

          由此引入課題(直線的傾斜角與斜率)

          環(huán)節(jié)2.活動探究(13min)

          【設計意圖】 讓學生經(jīng)歷探究過程后掌握傾斜角和斜率兩個概念,體會概念的產(chǎn)生是自然的,并不是硬性規(guī)定的。

          (探究活動一:傾斜角概念的得出)

          問題1. 如圖,對于平面直角坐標系內(nèi)過兩點有且只有一條直線,過一點P的位置能確定嗎?如圖,這些不同直線的區(qū)別在哪里?

          【設計意圖】引導學生發(fā)現(xiàn)過定點的不同直線,其傾斜程度不同。從而發(fā)現(xiàn)過直線上一點和直線的傾斜程度也能確定一條直線。

          問題2. 在直角坐標系中,任何一條直線與x軸都有一個相對傾斜程度,可以用一個什么樣的幾何量來反映一條直線與x軸的相對傾斜程度呢?

          【設計意圖】引導學生探索描述直線的傾斜程度的幾何要素, 由此引出傾斜角的概念:直線L與x軸相交,我們?nèi)軸為基準,x軸正向與直線L向上的方向之間所成的角α叫做直線L的傾斜角。

          問題3. 依據(jù)傾斜角的定義,小組合作探究傾斜角的范圍是多少?

          (探究活動二:斜率概念的得出)

          問題4. 日常生活中,還有沒有表示傾斜程度的量?

          問題5 . 如果使用“傾斜角”的概念,坡度實際就是 傾斜角的正切值,由此你認為還可以用怎樣的量來刻畫直線的傾斜程度?

          由學生已知坡度中“前進量”不能為0 ,補充 傾斜角 是90゜的直線 沒有斜率

          【設計意圖】 遷移、類比得出 我們把 一條直線的 傾斜角 的正切值叫做 這條 直線的 斜率 , 讓學生感受數(shù)學概念來源于生活,并體驗從直觀到抽象的過程培養(yǎng)學生觀察、歸納、聯(lián)想的能力。

          環(huán)節(jié) 3.過程體驗(斜率公式的發(fā)現(xiàn))(10min)

          問題6. 兩點能確定一條直線,那么兩點能確定一條直線的斜率么?

          先由每名學生各自舉出兩個特殊的點。例如A(1,2)、B(3,4),獨立研究如何由這兩點求斜率,再通過學生相互討論,師生共同交流提煉出解決問題的一般方法,進而把這種方法遷移到一般化的問題上來。得出斜率公式k=y2y1。

          為了深化對公式的理解,完善對公式的認識,我設計了如下三個思考問題:

          思考1:如果直線AB//x軸,上述結(jié)論還適用嗎?

          思考2:如果直線AB//y軸,上述結(jié)論還適用嗎?

          思考3:交換A、B位置,對比值有影響嗎?

          在學生充分思考、討論的基礎上,借助信息技術(shù)工具,一方面計算 的 值,另一方面計算傾斜角的正切值。讓學生親自操作幾何畫板,改變直線的傾斜程度,動態(tài)演示可以把教科書第84頁圖3.1-4所示的各種情況都展示出來,形象直觀,可使學生更好的把握斜率公式。

          環(huán)節(jié)4. 操作建構(gòu)(10min)

          第一部分( 教材例一 ) : 如圖,已知A(3,2),B(-4,1),C(0,-1), 求 直線AB,BC,CA的斜率,并判斷傾斜角是銳角還是鈍角。

          學生獨立完成后,請三位學生作答,師生共同評析,明確斜率公式的運用,強調(diào)可以從形的角度直接判斷直線的傾斜角是銳角還是鈍角,也可由直線的斜率的正負判斷。

          第二部分 ( 教材例二 ) : 在平面直角坐標系中,畫出經(jīng)過原 點且斜率分別為1,-1,2及-3的直線

          本題要求學生畫圖,目的是加強數(shù)形結(jié)合,我將請兩位同學上臺板演,其余同學在練習本上完成,因為直線經(jīng)過原點,所以只要在找出另外一點就可確定,再推導斜率公式時,學生已經(jīng)知道,斜率k的值與直線上P1,P2的位置無關(guān),因此,由已知直線的斜率畫直線時,可以再找出一個特殊點即可。

          環(huán)節(jié) 5.小結(jié)作業(yè)(4min)

          1、本節(jié)課你學到了哪些新的概念?他們之間有什么樣 的關(guān)系?

          2、怎樣求出已知兩點的直線的斜率?

          3 、本節(jié)課你還有哪些問題?

          兩點 直線 傾斜角 斜率

          一點一方向

          作業(yè): 必做題: P.86 第1,2,題

          選做題: P.90 探究與發(fā)現(xiàn):魔法師的地毯

          以上五個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,以明線和暗線雙線滲透。并注意調(diào)動學生自主探究與合作交流。注意教師適時的點撥引導,學生主體地位和教師的主導作用 得以 體現(xiàn)。能夠較好的實現(xiàn)教學目標,也使課標理念能夠很好的得到落實。

          (六) 板書設計

          3.1.1 直線的傾斜角與斜率

          1定義: 傾斜角 學生板演

          斜率

          2.斜率k與傾斜角之間的關(guān)系

          3.斜率公式

        高中數(shù)學說課稿3

          1.教材分析

          1-1教學內(nèi)容及包含的知識點

          (1)本課內(nèi)容是高中數(shù)學第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個內(nèi)容

          (2)包含知識點:點到直線的距離公式和兩平行線的距離公式

          1-2教材所處地位、作用和前后聯(lián)系

          本節(jié)課是兩條直線位置關(guān)系的最后一個內(nèi)容,在此之前,有對兩線位置關(guān)系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

          可見,本課有承前啟后的作用。

          1-3教學大綱要求

          掌握點到直線的距離公式

          1-4高考大綱要求及在高考中的顯示形式

          掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對值,直線垂直,最小值等。

          1-5教學目標及確定依據(jù)

          教學目標

          (1)掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。

          (2)培養(yǎng)學生探究性思維方法和由特殊到一般的研究能力。

          (3)認識事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學生轉(zhuǎn)化知識的能力。

          (4)滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發(fā)展。

          確定依據(jù):

          中華人民共和國教育部制定的《全日制普通高級中學數(shù)學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

          1-6教學重點、難點、關(guān)鍵

          (1)重點:點到直線的距離公式

          確定依據(jù):由本節(jié)在教材中的地位確定

         。2)難點:點到直線的距離公式的推導

          確定依據(jù):根據(jù)定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現(xiàn)。

          分析“嘗試性題組”解題思路可突破難點

         。3)關(guān)鍵:實現(xiàn)兩個轉(zhuǎn)化。一是將點線距離轉(zhuǎn)化為定點到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點的距離。

          2.教法

          2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結(jié)合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發(fā)學生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學模型。

          確定依據(jù):

          (1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。

          (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

          2-2教具:多媒體和黑板等傳統(tǒng)教具

          3.學法

          3-1發(fā)現(xiàn)法:豐富學生的數(shù)學活動,學生經(jīng)過練習、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學模型,再運用所得理論和方法去解決問題。

          一句話:還課堂以生命力,還學生以活力。

          3-2學情:

          (1)知識能力狀況,本節(jié)為兩線位置關(guān)系的最后一個內(nèi)容,在這之前學生已經(jīng)系統(tǒng)的學習了直線方程的各種形式,有對兩線位置關(guān)系的定性認識和對兩線相交的定量認識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質(zhì)中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數(shù)形結(jié)合的思想正逐漸趨于成熟。

          (2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。

         。3)生活經(jīng)驗:數(shù)學源于生活,生活中的點線距隨處可見,怎樣將實際問題數(shù)學化,是每個追求成長、追求發(fā)展的學生所渴求的一種研究能力。豐富的課堂數(shù)學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養(yǎng)能力。

          3-3學具:直尺、三角板

          3. 教學程序

          時,此時又怎樣求點A到直線

          的距離呢?

          生: 定性回答

          點明課題,使學生明確學習目標。

          創(chuàng)設“不憤不啟,不悱不發(fā)”的學習情景。

          練習

          比較

          發(fā)現(xiàn)

          歸納

          討論

          的距離為d

          (1) A(2,4),

         。簒 = 3, d=_____

          (2) A(2,4),

         。簓 = 3,d=_____

          (3) A(2,4),

         。簒 – y = 0,d=_____

          嘗試性題組告訴學生下手不難,還負責特例檢驗,從而增強學生參與的信心。

          請三個同學上黑板板演

          師: 請這三位同學分別說說自己的解題思路。

          生: 回答

          教學機智:應沉淀為三種思路:一,根據(jù)定義轉(zhuǎn)化為定點到垂足的距離;二,利用等積法轉(zhuǎn)化為直角三角形中三個頂點之間的距離;三,利用直角三角形中的邊角關(guān)系。

          視回答的情況,老師進行肯定、修正或補充提問:“還有其他不同的思路嗎”。

          說解題思路,一是讓學生清晰有條理的表達自己的思考過程,二是其求解過程提示了證明的途徑(根據(jù)定義或畫坐標線時正好交出一個直角三角形)

          師:很好,剛才我們解決了定點到特殊直線的距離問題,那么,點P(x0,y0)到一般直線

          :Ax+By+C=0(A,B≠0)的距離又怎樣求?

          教學機智:如學生反應不大,則補充提問:上面三個題的解題思路對這個問題有啟示嗎?

          生:方案一:根據(jù)定義

          方案二:根據(jù)等積法

          方案三: ......

          設置此問,一是使學生的認知由特殊向一般轉(zhuǎn)化,發(fā)現(xiàn)可能的方法,二是讓學生體驗數(shù)學活動充滿著探索和創(chuàng)造,感受數(shù)學的生機和樂趣。

          師生一起進行比較,鎖定方案二進行推證。

          “師生共作”體現(xiàn)新型師生觀,且//時,又怎樣求這兩線的距離?

          生:計算得線線距離公式

          師:板書點到直線的距離公式,兩平行線間距離公式

          “沒有新知識,新知識均是舊知識的組合”,創(chuàng)設此問可發(fā)揮學生的創(chuàng)造性,增加學生的成就感。

          反思小結(jié)

          經(jīng)驗共享

          (六 分 鐘)

          師: 通過以上的學習,你有哪些收獲?(知識,能力,情感)。有哪些疑問?誰能答這些疑問?

          生: 討論,回答。

          對本節(jié)課用到的技能,數(shù)學思維方法等進行小結(jié),使學生對本節(jié)知識有一個整體的認識。

          共同進步,各取所長。

          練習

          (五 分 鐘)

          P53 練習 1, 2,3

          熟練的用公式來求點線距離和線線距離。

          再度延伸

         。ㄒ 分 鐘)

          探索其他推導方法

          “帶著問題進課堂,帶著更多的問題出課堂”,讓學生真正學會學習。

          4. 教學評價

          學生完成反思性學習報告,書寫要求:

          (1) 整理知識結(jié)構(gòu)

          (2) 總結(jié)所學到的基本知識,技能和數(shù)學思想方法

          (3) 總結(jié)在學習過程中的經(jīng)驗,發(fā)明發(fā)現(xiàn),學習障礙等,說明產(chǎn)生障礙的原因

          (4) 談談你對老師教法的建議和要求。

          作用:

          (1) 通過反思使學生對所學知識系統(tǒng)化。反思的過程實際上是學生思維內(nèi)化,知識深化和認知牢固化的一個心理活動過程。

          (2) 報告的寫作本身就是一種創(chuàng)造性活動。

          (3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調(diào)整,及時進行補償性教學。

          5. 板書設計

          (略)

          6. 教學的反思總結(jié)

          心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。

        高中數(shù)學說課稿4

          一、教材分析

          本節(jié)是人教A版高中數(shù)學必修三第二章《統(tǒng)計》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。

          從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點,也是本章內(nèi)容的難點之一。線性回歸是最簡單的回歸分析,學好回歸分析是學好統(tǒng)計學的重要基礎。

          二、教學目標

          根據(jù)課標的要求及前面的分析,結(jié)合高二學生的認知特點確定本節(jié)課的教學目標如下:

          知識與技能:

          1. 知道最小二乘法和回歸分析的思想;

          2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

          過程與方法:

          經(jīng)歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數(shù)學應用和使用技術(shù)的意識。

          情感態(tài)度與價值觀

          通過合作學習,養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

          三、重點難點分析:

          根據(jù)目標分析,確定教學重點和難點如下:

          教學重點:

          1. 知道最小二乘法和回歸分析的思想;

          2.會求回歸直線

          教學難點:

          建立回歸思想,會求回歸直線

          四、教學設計

          提出問題

          理論探究

          驗證結(jié)論

          小結(jié)提升

          應用實踐

          作業(yè)設計

          教學環(huán)節(jié)

          內(nèi)容及說明

          創(chuàng)設情境

          探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

          問題與引導設計

          師生活動

          設計意圖

          問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關(guān)還是負相關(guān)?

          教師提問,學生

          通過動手操作得

          出散點圖并回答

          以舊“探”新:對舊的知識進行簡要的提問復習,為本節(jié)課學生能夠更好的建構(gòu)新的知識做好充分的準備;尤其為一些后進生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎。

          教師引導:通過上節(jié)課的學習,我們知道散點圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學們根據(jù)得出的散點圖,思考下面的問題2.

          問題2. 甲同學判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學判斷可能為25,而丙同學則判斷可能為37,你對甲,

          乙,丙三個同學的判斷有什么看法?

          學生能夠表達自己的看法。有的學生可能會認為乙同學的判斷是錯誤的;有的學生可能認為甲乙丙三個同學的判斷都是對的,答案不唯一

          該問題具有探究性、啟發(fā)性和開放性。鼓勵學生大膽表達自己的看法。通過設計該問題,引導學生自己發(fā)現(xiàn)問題,注意到散點圖中點的分布具有一定規(guī)律,體會觀測點與回歸直線的關(guān)系;進而引起學生的對本節(jié)課內(nèi)容的興趣。

          問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多

          在小組討論的形式下和比較哪個小組提出的問題多,學生之間會充分的進行交流,提出問題

          通過小組討論比較,調(diào)動學生的學習積極性和興趣,活躍課堂氣氛,達到學生自己提出問題的效果,培養(yǎng)學生的學生創(chuàng)新思維和問題意識。

          學生可能提出的問題:

         、贋槭裁醇、丙同學的判斷結(jié)果正確的可能性較大,而乙同學判斷結(jié)果正確的可能性較?

          ②某人年齡在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?

         、圻@些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?

         、茉鯓佑脭(shù)學的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學生“火熱的思考”成果

        高中數(shù)學說課稿5

          一、本節(jié)內(nèi)容的地位與重要性

          "分類計數(shù)原理與分步計數(shù)原理"是《高中數(shù)學》一節(jié)獨特內(nèi)容。這一節(jié)課與排列、組合的基本概念有著緊密的聯(lián)系,通過對這一節(jié)課的學習,既可以讓學生接受、理解分類計數(shù)原理與分步計數(shù)原理,還為日后排列、組合和二項式定理的教學做好準備,起到奠基的重要作用。

          二、關(guān)于教學目標的確定

          根據(jù)兩個基本原理的地位和作用,我認為本節(jié)課的教學目標是:

         。1)使學生正確理解兩個基本原理的概念;

          (2)使學生能夠正確運用兩個基本原理分析、解決一些簡單問題;

         。3)提高分析、解決問題的能力

         。4)使學生樹立"由個別到一般,由一般到個別"的認識事物的辯證唯物主義哲學思想觀點。

          三、關(guān)于教學重點、難點的選擇和處理

          中學數(shù)學課程中引進的關(guān)于排列、組合的計算公式都是以兩個計數(shù)原理為基礎的,而一些較復雜的排列、組合應用題的求解,更是離不開兩個基本原理,所以正確理解兩個基本原理并能解決實際問題是學習本章的重點內(nèi)容。

          正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件。而原理中提到的分步和分類,學生不是一下子就能理解深刻的,面對復雜的事物和現(xiàn)象學生對分類和分步的選擇容易產(chǎn)生錯誤的認識,所以分類計數(shù)原理和分步計數(shù)原理的準確應用是本節(jié)課的教學難點。必需使學生認清兩個基本原理的實質(zhì)就是完成一件事需要分類還是分步,才能使學生接受概念并對如何運用這兩個基本原理有正確清楚的認識。教學中兩個基本問題的引用及引伸,就是為突破難點做準備。

          四、關(guān)于教學方法和教學手段的選用

          根據(jù)本節(jié)課的內(nèi)容及學生的實際水平,我采取啟發(fā)引導式教學方法并充分發(fā)揮電腦多媒體的輔助教學作用。

          啟發(fā)引導式作為一種啟發(fā)式教學方法,體現(xiàn)了認知心理學的基本理論。符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發(fā)展相結(jié)合、教師的主導作用與學生的主體地位相統(tǒng)一等原則,教學過程中,教師采用點撥的方法,啟發(fā)學生通過主動思考、動手操作來達到對知識的"發(fā)現(xiàn)"和接受,進而完成知識的內(nèi)化,使書本的知識成為自己的知識。

          電腦多媒體以聲音、動畫、影像等多種形式強化對學生感觀的刺激,這一點是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學生的學習興趣,加大一堂課的信息容量,使教學目標更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學服務。

          五、關(guān)于學法的指導

          "授人以魚,不如授人以漁",在教學過程中,不但要傳授學生課本知識,還要培養(yǎng)學生主動觀察、主動思考、自我發(fā)現(xiàn)的學習能力,增強學生的綜合素質(zhì),從而達到教學的目標。教學中,教師創(chuàng)設疑問,學生想辦法解決疑問,通過教師的啟發(fā)點撥,類比推理,在積極的雙邊活動中,學生找到了解決疑難的方法。整個過程貫穿"設疑"——"思索"——"發(fā)現(xiàn)"——"解惑"四個環(huán)節(jié),學生隨時對所學知識產(chǎn)生有意注意,思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學生認知水平,培養(yǎng)了學習能力。

          六、關(guān)于教學程序的設計

         。ㄒ唬┱n題導入

          這是本章的第一節(jié)課,是起始課,講起始課時,把這一學科的內(nèi)容作一個大概的介紹,能使學生從一開始就對將要學習的知識有一個初步的了解,并為下面的學習打下思想基礎。所以,首先閱讀引言,明確任務,激發(fā)興趣。由學生感興趣的乒乓球比賽提出問題,引出學習本節(jié)的必要性,明確研究計數(shù)方法是本章內(nèi)容的獨特性,從應用的廣泛看學習本章內(nèi)容的重要性。同時板書課題(分類計數(shù)原理與分步計數(shù)原理)

          這樣做,能使學生明白本節(jié)內(nèi)容的地位和作用,激發(fā)其學習新知識的欲望,為順利完成教學任務做好思維上的準備。

         。ǘ┬抡n講授

          通過幻燈片給出問題,配圖分析,講清坐火車與坐汽車兩類方法均可,每類中任一種辦法都可以獨立地把從甲地到乙地這件事辦好。

          緊跟著給出:

          引申1:若甲地到乙地一天中還有4班輪船可乘,那么一天中,坐這些交通工具從甲地到一點共有多少種不同的走法?

          引伸2:若完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,每一類中的每一種方法均可完成這件事,那么完成這件事共有多少種不同方法?

          這個問題的兩個引申由漸入深、循序漸進為學生接受分類計數(shù)原理做好了準備。

          板書分類計數(shù)原理內(nèi)容:

          完成一件事,有 類辦法。在第1類辦法中有 種不同方法,在第2類辦法中有 種不同的方法,……,在第 類辦法中有 種不同方法,那么完成這件事共有 種不同的方法。(也稱加法原理)

          此時,趁學生對于原理有了一個較清晰的認識,引導學生分析分類計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片)

         。1)各分類之間相互獨立,都能完成這件事;

          (2)根據(jù)問題的特點在確定的分類標準下進行分類;

         。3)完成這件事的任何一種方法必屬于某一類,并且分別屬于不同兩類的兩種方法都是不同的方法。

          這樣做加深學生對分類計數(shù)原理的正確理解,突出了重點,突破了難點。

          接下來給出問題2:(出示幻燈片)

          由A村去B村的道路有3條,由B村去C村的道路有2條(見圖9-1),從A村經(jīng)B村去C村,共有多少種不同的走法?

          提出問題:問題1與問題2同是研究從甲地到乙地的不同走法,請找出這兩個問題的不之處?學生會發(fā)現(xiàn)問題1中采用乘火車或乘汽車都可以從甲地到乙地,而問題2中必須經(jīng)過先乘火車后乘汽車兩個步驟才能完成從甲地到乙地這件事。

          問題2的講授采用給出問題,配圖分析,組織討論,強調(diào)分步。用多媒體配不同的顏色閃現(xiàn)出六種不同的走法,讓學生列式求出不同走法數(shù),并列舉所有走法。

          歸納得出:分步計數(shù)原理(板書原理內(nèi)容)

          分步計數(shù)原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法。那么,完成這件事共有

          N=m1×m2×…×mn

          種不同的方法。

          同樣趁學生對定理有一定的認識,引導學生分析分步計數(shù)原理內(nèi)容,啟發(fā)總結(jié)得下面三點注意:(出示幻燈片)

         。1) 各步驟相互依存,只有各個步驟完成了,這件事才算完成;

         。2) 根據(jù)問題的特點在確定的分步標準下分步;

         。3) 分步時要注意滿足完成一件事必須并且只需連續(xù)完成這N個步驟這件事才算完成。

         。ㄈ⿷门e例

          教材例1:(書架取書問題)引導學生分析解答,注意區(qū)分是分類還是分步。

          例2:由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復)?本題設置了4個問題:

         。1) 每一個三位數(shù)是由什么構(gòu)成的?(三個整數(shù)字)

         。2) 023是一個三位數(shù)嗎?(百位上不能是0)

         。3) 組成一個三位數(shù)需要怎么做?(分成三個步驟來完成:第一步確定百位上的數(shù)字;第二步確定十位上的數(shù)字;第三步確定個位上的數(shù)字)

         。4) 怎樣表述?

          教師巡視指導、并歸納

          解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復,共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法。根據(jù)分步計數(shù)原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.

          答:可以組成100個三位整數(shù)。

          (教師的連續(xù)發(fā)問、啟發(fā)、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高。

          教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質(zhì)的理解,周密的考慮,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎)

         。ㄋ模w納小結(jié)

          師:什么時候用分類計數(shù)原理、什么時候用分步計數(shù)原理呢?

          生:分類時用分類計數(shù)原理,分步時用分步計數(shù)原理。

          師:應用兩個基本原理時需要注意什么呢?

          生:分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的。

         。ㄎ澹┱n堂練習

          P222:練習1~4.學生板演第4題

          (對于題4,教師有必要對三個多項式乘積展開后各項的構(gòu)成給以提示)

         。┎贾米鳂I(yè)

          P222:練習5,6,7.

          補充題:

          1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?

          (提示:按十位上數(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))

          2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù)。

          (提示:需要按三個志愿分成三步。共有m(m-1)(m-2)種填寫方式)

          3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?

         。ㄌ崾荆嚎梢杂孟旅娣椒▉砬蠼猓海1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))

          4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

         。ㄌ崾荆河捎8+5=13>10,所以10人中必有3人既會英語又會日語。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

          只要大家用心學習,認真復習,就有可能在高中的戰(zhàn)場上考取自己理想的成績。

        高中數(shù)學說課稿6

          各位評委老師,大家好!

          我是本科數(shù)學**號選手,今天我要進行說課的課題是高中數(shù)學必修一第一章第三節(jié)第一課時《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時候板書課題,以緩解緊張)。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節(jié)課的設計方案。懇請在座的專家評委批評指正。

          一、教材分析

          1、 教材的地位和作用

         。1)本節(jié)課主要對函數(shù)單調(diào)性的學習;

         。2)它是在學習函數(shù)概念的基礎上進行學習的,同時又為基本初等函數(shù)的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

         。3)它是歷年高考的熱點、難點問題

          (根據(jù)具體的課題改變就行了,如果不是熱點難點問題就刪掉)

          2、 教材重、難點

          重點:函數(shù)單調(diào)性的定義

          難點:函數(shù)單調(diào)性的證明

          重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)

          3.學情分析

          高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環(huán)節(jié)總是創(chuàng)設恰當?shù)膯栴}情境,引導學生積極思考,培養(yǎng)他們的邏輯思維能力。從學生的認知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學的優(yōu)勢;由于學生在概念的掌握上缺少系統(tǒng)性、嚴謹性,在教學中注意加強.

          二、教學目標

          知識目標:

         。1)函數(shù)單調(diào)性的定義

         。2)函數(shù)單調(diào)性的證明

          能力目標:

          培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

          情感目標:

          培養(yǎng)學生勇于探索的精神和善于合作的意識

         。ㄟ@樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)

          三、教法學法分析

          1、教法分析

          “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調(diào)動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導法、小組合作討論法、反饋式評價法

          2、學法分析

          “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

          (前三部分用時控制在三分鐘以內(nèi),可適當刪減)

          四、教學過程

          1、以舊引新,導入新知

          通過課前小研究讓學生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導學生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

          2、創(chuàng)設問題,探索新知

          緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。

          讓學生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的數(shù)學用語。

          讓學生自主學習函數(shù)單調(diào)區(qū)間的定義,為接下來例題學習打好基礎。

          3、 例題講解,學以致用

          例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

          例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

          例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

          學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

          4、歸納小結(jié)

          本節(jié)課我們主要學習了函數(shù)單調(diào)性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。

          5、作業(yè)布置

          為了讓學生學習不同的數(shù)學,我將采用分層布置作業(yè)的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

          6、板書設計

          我力求簡潔明了地概括本節(jié)課的學習要點,讓學生一目了然。

          (這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

          五、教學評價

          本節(jié)課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調(diào)動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內(nèi)部動機和外界刺激協(xié)調(diào)作用,促進其數(shù)學素養(yǎng)不斷提高。

        高中數(shù)學說課稿7

          一.說教材

          1.本節(jié)課主要內(nèi)容是線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標函數(shù)。應用線性規(guī)劃的圖解法解決一些實際問題。

          2.地位作用:線性規(guī)劃是數(shù)學規(guī)劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經(jīng)濟管理等許多方面的實際問題。簡單的線性規(guī)劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內(nèi)容的學習,使學生進一步了解數(shù)學在解決實際問題中的應用,以培養(yǎng)學生學習數(shù)學的興趣、應用數(shù)學的意識和解決實際問題的能力。

          3.教學目標

          (1)知識與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標函數(shù)。

          了解并初步應用線性規(guī)劃的圖解法解決一些實際問題。

          (2)過程與方法:提高學生數(shù)學地提出、分析和解決問題的能力,發(fā)展學生數(shù)學應用意識,力求對現(xiàn)實世界中蘊含的一些數(shù)學模式進行思考和作出判斷。

          (3)情感、態(tài)度與價值觀:體會數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學思想,逐步認識數(shù)學的應用價值,提高學習數(shù)學的興趣,樹立學好數(shù)學的自信心。

          4.重點與難點

          重點:理解和用好圖解法

          難點:如何用圖解法尋找線性規(guī)劃的最優(yōu)解。

          二.說教學方法

          教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質(zhì)。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:

          (1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。這能充分調(diào)動學生的主動性和積極性。

          (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學生對知識進行主動建構(gòu);有利于突出重點、解決難點;也有利于發(fā)揮學生的創(chuàng)造性。

          (3)體現(xiàn)“等價轉(zhuǎn)化”、“數(shù)形結(jié)合”的思想方法。這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。

          三.說學法指導

          教給學生方法比教給學生知識更重要,本節(jié)課注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯(lián)想轉(zhuǎn)化、動手實驗、練習鞏固。

          (1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。

          (2)聯(lián)想轉(zhuǎn)化:學生通過分析、探索、得出解決問題的方法。

          (3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。

          (4)練習鞏固:讓學生知道數(shù)學重在運用,從而檢驗知識的應用情況,找出未掌握的內(nèi)容及其差距。

          四.說教學程序

          1、導入課題: 由一個不等式組表示平面區(qū)域轉(zhuǎn)化為在此平面區(qū)域內(nèi)一二元一次數(shù)的最值問題,造成學生認知沖突。

          3、導學達標之一:創(chuàng)設情境、形成概念

          通過引例的問題讓學生探索解決新問題的方法。

          (設計意圖:利用已經(jīng)學過的知識逐步分析,學以致用,使學生經(jīng)歷數(shù)學知識的形成過程,從而提高學生數(shù)學的地提出、分析和解決問題的能力。)

          然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關(guān)概念:線性約束條件、目標函數(shù)、線性目標函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。

          (設計意圖:引導學生觀察和分析問題,激發(fā)學生的探索欲望,從而培養(yǎng)學生的解決問題和總結(jié)歸納的能力。)

          4.導學達標之二:針對問題、舉例講解、形成技能

          例一:課本61頁例3

          (創(chuàng)設意境:,練習是使學生明白數(shù)學來源于實際又運用于實際,同時使學生進初步應用線性規(guī)劃的圖解法解決一些實際問題。)

          6.鞏固目標:

          練習一:學生做課堂練習P64例4

          (叫學生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優(yōu)解的一種求法。)

          練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調(diào)查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)

          (設計意圖:通過實際問題,激發(fā)學生興趣,培養(yǎng)學生的數(shù)學應用意識,力求學生能夠?qū)ΜF(xiàn)實生活中蘊含的一些數(shù)學模式進行思考和作出判斷。)

          7.歸納與小結(jié):

          小結(jié)本課的主要學習內(nèi)容是什么?(由師生共同來完成本課小結(jié))

          (創(chuàng)設意境:讓學生參與小結(jié),引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數(shù)學思維習慣)

          8.布置作業(yè):

          P64. 2

          五.說板書設計

          板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。

        高中數(shù)學說課稿8

          一、說設計理念

          《數(shù)學課程標準》指出要讓學生感受生活中處處有數(shù)學,用數(shù)學知識解決生活中的實際問題。

          基于這一理念,我在教學過程中力求聯(lián)系學生生活實際和已有的知識經(jīng)驗,從學生感興趣的素材,設計新穎的導入與例題教學,給數(shù)學課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學氛圍,讓學生經(jīng)歷知識的探究過程,培養(yǎng)學生感受生活中的數(shù)學和用數(shù)學知識解決生活問題的能力,體驗數(shù)學的應用價值。

          二、教材分析:

         。ㄒ唬┙滩牡牡匚缓妥饔

          有關(guān)統(tǒng)計圖的認識,小學階段主要認識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖?紤]到扇形統(tǒng)計圖在日常生活中的廣泛應用,《標準》把它作為必學內(nèi)容安排在本單元。本單元是在前面學習了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎上進行教學的。主要通過熟悉的事例使學生體會到扇形統(tǒng)計圖的實用價值。

         。ǘ┙虒W目標

          1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點和作用

          2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。

          3、讓學生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。

         。ㄈ┙虒W重點:

          1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。

          2、認識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。

         。ㄋ模┙虒W難點:

          1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。

          2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。

          二、學情分析

          本單元的教學是在學生已有統(tǒng)計經(jīng)驗的基礎上,學習新知的。六年級的學生已經(jīng)學習了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎上,通過新舊知識對比,自然生成新知識點。

          三、設計理念和教法分析

          1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學生”,由“傳授知識”轉(zhuǎn)向“引導探索”,“教師是組織者、領(lǐng)導者。”將課堂設置問題給學生,讓學生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。

          2、運用探究法。探究學習的內(nèi)容以問題的形式出現(xiàn)在教師的引導下,學生自主探究,讓學生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導學生獲取信息并合作交流。

          四、說學法

          《數(shù)學課程標準》指出有效的數(shù)學學習不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學生學習數(shù)學的重要方式。教學時,我通過學生感興趣的話題引入,引導學生關(guān)注身邊的數(shù)學,使學生體會到觀察、概括、想象、遷移等數(shù)學學習方法,在師生互動中讓每個學生都動口,動手,動腦。培養(yǎng)學生學習的主動性和積極性。

          五、說教學程序

          本課分成創(chuàng)設情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應用,全課總結(jié)四環(huán)節(jié)。

          六、說教學過程

         。ㄒ唬⿵土曇

          1、復習舊知

          提問:我們學習過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?

          2、引入新課

          (二)自主探索,學習新知

          新知識教學分二步教學:第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。

          第二步實踐應用環(huán)節(jié)。在教學中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學生運用到剛才學習到的知識來解決生活中的一些問題,并鞏固剛才所學的知識,為學生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進行推理與判斷

          三、課堂總結(jié)

          四、布置作業(yè)。

          五、板書設計:

        高中數(shù)學說課稿9

          各位評委老師好:今天我說課的題目是

          是必修章第節(jié)的內(nèi)容,我將以新課程標準的理念指導本節(jié)課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。

          一、 教材分析

          是在學習了基礎上進一步研究 并為后面學習 做準備,在整個

          高中數(shù)學中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

          根據(jù)新課標要求和學生實際水平我制定以下教學目標

          1、 知識能力目標:使學生理解掌握

          2、 過程方法目標:通過觀察歸納抽象概括使學生構(gòu)建領(lǐng)悟 數(shù)學思想,培養(yǎng) 能力

          3、 情感態(tài)度價值觀目標:通過學習體驗數(shù)學的科學價值和應用價值,培養(yǎng)善于

          觀察勇于思考的學習習慣和嚴謹 的科學態(tài)度

          根據(jù)教學目標、本節(jié)特點和學生實際情況本節(jié)重點是 ,由于學生對 缺少感性認識,所以本節(jié)課的重點是

          二、教法學法

          根據(jù)教師主導地位和學生主體地位相統(tǒng)一的規(guī)律,我采用引導發(fā)現(xiàn)法為本節(jié)課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。

          三、 教學過程

          四、 教學程序及設想

          1、由……引入:

          把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經(jīng)驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

          對于本題:……

          2、由實例得出本課新的知識點是:……

          3、講解例題。

          我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:

          4、能力訓練。

          課后練習……

          使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

          5、總結(jié)結(jié)論,強化認識。

          知識性內(nèi)容的小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì);數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質(zhì)目標。

          6、變式延伸,進行重構(gòu)。

          重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。

          五、教學評價

          學生學習的學習結(jié)果評價當然重要,但是更重要的是學生學習的過程評價,教師應

          當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數(shù)學能力的發(fā)現(xiàn),以及學習的興趣和成就感。

        高中數(shù)學說課稿10

          一、說教材

          1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學生歸納出反比例函數(shù)的概念,并進一步體會函數(shù)是刻畫變量之間關(guān)系的數(shù)學模型,從中體會函數(shù)的模型思想。因此本節(jié)課重點是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學思想方法有:類比,轉(zhuǎn)化,建模。

          2.學情分析:對八年級學生來說,雖然他們已經(jīng)對函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應用有所掌握,但他們面對新的一次函數(shù)時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點是理解和領(lǐng)悟反比例函數(shù)的概念。

          二、說教學目標

          根據(jù)本人對《數(shù)學課程標準》的理解與分析,考慮學生已有的認知結(jié)構(gòu)、心理特征,我把本課的目標定為:

          1.從現(xiàn)實的情境和已有的知識經(jīng)驗出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。

          2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念。

          三、說教法

          本節(jié)課從知識結(jié)構(gòu)呈現(xiàn)的角度看,為了實現(xiàn)教學目標,我建立了“創(chuàng)設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現(xiàn)了知識的生成與發(fā)展的過程,也符合學生的認知規(guī)律。于是,從教學內(nèi)容的性質(zhì)出發(fā),我設計了如下的課堂結(jié)構(gòu):創(chuàng)設出電流、行程等情境問題讓學生發(fā)現(xiàn)新知,把上述問題進行類比,導出概念,獲得新知,最后總結(jié)評價、內(nèi)化新知。

          四、說學法

          我認為學生將實際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學生攻克難點創(chuàng)造條件,同時考慮到本課的重點是反比例函數(shù)概念的教學,也考慮到概念教學要從大量實際出發(fā),通過事例幫助完成定義。

          好學教育:

          因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態(tài),并隨著問題的深入而跳躍。

        高中數(shù)學說課稿11

          一、說教材

          1、從在教材中的地位與作用來看

          《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要資料,它不僅僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關(guān)計算等等,并且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。

          2、從學生認知角度看

          從學生的思維特點看,很容易把本節(jié)資料與等差數(shù)列前n項和從公式的'構(gòu)成、特點等方面進行類比,這是進取因素,應因勢利導。不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不一樣,這對學生的思維是一個突破,另外,對于q=1這一特殊情景,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

          3、學情分析

          教學對象是剛進入高中的學生,雖然具有必須的分析問題和解決問題的本事,邏輯思維本事也初步構(gòu)成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,所以片面、不嚴謹。

          4、重點、難點

          教學重點:公式的推導、公式的特點和公式的運用。

          教學難點:公式的推導方法和公式的靈活運用。

          公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。

          二、說目標

          知識與技能目標:

          理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關(guān)的問題。

          過程與方法目標:

          經(jīng)過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維本事和逆向思維的本事。

          情感與態(tài)度價值觀:

          經(jīng)過對公式推導方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。

          三、說過程

          學生是認知的主體,設計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的構(gòu)成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設計了如下的教學過程:

          1、創(chuàng)設情境,提出問題

          在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我能夠滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢

          設計意圖:設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的進取性。故事資料緊扣本節(jié)課的主題與重點。

          此時我問:同學們,你們明白西薩要的是多少粒小麥嗎引導學生寫出麥?倲(shù)。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

          設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而立刻相減呢在整個教學關(guān)鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應舍得花時間營造知識構(gòu)成過程的氛圍,突破學生學習的障礙。同時,構(gòu)成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。

          2、師生互動,探究問題

          在肯定他們的思路后,我之后問:1,2,22,…,263是什么數(shù)列有何特征應歸結(jié)為什么數(shù)學問題呢

          探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系(學生會發(fā)現(xiàn),后一項都是前一項的2倍)

          探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)

          設計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學生看來卻是“不可思議”的,所以教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維本事的良好契機。

          經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。教師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢

          設計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心。

          3、類比聯(lián)想,解決問題

          這時我再順勢引導學生將結(jié)論一般化,

          那里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

          設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自我探究公式,從而體驗到學習的愉快和成就感。

          對不對那里的q能不能等于1等比數(shù)列中的公比能不能為1q=1時是什么數(shù)列此時sn=(那里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

          再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來(引導學生得出公式的另一形式)

          設計意圖:經(jīng)過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構(gòu),另一方面使學生由簡單地模仿和理解,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的本事。這一環(huán)節(jié)十分重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

          4、討論交流,延伸拓展

         。裕

        高中數(shù)學說課稿12

          各位老師:

          大家好!我叫周婷婷,來自湖南科技大學。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教A版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節(jié)課的分析和設計:

          一、教材分析

          1.教材所處的地位和作用

          現(xiàn)代社會是一個信息技術(shù)發(fā)展很快的社會,算法進入高中數(shù)學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養(yǎng)學生的理性精神和實踐能力。

          2.教學的重點和難點

          重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉(zhuǎn)化為算法語言。

          二、教學目標分析

          1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。

          2.能力目標:讓學生感悟人們認識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學生的觀察能力,表達能力和邏輯思維能力。

          3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。

          三、教學方法分析

          采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學生的探究論證、邏輯思維能力。

          四、學情分析

          算法這部分的使用性很強,與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節(jié)課的內(nèi)容。

          五、教學過程分析

          1.創(chuàng)設情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學家朱世杰的數(shù)學作品《四元玉鑒》,告訴學生們章頭圖正是體現(xiàn)了中國古代數(shù)學與現(xiàn)代計算機科學的聯(lián)系,它們的基礎都是"算法".

          「設計意圖」是為了充分挖掘章頭圖的教學價值,體現(xiàn)

          1)算法概念的由來;

          2)我們將要學習的算法與計算機有關(guān);

          3)展示中國古代數(shù)學的成就;

          4)激發(fā)學生學習算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)

          2.引入新課:在這一環(huán)節(jié)我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導學生關(guān)注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數(shù)據(jù),體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。

          之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據(jù)剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)

          3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數(shù)學思想的領(lǐng)悟。

          這兩道例題均選自課本的例1和例2.

          例1是讓我們設定一個程序以判斷一個數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學習的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質(zhì)數(shù)應滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學生認識到求解結(jié)構(gòu)中存在"重復".為導出一般問題的算法創(chuàng)造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:

          (1)寫出的算法必須能解決一類問題,并且能夠重復使用。

         。2)要使算法盡量簡單、步驟盡量少。

         。3)要保證算法正確,且計算機能夠執(zhí)行。

          在例1的基礎上我們繼續(xù)研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

          4.課堂小結(jié):

         。1)算法的概念和算法的基本特征

          (2)算法的描述方法,算法可以用自然語言描述。

          (3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學生把握本節(jié)課的重點,對所學知識有一個系統(tǒng)整體的認識。(約6分鐘)

          5.布置作業(yè):課本練習1、2題

          課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內(nèi)容。對作業(yè)實施分層設置,分必做和選做,利于拓展學生的自主發(fā)展的空間。

        高中數(shù)學說課稿13

          各位老師:

          大家好!

          我叫***,來自**。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:

          一、教材分析

          1.教材所處的地位和作用

          古典概型是一種特殊的數(shù)學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質(zhì),又是以后學習條件概率的基礎,起到承前啟后的作用。

          2.教學的重點和難點

          重點:理解古典概型及其概率計算公式。

          難點:古典概型的判斷及把一些實際問題轉(zhuǎn)化成古典概型。

          二、教學目標分析

          1.知識與技能目標

         。1)通過試驗理解基本事件的概念和特點

         。2)在數(shù)學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。

          2、過程與方法:

          經(jīng)歷公式的推導過程,體驗由特殊到一般的數(shù)學思想方法。

          3、情感態(tài)度與價值觀:

          (1)用具有現(xiàn)實意義的實例,激發(fā)學生的學習興趣,培養(yǎng)學生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。

          (2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。

          三、教法與學法分析

          1、教法分析:根據(jù)本節(jié)課的特點,采用引導發(fā)現(xiàn)和歸納概括相結(jié)合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學生的學習興趣,調(diào)動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

          2、學法分析:學生在教師創(chuàng)設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結(jié)合,體現(xiàn)了學生的主體地位,培養(yǎng)了學生由具體到抽象,由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度。

         、鍎(chuàng)設情景、引入新課

          在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:

          試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個數(shù)學小組至少完成20次(最好是整十數(shù)),最后由代表匯總;

          試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數(shù),要求每個數(shù)學小組至少完成60次(最好是整十數(shù)),最后由代表匯總。

          在課上,學生展示模擬試驗的操作方法和試驗結(jié)果,并與同學交流活動感受,教師最后匯總方法、結(jié)果和感受,并提出兩個問題。

          1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

          不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結(jié)果是頻率,而不是概率。

          2.根據(jù)以前的學習,上述兩個模擬試驗的每個結(jié)果之間都有什么特點?]

          「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養(yǎng)學生運用數(shù)學語言的能力。隨著新問題的提出,激發(fā)了學生的求知欲望,通過觀察對比,培養(yǎng)了學生發(fā)現(xiàn)問題的能力。

         、嫠伎冀涣、形成概念

          學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關(guān)特點加以說明,加深對新概念的理解。

          [基本事件有如下的兩個特點:

          (1)任何兩個基本事件是互斥的;

         。2)任何事件(除不可能事件)都可以表示成基本事件的和.]

          「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學生分析問題的能力,同時也教會學生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關(guān)鍵。

          例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?

          先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。

          「設計意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學生直觀的感受到對象的總數(shù),而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點

          觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:

          讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,教師最后補充說明。

          [經(jīng)概括總結(jié)后得到:

          (1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)

         。2)每個基本事件出現(xiàn)的可能性相等。(等可能性)

          我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

          「設計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學的化歸思想。啟發(fā)誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。

          ㈢觀察分析、推導方程

          問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?

          教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計算任何事件的概率計算公式:

          「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數(shù)學化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

          提問:

         。1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?

          (2)在使用古典概型的概率公式時,應該注意什么?

          「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。

         、枥}分析、推廣應用

          例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

          學生先思考再回答,教師對學生沒有注意到的關(guān)鍵點加以說明。

          「設計意圖」讓學生明確決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。鞏固學生對已學知識的掌握。

          例3同時擲兩個骰子,計算:

         。1)一共有多少種不同的結(jié)果?

         。2)其中向上的點數(shù)之和是5的結(jié)果有多少種?

         。3)向上的點數(shù)之和是5的概率是多少?

          先給出問題,再讓學生完成,然后引導學生分析問題,發(fā)現(xiàn)解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數(shù)。

          「設計意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學生數(shù)學思維情趣,形成學習數(shù)學知識的積極態(tài)度。

         、樘骄克枷、鞏固深化

          問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?

          要求學生觀察對比兩種結(jié)果,找出問題產(chǎn)生的原因。

          「設計意圖」通過觀察對比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現(xiàn)了學生的主體地位,逐漸養(yǎng)成自主探究能力。

         、昕偨Y(jié)概括、加深理解

          1.基本事件的特點

          2.古典概型的特點

          3.古典概型的概率計算公式

          學生小結(jié)歸納,不足的地方老師補充說明。

          「設計意圖」使學生對本節(jié)課的知識有一個系統(tǒng)全面的認識,并把學過的相關(guān)知識有機地串聯(lián)起來,便于記憶和應用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學生的認知更上一層。

         、氩贾米鳂I(yè)

          課本練習1、2、3

          「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對本節(jié)課的理解。

        高中數(shù)學說課稿14

          一、教材分析

          1、教材所處的地位和作用

          奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

          奇偶性是函數(shù)的一條重要性質(zhì),教材從學生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎。所以,本節(jié)課起著承上啟下的重要作用。

          2、學情分析

          從學生的認知基礎看,學生在初中已經(jīng)學習了軸對稱圖形和中心對稱圖形,并且有了必須數(shù)量的簡單函數(shù)的儲備。同時,剛剛學習了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

          從學生的思維發(fā)展看,高一學生思維本事正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設、推理來思考和解決問題、

          3、教學目標

          基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:

          【知識與技能】

          1)能確定一些簡單函數(shù)的奇偶性。

          2)能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

          【過程與方法】

          經(jīng)歷奇偶性概念的構(gòu)成過程,提高觀察抽象本事以及從特殊到一般的歸納概括本事。

          【情感、態(tài)度與價值觀】

          經(jīng)過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學的對稱美。

          從課堂反應看,基本上到達了預期效果。

          4、教學重點和難點

          重點:函數(shù)奇偶性的概念和幾何意義。

          幾年的教學實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現(xiàn)下頭的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了研究函數(shù)定義域的問題。所以,在介紹奇、偶函數(shù)的定義時,必須要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。所以,我把函數(shù)的奇偶性概念設計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。

          難點:奇偶性概念的數(shù)學化提煉過程。

          由于,學生看待問題還是靜止的、片面的,抽象概括本事比較薄弱,這對建構(gòu)奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數(shù)學化提煉過程設計為本節(jié)課的難點。

          二、教法與學法分析

          1、教法

          根據(jù)本節(jié)教材資料和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,使學生始終處于主動探索問題的進取狀態(tài),從而培養(yǎng)思維本事。從課堂反應看,基本上到達了預期效果。

          2、學法

          讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發(fā)生、發(fā)展、構(gòu)成的過程,從而使學生掌握知識。

          三、教學過程

          具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設疑導入、觀圖激趣;指導觀察、構(gòu)成概念;學生探索、領(lǐng)會定義;知識應用,鞏固提高;總結(jié)反饋;分層作業(yè),學以致用。下頭我對這六個環(huán)節(jié)進行說明。

         。ㄒ唬┰O疑導入、觀圖激趣

          由于本節(jié)資料相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的資料,使學生的思維迅速定向,到達開始就明確目標突出重點的效果。

          用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數(shù)圖象。經(jīng)過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。

          (二)指導觀察、構(gòu)成概念

          在這一環(huán)節(jié)中共設計了2個探究活動。

          探究1、2數(shù)學中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是經(jīng)過學生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學生很快就說出函數(shù)圖象關(guān)于Y軸(原點)對稱。之后學生填表,從數(shù)值角度研究圖象的這種特征,體此刻自變量與函數(shù)值之間有何規(guī)律引導學生先把它們具體化,再用數(shù)學符號表示。借助課件演示(令比較得出等式,再令,得到)讓學生發(fā)現(xiàn)兩個函數(shù)的對稱性反應到函數(shù)值上具有的特性,然后經(jīng)過解析式給出嚴格證明,進一步說明這個特性對定義域內(nèi)任意一個都成立。最終給出偶函數(shù)(奇函數(shù))定義(板書)。

          在這個過程中,學生把對圖形規(guī)律的感性認識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。

         。ㄈ⿲W生探索、領(lǐng)會定義

          探究3下列函數(shù)圖象具有奇偶性嗎?

          設計意圖:深化對奇偶性概念的理解。強調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)

         。ㄋ模┲R應用,鞏固提高

          在這一環(huán)節(jié)我設計了4道題

          例1確定下列函數(shù)的奇偶性

          選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下頭完成。

          例1設計意圖是歸納出確定奇偶性的步驟:

          (1)先求定義域,看是否關(guān)于原點對稱;

          (2)再確定f(-x)=-f(x)還是f(-x)=f(x)。

          例2確定下列函數(shù)的奇偶性:

          例3確定下列函數(shù)的奇偶性:

          例2、3設計意圖是探究一個函數(shù)奇偶性的可能情景有幾種類型?

          例4(1)確定函數(shù)的奇偶性。

         。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

          例4設計意圖加強函數(shù)奇偶性的幾何意義的應用。

          在這個過程中,我重點關(guān)注了學生的推理過程的表述。經(jīng)過這些問題的解決,學生對函數(shù)的奇偶性認識、理解和應用都能提升很大一個高度,到達當堂消化吸收的效果。

         。ㄎ澹┛偨Y(jié)反饋

          在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學法的特色。

          在本節(jié)課的最終對知識點進行了簡單回顧,并引導學生總結(jié)出本節(jié)課應積累的解題經(jīng)驗。知識在于積累,而學習數(shù)學更在于知識的應用經(jīng)驗的積累。所以提高知識的應用本事、增強錯誤的預見本事是提高數(shù)學綜合本事的很重要的策略。

         。┓謱幼鳂I(yè),學以致用

          必做題:課本第36頁練習第1-2題。

          選做題:課本第39頁習題1、3A組第6題。

          思考題:課本第39頁習題1、3B組第3題。

          設計意圖:面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步到達不一樣的人在數(shù)學上得到不一樣的發(fā)展。

        高中數(shù)學說課稿15

          各位老師,大家好!

          我是08數(shù)學本科(2)班的xx,我今天說課的題目是集合的含義與表示.下面我先對教材進行分析.

          一、教材分析

          集合的含義與表示是選自高中新課標A版教材必修1第一章第一節(jié)內(nèi)容。在此之前,學生已經(jīng)接觸過集合的一些相關(guān)概念,如自然數(shù)的集合、有理數(shù)的集合.集合是一個基礎性概念,是數(shù)學以至所有科學的基礎,應用廣泛. 集合是高考的對象,在高考中以選擇題或填空題的形式出現(xiàn),在高考中具有不可忽視的地位.本節(jié)內(nèi)容能夠培養(yǎng)學生的探索精神和數(shù)學素養(yǎng).

          二、教學目標

          根據(jù)上述對教材的分析,我確定本節(jié)課的教學目標為 1. 知識與技能目標 理解集合的含義,集合的元素的特征,元素與集合的關(guān)系. 掌握集合的表示方法. 了解常用的數(shù)集.培養(yǎng)學生的抽象思維能力、分析能力、判斷能力.

          2. 過程與方法目標

          應用自然語言與集合語言描述不同的具體問題,與學生一道歸納出集合的含義. 掌握從具體到抽象,從特殊到一般的研究方法.

          3. 情感態(tài)度價值觀目標

          使得學生感受數(shù)學的簡潔美與和諧統(tǒng)一美. 培養(yǎng)學生正確的、高尚的、唯物的價值觀.培養(yǎng)學生獨立思考、敢于創(chuàng)新、勇于探索的科學精神,激發(fā)同學們學習數(shù)學的興趣. 三、重點和難點

          重點:根據(jù)上述對教材的分析,確定的教學目標,我確定本節(jié)課的教學重點為:集合的含義,集合的表示方法.

          難點:考慮到學生已有的知識基礎與認知能力,我認為教學難點是集合的表示方法. 關(guān)鍵:學好本節(jié)課的關(guān)鍵是理解集合的含義,掌握集合的表示方法. 四、教學方法 1.學情分析

          (1)生理特點:高中階段是智力發(fā)展的關(guān)鍵年齡,學生邏輯思維從經(jīng)驗型逐步走向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨之迅速發(fā)展.

          (2)心理特點:高中學生雖有好奇,好表現(xiàn)的因素,更有知道原理、明白方法的理性愿望,希望平等交流研討,厭煩空洞的說教.

         。3)認知障礙:有的學生遺忘了學過的知識,有的學生想象能力與歸納能力較差. 2.教法學法

          根據(jù)上面的分析,從高中生的心理特點和認知水平出發(fā),結(jié)合學生的實際情況與認知障礙,按照突出重點,突破難點,本節(jié)課采用學生廣泛參與,師生共同探討的啟發(fā)式教學法. 五、教學過程(用描述性語言,不要具體化。

          根據(jù)以上分析,我對本節(jié)課的教學過程作如下安排:

          1.引入課題

          先引導學生回顧自然數(shù)的集合,有理數(shù)的集合,再提出問題:集合的含義是什么呢? 2.新課講解

         。1)分析自然數(shù)的集合,有理數(shù)的集合,不等式的解集,歸納出它們的共同特征:都是由一些確定的、互不相同的對象組成的整體.

         。2)根據(jù)上面的分析與討論,以及歸納出的共同特征,講解集合的含義,元素與集合的關(guān)系,一些常見的數(shù)集.

         。3)為了化解教學難點,我將結(jié)合具體的例子,講解列舉法與描述法.

         。4)為了加強學生對集合的含義的理解,我將與學生一起歸納出集合的元素的特征. (5)為了提高學生解決實際問題的能力,我將講解三個不同題型、不同難度的例題. 3.課堂練習

          為了使得學生掌握等差數(shù)列的定義與通項公式,提高解題技能,我將在課堂上布置3道不同類型、不同難度的練習題.

          4.歸納小結(jié)

          完成以上的教學內(nèi)容后,我將組織學生對本節(jié)課的內(nèi)容做一個總結(jié),強調(diào)重點. 5.布置作業(yè)

          為了鞏固所學知識,激發(fā)學生的求知欲,我將布置3道不同類型、不同難度的作業(yè)題. 六、板書設計

          結(jié)合中學黑板的特點,我將如下板書本節(jié)教學內(nèi)容: 集合的含義與表示 實例 1. 2. 3. 集合的含義 常見數(shù)集 元素與集合的關(guān)系 集合的表示方法 集合的元素的特征 例1 例2 例3 練習 作業(yè) 各位老師,以上只是我的一種預設方案,但課堂千變?nèi)f化,我將根據(jù)實際情況靈活掌握,隨機發(fā)揮.本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝! 1.1.2集合間的基本關(guān)系

          數(shù)學必修1第一章第二節(jié)第1小節(jié)《集合間的基本關(guān)系》說課稿.

          一 、教學內(nèi)容分析

          集合概念及其理論是近代數(shù)學的基石,集合語言是現(xiàn)代數(shù)學的基本語言,通過學習、使用集合語言,有利于學生簡潔、準確地表達數(shù)學內(nèi)容,高中課程只將集合作為一種語言來學

          習,學生將學會使用最基本的集合語言表示有關(guān)的數(shù)學對象,發(fā)展運用數(shù)學語言進行交流的能力.

          本章集合的初步知識是學生學習、掌握和使用數(shù)學語言的基礎,是高中數(shù)學學習的出發(fā)點。本小節(jié)內(nèi)容是在學習了集合的概念以及集合的表示方法、元素與集合的從屬關(guān)系的基礎上,進一步學習集合與集合之間的關(guān)系,同時也是下一節(jié)學習集合之間的運算的基礎,因此本小節(jié)起著承上啟下的重要作用.

          本節(jié)課的教學重視過程的教學,因此我選擇了啟發(fā)式教學的教學方式。通過問題情境的設置,層層深入,由具體到抽象,由特殊到一般,幫助學生的逐步提升數(shù)學思維。

          二、學情分析

          本節(jié)課是學生進入高中學習的第3節(jié)數(shù)學課,也是學生正式學習集合語言的第3節(jié)課。由于一切對于學生來說都是新的,所以學生的學習興趣相對來說比較濃厚,有利于學習活動的展開。而集合對于學生來說既熟悉又陌生,熟悉的是在初中就已經(jīng)使用數(shù)軸求簡單不等式(組)的解,用圖示法表示四邊形之間的關(guān)系,陌生的是使用集合的語言來描述集合之間的關(guān)系。而從具體的實例中抽象出集合之間的包含關(guān)系的本質(zhì),對于學生是一個挑戰(zhàn)。

          根據(jù)上面對教材的分析,并結(jié)合學生的認知水平和思維特點,確定本節(jié)課的教學目標和教學重、難點如下:

          三、教學目標: 知識與技能目標:

          (1)理解集合之間包含和相等的含義; (2)能識別給定集合的子集;

         。3)能使用Venn圖表達集合之間的包含關(guān)系 過程與方法目標:

         。1)通過復習元素與集合之間的關(guān)系,對照實數(shù)的相等與不相等的關(guān)系聯(lián)系元素與集合之間的從屬關(guān)系,探究集合之間的包含和相等關(guān)系;

         。2)初步經(jīng)歷使用最基本的集合語言表示有關(guān)的數(shù)學對象的過程,體會集合語言,發(fā)展運用數(shù)學語言進行交流的能力;

          情感、態(tài)度、價值觀目標:

         。1)了解集合的包含、相等關(guān)系的含義,感受集合語言在描述客觀現(xiàn)實和數(shù)學問題中的意義;

         。2)探索利用直觀圖示(Venn圖)理解抽象概念,體會數(shù)形結(jié)合的思想。

          四、本節(jié)課教學的重、難點:

          重點:(1)幫助學生由具體到抽象地認識集合與集合之間的關(guān)系——子集; (2)如何確定集合之間的關(guān)系; 難點:集合關(guān)系與其特征性質(zhì)之間的關(guān)系 五、教學過程設計

          1.新課的引入——設置問題情境,激發(fā)學習興趣

          我們的教學方式,要服務于學生的學習方式。那我們來思考一下,在何種情況下,學生學得最好?我想,當學生感興趣時;當學生智力遭遇到挑戰(zhàn)時;當學生能自主地參與探索和創(chuàng)新時;當學生能夠?qū)W以致用時;當學生得到鼓勵與信任時,他們學得最好。數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上,這樣才能讓學生體驗到成就感,保持積極的興奮狀態(tài)。而集合的語言對于學生來說是陌生的,雖然比較容易理解,但是由于概念多,符號多,學生容易產(chǎn)生厭煩心理,如何讓學生長時間興趣盎然地投入到集合關(guān)系的學習中呢?我在整個教學過程中層層設問,不斷地向?qū)W生提出挑戰(zhàn),以激發(fā)學生的學習興趣。在引入的環(huán)節(jié),我設計了下面的問題情境1:元素與集合有“屬于”、“不屬于”的關(guān)系;數(shù)與數(shù)之間有“相等”、“不相等”的關(guān)系;那么集合與集合之間有什么樣的關(guān)系呢?問題的拋出猶如一石激起千層浪,在這兒,答案并不重要,重要的是學生迫切尋求答案的愿望,激發(fā)學生的求知欲。在學生討論的基礎上提出這一節(jié)課我們來共同探討集合之間的基本關(guān)系。(板書課題)

          2.概念的形成——從特殊到一般、從具體到抽象,從已知到未知 問題情境1的探究:

          具體實例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四邊形} (3)A={x| x>2}, B={x| x>1};

          此環(huán)節(jié)設置了三個具體實例,包含了有限集、無限集、數(shù)集(包括不等式)、圖形的集合。第一個例子為有限集數(shù)集,最為簡單直觀,對學生初步認識子集,理解子集的概念很有幫助;第二個例子是圖形集合且是無限集,需要通過探究圖形的性質(zhì)之間的關(guān)系找出集合間的關(guān)系;第三個例子是無限數(shù)集,基于學生初中階段已經(jīng)學習了用數(shù)軸表示不等式的解集,啟發(fā)學生可以通過數(shù)形結(jié)合的方式來研究集合之間的關(guān)系,從而引出Venn圖。對第一個例子,借助多媒體演示動畫,幫助學生體會“任意”性。使學生在經(jīng)歷直觀感知、觀察發(fā)現(xiàn)的基礎上建構(gòu)子集的概念,并且我在教學的過程中特別注重讓學生說,借此來學習運用集合語言進行交流,對于學生的創(chuàng)新意識和創(chuàng)新結(jié)果我都給予積極的評價。

          3、概念的剖析

         。1)A中的元素x與集合B的關(guān)系決定了集合A與集合B之間的關(guān)系,

         。2)符號的表示,Venn圖的引入及其用Venn圖表示集合的方法。

          這里引入了許多新的符號,對初學者來說容易混淆,是一個易錯點,因此我在這里設置了一個填空小練習:

          0 {0}, {正方形} {矩形},三角形 {等邊三角形} {梯形} {平行四邊形},{x|-1

          并引導學生類比數(shù)與數(shù)之間的“≤”“≥”符號來記憶“?”“?”符號。

          4、概念的深化——集合的相等與真子集

          問題情境2:如果集合A是集合B的子集,那么對于任意的x?A,有x?B;那么對于集合B中的任何一個元素,它與集合A之間又可能是什么關(guān)系呢?

        【高中數(shù)學說課稿】相關(guān)文章:

        高中數(shù)學的說課稿11-04

        高中數(shù)學經(jīng)典說課稿范文06-24

        高中數(shù)學集合說課稿11-12

        高中數(shù)學面試說課稿11-18

        高中數(shù)學《集合》說課稿10-31

        高中數(shù)學函數(shù)的說課稿11-17

        高中數(shù)學的說課稿范文04-29

        高中數(shù)學說課稿05-01

        高中數(shù)學說課稿06-09

        高中數(shù)學的優(yōu)秀說課稿12-04

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>