1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-20 10:56:35 高中說課稿 我要投稿

        實用的高中數學說課稿范文匯編5篇

          作為一名無私奉獻的老師,往往需要進行說課稿編寫工作,說課稿有助于教學取得成功、提高教學質量。那么優秀的說課稿是什么樣的呢?下面是小編幫大家整理的高中數學說課稿5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

        實用的高中數學說課稿范文匯編5篇

        高中數學說課稿 篇1

          說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。

          下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。

          一、 背景分析

          1、學習任務分析

          平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。

          本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。

          2、學生情況分析

          學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。

          二、 教學目標設計

          《普通高中數學課程標準(實驗)》 對本節課的要求有以下三條:

          (1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

          (2)體會平面向量的數量積與向量投影的關系。

          (3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。

          從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

          綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:

          1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

          2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,

          并能運用性質和運算律進行相關的運算和判斷;

          3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。

          三、課堂結構設計

          本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:

          即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。

          四、 教學媒體設計

          和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:

          1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。

          2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。

          平面向量數量積的物理背景及其含義

          一、 數量積的概念 二、數量積的性質 四、應用與提高

          1、 概念: 例1:

          2、 概念強調 (1)記法 例2:

          (2)“規定” 三、數量積的運算律 例3:

          3、幾何意義:

          4、物理意義:

          五、 教學過程設計

          課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:

          活動一:創設問題情景,激發學習興趣

          正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:

          問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?

          問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

          期望學生回答:物理模型→概念→性質→運算律→應用

          問題3:如圖所示,一物體在力F的作用下產生位移S,

          (1)力F所做的功W= 。

          (2)請同學們分析這個公式的特點:

          W(功)是 量,

          F(力)是 量,

          S(位移)是 量,

          α是 。

          問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。

          問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。

          問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。

          活動二:探究數量積的概念

          1、概念的抽象

          在分析“功”的計算公式的基礎上提出問題4

          問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

          學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。

          2、概念的明晰

          已知兩個非零向量

          與

          ,它們的夾角為

          ,我們把數量 ︱

          ︱·︱

          ︱cos

          叫做

          與

          的數量積(或內積),記作:

          ·

          ,即:

          ·

          = ︱

          ︱·︱

          ︱cos

          在強調記法和“規定”后 ,為了讓學生進一步認識這一概念,提出問題5

          問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

          角

          的范圍0°≤

          <90°

          =90°0°<

          ≤180°

          ·

          的符號

          通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。

          3、探究數量積的幾何意義

          這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。

          如圖,我們把│

          │cos

          (│

          │cos

          )叫做向量

          在

          方向上(

          在

          方向上)的投影,記做:OB1=│

          │cos

          問題6:數量積的幾何意義是什么?

          這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。

          4、研究數量積的物理意義

          數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題 一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。

          問題7:

          (1) 請同學們用一句話來概括功的數學本質:功是力與位移的數量積 。

          (2)嘗試練習:一物體質量是10千克,分別做以下運動:

         、、在水平面上位移為10米;

         、、豎直下降10米;

          ③、豎直向上提升10米;

         、堋⒀貎A角為30度的斜面向上運動10米;

          分別求重力做的功。

          活動三:探究數量積的運算性質

          1、性質的發現

          教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:

          (1)將嘗試練習中的① ② ③的結論推廣到一般向量,你能得到哪些結論?

          (2)比較︱

          ·

          ︱與︱

          ︱×︱

          ︱的大小,你有什么結論?

          在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。

          2、明晰數量積的性質

          3、性質的證明

          這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。

          活動四:探究數量積的運算律

          1、運算律的發現

          關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9

          問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?

          通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。

          學生可能會提出以下猜測: ①

          ·

          =

          ·

         、(

          ·

          )

          =

          (

          ·

          ) ③(

          +

          )·

          =

          ·

          +

          ·

          猜測①的正確性是顯而易見的。

          關于猜測②的正確性,我提示學生思考下面的問題:

          猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

          學生通過討論不難發現,猜測②是不正確的。

          這時教師在肯定猜測③的基礎上明晰數量積的運算律:

          2、明晰數量積的運算律

          3、證明運算律

          學生獨立證明運算律(2)

          我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:

          當λ<0時,向量

          與λ

          ,

          與λ

          的方向 的關系如何?此時,向量λ

          與

          及

          與λ

          的夾角與向量

          與

          的夾角相等嗎?

          師生共同證明運算律(3)

          運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。

          在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。

          活動五:應用與提高

          例1、(師生共同完成)已知︱

          ︱=6,︱

          ︱=4,

          與

          的夾角為60°,求

          (

          +2

          )·(

          -3

          ),并思考此運算過程類似于哪種運算?

          例2、(學生獨立完成)對任意向量

          ,b是否有以下結論:

          (1)(

          +

          )2=

          2+2

          ·

          +

          2

          (2)(

          +

          )·(

          -

          )=

          2—

          2

          例3、(師生共同完成)已知︱

          ︱=3,︱

          ︱=4, 且

          與

          不共線,k為何值時,向量

          +k

          與

          -k

          互相垂直?并思考:通過本題你有什么收獲?

          本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的'同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。

          為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:

          1、 下列兩個命題正確嗎?為什么?

         、、若

          ≠0,則對任一非零向量

          ,有

          ·

          ≠0.

          ②、若

          ≠0,

          ·

          =

          ·

          ,則

          =

          .

          2、已知△ABC中,

          =

          ,

          =

          ,當

          ·

          <0或

          ·

          =0時,試判斷△ABC的形狀。

          安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,

          通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。

          活動六:小結提升與作業布置

          1、本節課我們學習的主要內容是什么?

          2、平面向量數量積的兩個基本應用是什么?

          3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?

          4、類比向量的線性運算,我們還應該怎樣研究數量積?

          通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下

          一節做好鋪墊,繼續激發學生的求知欲。

          布置作業:

          1、課本P121習題2.4A組1、2、3。

          2、拓展與提高:

          已知

          與

          都是非零向量,且

          +3

          與7

          -5

          垂直,

          -4

          與 7

          -2

          垂直求

          與

          的夾角。

          在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。

          六、教學評價設計

          評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:

          1、 通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定

          性的評價。

          2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。

          3、 通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。

          4、 通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。

        高中數學說課稿 篇2

          我說課的內容是高中數學第二冊(上冊)第七章《直線和圓的方程》中的第六節“曲線和方程”的第一課時,下面我的說課將從以下幾個方面進行闡述:

          一、教材分析

          教材的地位和作用

          “曲線和方程”這節教材揭示了幾何中的形與代數中的數相統一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,這正體現了解析幾何這門課的基本思想,對全部解析幾何教學有著深遠的影響。學生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學習的入門之徑。如果以為學生不真正領悟曲線和方程的關系,照樣能求出方程、照樣能計算某些難題,因而可以忽視這個基本概念的教學,這不能不說是一種“舍本逐題”的偏見,應該認識到這節“曲線和方程”的開頭課是解析幾何教學的“重頭戲”!

          根據以上分析,確立教學重點是:“曲線的方程”與“方程的曲線”的概念;難點是:怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程。

          二、教學目標

          根據教學大綱的要求以及本教材的地位和作用,結合高二學生的認知特點確定教學目標如下:

          知識目標:

          1、了解曲線上的點與方程的解之間的一一對應關系;

          2、初步領會“曲線的方程”與“方程的曲線”的概念;

          3、學會根據已有的情景資料找規律,進而分析、判斷、歸納結論;

          4、強化“形”與“數”一致并相互轉化的思想方法。

          能力目標:

          1、通過直線方程的引入,加強學生對方程的解和曲線上的點的一一對應關系的認識;

          2、在形成曲線和方程的概念的教學中,學生經歷觀察、分析、討論等數學活動過程,探索出結論,并能有條理的闡述自己的觀點;

          3、能用所學知識理解新的概念,并能運用概念解決實際問題,從中體會轉化化歸的思想方法,提高思維品質,發展應用意識。

          情感目標:

          1、通過概念的引入,讓學生感受從特殊到一般的認知規律;

          2、通過反例辨析和問題解決,培養合作交流、獨立思考等良好的個性品質,以及勇于批判、敢于創新的科學精神。

          三、重難點突破

          “曲線的方程”與“方程的曲線”的概念是本節的重點,這是由于本節課是由直觀表象上升到抽象概念的過程,學生容易對定義中為什么要規定兩個關系產生困惑,原因是不理解兩者缺一都將擴大概念的外延。由于學生已經具備了用方程表示直線、拋物線等實際模型,積累了感性認識的基礎,所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學生對概念表述的嚴密性進行探索,自然地得出定義。為了強化其認識,又決定用集合相等的概念來解釋曲線和方程的對應關系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

          怎樣利用定義驗證曲線是方程的曲線,方程是曲線的方程是本節的難點。因為學生在作業中容易犯想當然的錯誤,通常在由已知曲線建立方程的時候,不驗證方程的解為坐標的點在曲線上,就斷然得出所求的是曲線方程。這種現象在高考中也屢見不鮮。為了突破難點,本節課設計了三種層次的問題,幻燈片9是概念的直接運用,幻燈片10是概念的逆向運用,幻燈片11是證明曲線的方程。通過這些例題讓學生再一次體會“二者”缺一不可。

          四、學情分析

          此前,學生已知,在建立了直角坐標系后平面內的點和有序實數對之間建立了一一對應關系,已有了用方程(有時以函數式的形式出現)表示曲線的感性認識(特別是二元一次方程表示直線),現在要進一步研究平面內的曲線和含有兩個變數的方程之間的關系,是由直觀表象上升到抽象概念的過程,對學生有相當大的難度。學生在學習時容易產生的問題是,不理解“曲線上的點的坐標都是方程的解”和“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關系時各自所起的作用。本節課的教學目標也只能是初步領會,要求學生能答出曲線和方程間必須滿足兩個關系時才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實例指出兩個關系的區別。

        高中數學說課稿 篇3

          一、教材分析

          集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

          本節課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。

          二、教學目標

          1、學習目標

          (1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬

          于”關系;

         。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

          2、能力目標

          (1)能夠把一句話一個事件用集合的方式表示出來。

         。2)準確理解集合與及集合內的元素之間的關系。

          3、情感目標

          通過本節的把實際事件用集合的方式表示出來,從而培養數學敏感性,了 解到數學于生活中。

          三、教學重點與難點

          重點 集合的基本概念與表示方法;

          難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

          四、教學方法

         。1)本課將采用探究式教學,讓學生主動去探索,激發學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果;

         。2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節課的教學目標。

          五、學習方法

         。1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,

          教師層層深入,啟發學生積極思維,主動探索知識,培養學生思維想象 的綜合能力。

          (2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現“培

          優扶差,滿足不同。”

          六、教學思路

          具體的思路如下

          復習的引入:講一些集合的相關數學及相關數學家的經歷故事!這可以讓學生更加了解數學史從何使學生對數學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數學史咯。

          一、 引入課題

          軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

          在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

          二、 正體部分

          學生閱讀教材,并思考下列問題:

         。1)集合有那些概念?

         。2)集合有那些符號?

         。3)集合中元素的特性是什么?

          (4)如何給集合分類?

          (一)集合的有關概念

         。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

          都可以稱作對象.

         。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

          這些對象的全體構成的集合.

         。3)元素:集合中每個對象叫做這個集合的元素.

          集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

          1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,

          對學生的例子予以討論、點評,進而講解下面的問題。

          2、元素與集合的關系

          (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

         。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

          要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)

          集合A={3,4,6,9}a=2 因此我們知道a?A

          3、集合中元素的特性

         。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.

         。2)互異性:集合中的元素一定是不同的.

          (3)無序性:集合中的元素沒有固定的順序.

          4、集合分類

          根據集合所含元素個屬不同,可把集合分為如下幾類:

          (1)把不含任何元素的集合叫做空集Ф

         。2)含有有限個元素的集合叫做有限集

          (3)含有無窮個元素的集合叫做無限集

          注:應區分?,{?},{0},0等符號的含義

          5、常用數集及其表示方法

         。1)非負整數集(自然數集):全體非負整數的集合.記作N

         。2)正整數集:非負整數集內排除0的集.記作N*或N+

          (3)整數集:全體整數的集合.記作Z

         。4)有理數集:全體有理數的集合.記作Q

         。5)實數集:全體實數的集合.記作R

          注:(1)自然數集包括數0.

         。2)非負整數集內排除0的集.記作N*或N+,Q、Z、R等其它數集內排

          除0的集,也這樣表示,例如,整數集內排除0的集,表示成Z*

          (二)集合的表示方法

          我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

         。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。

          如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

          例1.(課本例1)

          思考2,引入描述法

          說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

          (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

          如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

          例2.(課本例2)

          說明:(課本P5最后一段)

          思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素

          {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

          辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。

          說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

          (三)課堂練習(課本P6練習)

          三、 歸納小結與作業

          本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

          書面作業:習題1.1,第1- 4題

        高中數學說課稿 篇4

          一、說教材

          1.內容分析:本節課是“反比例函數”的第一節課,是繼正比例函數、一次函數之后,二次函數之前的又一類型函數,本節課主要通過豐富的生活事例,讓學生歸納出反比例函數的概念,并進一步體會函數是刻畫變量之間關系的數學模型,從中體會函數的模型思想。因此本節課重點是理解和領悟反比例函數的概念,所滲透的數學思想方法有:類比,轉化,建模。

          2.學情分析:對八年級學生來說,雖然他們已經對函數,正比例函數,一次函數的概念、圖象、性質以及應用有所掌握,但他們面對新的一次函數時,還可能存在一些思維障礙,如學生不能準確地找出變量之間的自變量和因變量,以及如何從事例中領悟和總結出反比例函數的概念,因此,本節課的難點是理解和領悟反比例函數的概念。

          二、說教學目標

          根據本人對《數學課程標準》的理解與分析,考慮學生已有的認知結構、心理特征,我把本課的目標定為:

          1.從現實的情境和已有的知識經驗出發,討論兩個變量之間的相依關系,加深對函數概念的理解。

          2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念。

          三、說教法

          本節課從知識結構呈現的角度看,為了實現教學目標,我建立了“創設情境→建立模型→解釋知識→應用知識”的學習模式,這種模式清晰地再現了知識的生成與發展的過程,也符合學生的認知規律。于是,從教學內容的性質出發,我設計了如下的課堂結構:創設出電流、行程等情境問題讓學生發現新知,把上述問題進行類比,導出概念,獲得新知,最后總結評價、內化新知。

          四、說學法

          我認為學生將實際問題轉化成函數的能力是有限的,所以我借助多媒體輔助教學,指導學生通過類比、轉化、直觀形象的觀察與演示,親身經歷函數模型的轉化過程,為學生攻克難點創造條件,同時考慮到本課的重點是反比例函數概念的教學,也考慮到概念教學要從大量實際出發,通過事例幫助完成定義。

          好學教育:

          因此,我采用了“問題式探究法”的教法,利用多媒體設置豐富的問題情境,讓學生的思維由問題開始,到問題深化,讓學生的思維始終處于積極主動的狀態,并隨著問題的深入而跳躍。

        高中數學說課稿 篇5

          一.內容和內容分析

          “函數的奇偶性”是人教版數學必修教材必修一第一章第三節的內容,本節的主要內容是研究函數的一個性質—函數的奇偶性,學習奇函數和偶函數的概念.奇偶性是函數的一條重要性質,教材從學生熟悉的兩個特殊函數入手,從特殊到一般,從具體到抽象,從感性到理性比較系統地介紹了函數的奇偶性.從知識結構看,它既是函數概念的拓展和深化,又為后續研究指數函數、對數函數、冪函數、三角函數的基礎,因此,本節課起著承上啟下的重要作用。 本節課的教學重點:函數奇偶性的概念及判定。

          二.目標和目標分析

         。1)知識目標:從形和數兩個方面進行引導,使學生理解奇偶性的概念,學會利用定義判斷

          簡單函數的奇偶性。

         。2)能力目標:通過設置問題情境培養學生判斷、推理的能力,同時滲透數形結合和由特殊

          到一般的數學思想方法.

          (3)情感目標:在學生感受數學美的同時,激發學習的興趣,培養學生樂于求索的精神。

          三.教學問題診斷分析

          導入有點慢,講的有點細,導致時間上沒有完成教學任務,感覺還是自己講的太多,不能充分調動學生的積極性。

          四.教學支持條件分析

          用了多媒體,使用ppt,使得奇偶性函數概念的探究過程更形象更直觀,是學生理解更深刻。

          五.教學過程設計

          為了達到預期的教學目標,我對整個教學過程進行了系統地規劃,設計了四個主要的教學程序是:

          1.設疑導入、觀圖激趣:

          使用幻燈片展示圖片蝴蝶、雪花等讓學生感受生活中的美,從而引入對稱在函數中的體現。

          2.指導觀察、形成概念:

          作出函數y=x的圖象,并觀察這兩個函數圖象的對稱性如何?

          借助課件演示,讓學生分別計算f(1),f(-1),f(2),f(-2),學生很快會得到f(-1)=f(1),f(-2)=f(2),進而提出在定義域內是否對所有的x,都有類似的情況?借助課件演示,學生會得出結論,f(-x)=f(x),從而引導學生先把它們具體化,再用數學符號表示。根據以上特點,請學生用完整的語言敘述定義,同時給出板書:

          函數f(x)的定義域為A,且關于原點對稱,如果有f(-x)=f(x),則稱f(x)為偶函數,類比探究2

          偶函數的過程,得到奇函數的概念,又通過具體的例子說明了定義域關于原點對稱是研究奇偶性的前提。

          3.學生探索、發展思維。

          接著通過學案上的例一,總結函數奇偶性的判斷方法及步驟:

          (1)求出函數的定義域,并判斷是否關于原點對稱

          (2)驗證f(-x)=f(x)或f(-x)=-f(x)

          (3)得出結論

          由學生小結判斷奇偶性的步驟之后,提出新的問題:函數按奇偶性如何分類?既奇又偶的函數是不是只有一個?試舉例說明。

          4.布置作業:

          六.目標檢測設計

          學案上的題型主要包括奇偶性函數的判斷及應用

          七.教學反思:(從兩方面)

          1.思成功

          一:是通過設計富有挑戰性的問題來呈現背景,通過問題的探究和自主學習來獲取相關概念,實現了 “教學邏輯”與“學習邏輯”的連通、“知識邏輯”與“認知邏輯”的連通;二:是在老師創設的情境中,每個學生都積極投入探究過程,學生在疑惑中探索,在探索中思考,在思考中發現,大部分學生積極性高漲,通過看別人怎樣觀察,

          聽別人怎樣介紹,也學到了知識.

          2.思不足

          學生練習:在教學過程中應多注意學生的活動,由單一的問答式轉化為多方位的考察,以采用

          學生板演或者把學生練習投影到屏幕上讓全班學生糾正等方式,更好的考察學生掌握情況。

          語言組織:

          在講授過程中還要注意到說話語速,語言組織等講授技巧,應該用平緩的語氣講授,語言描述要簡練易懂,不能拖泥帶水。

          教學環節(的完整):

          在授課過程中要注意到教學環節設計,我們的教學過程有復習引入、講授新課、例題講解、學生練習、課時小結、布置作業等幾個重要的環節,由于時間的關系沒有來得及小結造成教學設計不完善。在以后的教學過程中要注意這些環節。

          以上是我對這節課以后的教學反思,還有很多地方做的還不完善,我要在以后的教學中努力改進這些錯誤,以便更好的適應教學,努力使自己的教學更上一層樓。

        【實用的高中數學說課稿范文匯編5篇】相關文章:

        實用的高中數學說課稿范文匯編6篇08-16

        實用的高中數學說課稿范文匯編7篇08-16

        實用的高中數學說課稿范文匯編八篇08-14

        實用的高中數學說課稿范文匯編8篇08-20

        實用的高中數學說課稿范文匯編9篇08-16

        實用的高中數學說課稿匯編六篇07-29

        實用的高中數學說課稿匯編9篇07-25

        實用的高中數學說課稿范文匯編七篇08-20

        實用的高中數學說課稿范文匯編十篇08-19

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>