1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學說課稿

        時間:2021-08-03 19:27:20 高中說課稿 我要投稿

        實用的高中數學說課稿模板匯編6篇

          作為一位不辭辛勞的人民教師,常常要根據教學需要編寫說課稿,通過說課稿可以很好地改正講課缺點。怎樣寫說課稿才更能起到其作用呢?以下是小編幫大家整理的高中數學說課稿6篇,歡迎閱讀,希望大家能夠喜歡。

        實用的高中數學說課稿模板匯編6篇

        高中數學說課稿 篇1

          一、教材分析

          1、教材地位和作用

          二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關系的一個匯集點。搞好本節課的學習,對學生系統地掌握直線和平面的知識乃至于創新能力的培養都具有十分重要的意義。教學大綱明確要求要讓學生掌握二面角及其平面角的概念和運用。

          2、教學目標

          根據上面對教材的分析,并結合學生的認知水平和思維特點,確定本節課的教學目標:

          認知目標:

         。1)使學生正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

         。2)進一步培養學生把空間問題轉化為平面問題的化歸思想。

          能力目標:以培養學生的創新能力和動手能力為重點。

          (1)突出對類比、直覺、發散等探索性思維的培養,從而提高學生的創新能力。

         。2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

          教育目標:

          (1)使學生認識到數學知識來自實踐,并服務于實踐,從而增強學生應用數學的意識。

          (2)通過揭示線線、線面、面面之間的內在聯系,進一步培養學生聯系的辯證唯物主義觀點。

          3、本節課教學的重、難點是兩個過程的教學:

         。1)二面角的平面角概念的形成過程。

         。2)尋找二面角的平面角的方法的發現過程。

          其理由如下:

         。1)現行教材省略了概念的形成過程和方法的發現過程,沒有反映出科學認識產生的辯證過程,與學生的認知規律相悖,給學生的學習造成了很大的困難,非常不利于學生創新能力、獨立思考能力以及動手能力的培養。

          (2)現代認知學認為,揭示知識的形成過程,對學生學習新知識是十分必要的。同時通過展現知識的發生、發展過程,給學生思考、探索、發現和創新提供了最大的空間,可以使學生在整個教學過程中始終處于積極的思維狀態,進而培養他們獨立思考和大膽求索的精神,這樣才能全面落實本節課的教學目標。

          二、指導思想和教學方法

          在設計本教學時,主要貫徹了以下兩個思想:

          1、樹立以學生發展為本的思想。通過構建以學習者為中心、有利于學生主體精神、創新能力健康發展的寬松的教學環境,提供學生自主探索和動手操作的機會,鼓勵他們創新思考,親身參與概念和方法的形成過程。2、堅持協同創新原則。把教材創新、教法創新以及學法創新有機地統一起來,因為只有教師創新地教,學生創新地學,才能營建一個有利于創新能力培養的良好環境。

          首先是教材創新。

         。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發現過程。

         。2)在引入定義之后,例題講解之前,引導學生發現尋找二面角的平面角的方法,為例題做好鋪墊。

         。3)重新編排例題。

          其次是教法創新。采用多種創新的教學方法,包括問題解決法、類比發現法、研究發現法等教學方法。

          這組教學方法的特點是教師通過創設問題情境,引導學生逐步發現知識的形成過程,使教學活動真正建立在學生自主活動和探索的基礎上,著力培養學生的創新能力。

          這組教學方法使得學生在解決問題的過程中學數學,用數學,不僅強調動腦思考,而且強調動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學生全面、多樣的主體實踐活動,促進他們獨立思考能力、動手能力等多方面素質的整體發展。

          教學手段的現代化有利于提高課堂效益,有利于創新人才的培養,根據本節課的教學需要,確定利用《幾何畫板》制作課件來輔助教學;此外,為加強直觀教學,教師可預先做好一些模型。

          最后是學法創新。意在指導學生會創新地學。

          1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創新意識,全身心地投入到學習中去,成為學習的主人。

          2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯想等數學思想方法的運用,學會建立完善的認知結構。

          3、會學:通過自已親身參與,學生要領會復習類比和深入研究這兩種知識創新的方法,從而既學到知識,又學會創新。

          三、程序安排

         。ㄒ唬、二面角

          1、揭示概念產生背景。

          心理學研究表明,當學生明確數學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創設問題情境,激發了學生的創新意識,營造了創新思維的氛圍。

          問題情境1、我們是如何定量研究兩平行平面的相對位置的?

          問題情境2、立幾中常用距離和角來定量描述兩個元素之間的相對位置,為什么不引入兩平行平面所成的角?

          問題情境3、我們應如何定量研究兩個相交平面之間的相對位置呢?

          通過這三個問題,打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發學生積極思維活動的展開。

          2、展現概念形成過程。

        高中數學說課稿 篇2

          一、教學目標

          1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.

          2.經歷從銳角三角函數定義過度到任意角三角函數定義的推廣過程,體驗三角函數概念的產生、發展過程.領悟直角坐標系的工具功能,豐富數形結合的經驗.

          3.培養學生通過現象看本質的唯物主義認識論觀點,滲透事物相互聯系、相互轉化的辯證唯物主義世界觀.

          4.培養學生求真務實、實事求是的科學態度.

          二、重點、難點、關鍵

          重點:任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.

          難點:把三角函數理解為以實數為自變量的函數.

          關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

          三、教學理念和方法

          教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.

          根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用"啟發探索、講練結合"的方法組織教學.

          四、教學過程

          [執教線索:

          回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優化認知:用直角坐標系研究銳角三角函數--探索發展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業]

          (一)復習引入、回想再認

          開門見山,面對全體學生提問:

          在初中我們初步學習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節課該研究什么呢?

          探索任意角的三角函數(板書課題),請同學們回想,再明確一下:

         。ㄇ榫1)什么叫函數?或者說函數是怎樣定義的?

          讓學生回想后再點名回答,投影顯示規范的定義,教師根據回答情況進行修正、強調:

          傳統定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.

          現代定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.

          設計意圖:

          函數和三角函數是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數的概念,因此對三角函數的學習就是一個從一般到特殊的演繹的過程,也是以具體函數豐富函數概念的過程.教學經驗表明:學生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數概念進行回想再認,目的在于明確函數概念的本質,為演繹學習任意角三角函數概念作好知識和認知準備.

         。ㄇ榫2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數.請回想:這三個三角函數分別是怎樣規定的?

          學生口述后再投影展示,教師再根據投影進行強調:

          設計意圖:

          學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展).溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少.

         。ǘ┮熹亯|、創設情景

         。ㄇ榫3)我們已經把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

          留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導.

          能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數.

          設計意圖:

          從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的"再創造"征程.

          教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義!

          師生共做(學生口述,教師板書圖形和比值):

          把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r.

          根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數比值:

          設計意圖:

          此處做法簡單,思想重要.為了順利實現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數.初中以直角三角形邊角關系來定義銳角三角函數,現在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數定義.這是一個認識的飛躍,是理解任意角三角函數概念的關鍵之一,也是數學發現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數到復數的擴展等).

         。ㄇ榫4)各個比值與角之間有怎樣的關系?比值是角的函數嗎?

          追問:銳角α大小發生變化時,比值會改變嗎?

          先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.

          引導學生觀察圖3,聯系相似三角形知識,

          探索發現:

          對于銳角α的每一個確定值,六個比值都是

          確定的,不會隨P在終邊上的移動而變化.

          得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數值的函數.

          設計意圖:

          初中學生對函數理解較膚淺,這里在學生思維的最近發展區進一步研究初中學過的銳角三角函數,在思維上更上了一個層次,扣準函數概念的內涵,突出變量之間的依賴關系或對應關系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關鍵,也是在認知上把三角函數知識納入函數知識結構的關鍵.這樣做能夠使學生有效地增強函數觀念.

         。ㄈ┓治鰵w納、自主定義

         。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?

          水到渠成,師生共同進行探索和推廣:

          對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

          終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:

         ;

         。ㄖ赋觯翰划嫵鼋堑姆较,表明角具有任意性)

          怎樣刻畫任意角的三角函數呢?研究它的六個比值:

         。ò鍟┰Oα是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:

          α=kππ/2時,x=0,比值y/x、r/x無意義;

          α=kπ時,y=0,比值x/y、r/y無意義.

          追問:α大小發生變化時,比值會改變嗎?

          先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.

          再引導學生利用相似三角形知識,探索發現:對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.

          綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節課分析).

          因此,六個比值分別是以角α為自變量、以比值為函數值的函數.

          根據歷史上的規定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):

          =sinα(正弦)=cosα(余弦)=tanα(正切)

          =cscα(余割)=sec(正弦)=cotα(余切)

          教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個整體,相當于函數記號f(x).其它幾個三角函數也如此

          投影顯示圖六,指導學生分析其對應關系,進一步體會其函數內涵:

          (圖六)

          指導學生識記六個比值及函數名稱.

          教師指出:正弦、余弦、正切、余切、正割、余割六個函數統稱為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).

          引導學生進一步分析理解:

          已知角的集合與實數集之間可以建立一一對應關系,對于每一個確定的實數,把它看成一個弧度數,就對應著唯一的一個角,從而分別對應著六個唯一的三角函數值.因此,(板書)三角函數可以看成是以實數為自變量的函數,這將為以后的應用帶來很多方便.

          設計意圖:

          把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數內涵.引導學生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數可以看成是以實數為自變量的函數"的理解有半信半疑之感,有待通過后續的應用加深理解.

          (四)探索定義域

         。ㄇ榫6)(1)函數概念的三要素是什么?

          函數三要素:對應法則、定義域、值域.

          正弦函數sinα的對應法則是什么?

          正弦函數sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

          (2)布置任務情景:什么是三角函數的定義域?請求出六個三角函數的定義域,填寫下表:

          三角函數

          sinα

          cosα

          tanα

          cotα

          cscα

          secα

          定義域

          引導學生自主探索:

          如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.

          關于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實數集R.

          對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

          教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

          (關于值域,到后面再學習).

          設計意圖:

          定義域是函數三要素之一,研究函數必須明確定義域.指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握.

         。ㄎ澹┓柵袛、形象識記

         。ㄇ榫7)能判斷三角函數值的正、負嗎?試試看!

          引導學生緊緊抓住三角函數定義來分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:

         。ㄍ玫谜、異號得負)

          sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

          設計意圖:

          判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.

         。┚毩曥柟、理解記憶

          1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數值.

          要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.

          課堂練習:

          p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數值.

          要求心算,并提問中下學生檢驗,--------

          點評:角α終邊上有無窮多個點,根據三角函數的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義).

          補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數值.

          師生探索:已知y=-3,要求其它五個三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

          2、自學例2:求下列各角的六個三角函數值:(1)0;(2)π/2;(3)3π/2.

          提問,據反饋信息作點評、修正.

          師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。

          取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:

          角α(角度)

          0°

          90°

          180°

          270°

          360°

          角α(弧度)

          sinα

          cosα

          tanα

          處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.

          強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數值,要結合三角函數定義記熟這些值.

          設計意圖:

          及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養學生分析解決問題的能力"貫穿在每一節課的課堂教學始終.

         。ㄆ撸┗仡櫺〗Y、建構網絡

          要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:

          1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)

          2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)

          3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)

          設計意圖:

          遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時建構知識網絡,優化知識結構,培養認知能力.

         。ò耍┎贾谜n外作業

          1.書面作業:習題4.3第3、4、5題.

          2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.

          教學設計說明

          一、對本節教材的理解

          三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用.

          星星之火,可以燎原.

          直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數定義,緊緊扣住三角函數定義這個寶貴的源泉,自然地導出三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數方程等),定義還是直接解決某些問題的工具,三角函數知識是物理學、高等數學、測量學、天文學的重要基礎.

          三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身.

          二、教學法加工

          數學教材通常用抽象概括的形式化的數學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發展為本"的科學教育觀,"將數學的學術形態轉化為教育形態"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數學知識產生發展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數學知識和方法,有效地發展智力、培養能力.

          在本節教材中,三角函數定義是重點,三角函數線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協調匹配,將不按教材順序來進行教學,第一課時安排三角函數的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.

          教學經驗表明,三角函數定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發探索、講練結合"的常規教學方法,在學生的最近發展區圍繞學生的學習目標設計了一系列符合學生認知規律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發展的過程,通過思維過程來理解知識、培養能力.

          將六個比值放在一起來研究,同時給出六個三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學中注意區分就行了.

          教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關系;另外可以先研究六個比值與α之間的函數關系,然后再對六個比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質.本課例采用后者組織教學.

          三、教學過程分析(見穿插在教案中的設計意圖).

        高中數學說課稿 篇3

          一、教學目標

          (一)知識與技能

          1、進一步熟練掌握求動點軌跡方程的基本方法。

          2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。

          (二)過程與方法

          1、培養學生觀察能力、抽象概括能力及創新能力。

          2、體會感性到理性、形象到抽象的思維過程。

          3、強化類比、聯想的方法,領會方程、數形結合等思想。

          (三)情感態度價值觀

          1、感受動點軌跡的動態美、和諧美、對稱美

          2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣

          二、教學重點與難點

          教學重點:運用類比、聯想的方法探究不同條件下的軌跡

          教學難點:圖形、文字、符號三種語言之間的過渡

          三、、教學方法和手段

          【教學方法】觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。

          【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。

          【教學模式】重點中學實施素質教育的課堂模式“創設情境、激發情感、主動發現、主動發展”。

        高中數學說課稿 篇4

          一.教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

          二.目標分析:

          教學重點.難點

          重點:集合的含義與表示方法.

          難點:表示法的恰當選擇.

          教學目標

          l.知識與技能

          (1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

          (2)知道常用數集及其專用記號;

          (3)了解集合中元素的確定性.互異性.無序性;

          (4)會用集合語言表示有關數學對象;

          2.過程與方法

          (1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

          (2)讓學生歸納整理本節所學知識.

          3.情感.態度與價值觀

          使學生感受到學習集合的必要性,增強學習的積極性.

          三.教法分析

          1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.

          2.教學手段:在教學中使用投影儀來輔助教學.

          四.過程分析

          (一)創設情景,揭示課題

          1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。

          (2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?

          引導學生互相交流.與此同時,教師對學生的活動給予評價.

          2.活動:(1)列舉生活中的集合的例子;

          (2)分析、概括各實例的共同特征

          由此引出這節要學的內容。

          設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊

          (二)研探新知,建構概念

          1.教師利用多媒體設備向學生投影出下面7個實例:

          (1)1-20以內的所有質數;

          (2)我國古代的四大發明;

          (3)所有的安理會常任理事國;

          (4)所有的正方形;

          (5)海南省在xxxx年9月之前建成的所有立交橋;

          (6)到一個角的兩邊距離相等的所有的點;

          (7)國興中學xxxx年9月入學的高一學生的全體.

          2.教師組織學生分組討論:這7個實例的共同特征是什么?

          3.每個小組選出--位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.

          一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

          4.教師指出:集合常用大寫字母A,B,c,D,...表示,元素常用小寫字母...表示.

          設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神

          (三)質疑答辯,發展思維

          1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

          2.教師組織引導學生思考以下問題:

          判斷以下元素的全體是否組成集合,并說明理由:

          (1)大于3小于11的偶數;

          (2)我國的小河流.

          讓學生充分發表自己的建解.

          3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

          4.教師提出問題,讓學生思考

          (1)如果用A表示高-(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.[來源:Z,xx,k.com]

          如果是集合A的元素,就說屬于集合A,記作.

          如果不是集合A的元素,就說不屬于集合A,記作.

          (2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.

          (3)讓學生完成教材第6頁練習第1題.

          5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.

          6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

          (1)要表示一個集合共有幾種方式?

          (2)試比較自然語言.列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

          (3)如何根據問題選擇適當的集合表示法?

          使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。

          設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。

          (四)鞏固深化,反饋矯正

          教師投影學習:

          (1)用自然語言描述集合{1,3,5,7,9};

          (2)用例舉法表示集合

          (3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.

          設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

          (五)歸納小結,布置作業[來源:Zxxk.com]

          小結:在師生互動中,讓學生了解或體會下例問題:

          1.本節課我們學習了哪些知識內容?

          2.你認為學習集合有什么意義?

          3.選擇集合的表示法時應注意些什么?

          設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

          作業:

          1.課后書面作業:第13頁習題1.1A組第4題.

          2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材.

          五.板書分析

          PPT

          集合的含義與表示

          定義例1

          集合×××××××

          ××××××××××××××

          元素×××××××

          ×××××××例2

          元素與集合的關系×××××××

          ××××××××××××××

          作業××××××××××××××

        高中數學說課稿 篇5

          各位老師:

          今天我說課的題目是《條件語句》,內容選自于新課程人教A版必修3第一章第二節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節課的分析和設計:

          一、教材分析

          1.教材所處的地位和作用

          在此之前,學生已學習了算法的概念、程序框圖與算法的基本邏輯結構、輸入語句、輸出語句和賦值語句,這為過渡到本節的學習起著鋪墊作用。這一節課主要的內容為條件語句表示方法、結構以及用法。條件語句與程序圖中的條件結構相對應,它是五種基本算法語句中的.一種,。通過本節課的學習,學生將更加了解算法語句,并能用更全面的眼光看待前面學過的語句,并為以后的學習作好必要的準備。本節課對學生算法語言能力、有條理的思考與清晰地表達的能力,邏輯思維能力的綜合提升具有重要作用。

          2.教學的重點和難點

          重點:條件語句的表示方法、結構和用法;用條件語句表示算法。

          難點:理解條件語句的表示方法、結構和用法。

          二、教學目標分析

          1.知識與技能目標:

          ⑴正確理解條件語句的概念,并掌握其結構。

          ⑵會應用條件語句編寫程序。

          2.過程與方法目標:

          ⑴通過實例,發展對解決具體問題的過程與步驟進行分析的能力。

         、仆ㄟ^模仿,操作、探索、經歷設計算法、設計框圖、編寫程序以解決具體問題的過程,發展應用算法的能力。

         、窃诮鉀Q具體問題的過程中學習條件語句,感受算法的重要意義。

          3.情感,態度和價值觀目標

         、拍芡ㄟ^具體實例,感受和體會算法思想在解決具體問題中的意義,進一步體會算法思想的重要性,體驗算法的有效性,增進對數學的了解,形成良好的數學學習情感,增強學習數學的樂趣。

          ⑵通過感受和認識現代信息技術在解決數學問題中的重要作用和威力,形成自覺地將數學理論和現代信息技術結合的思想。

         、窃诰帉懗绦蚪鉀Q問題的過程中,逐步養成扎實嚴謹的科學態度。

          三、教學方法與手段分析

          1.教學方法:根據本節內容邏輯性強,學生不易理解的特點,本節教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這種方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

          2.教學手段:運用計算機、圖形計算器輔助教學

          四、教學過程分析

          1.創設情境(約4分鐘)

          首先,我要求學生們編寫程序,輸入一元二次方程

          的系數,輸出它的實數根。這樣可以把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,因為要解決這一問題,根據我們之前所學的三種算法語句是無法解決的,這樣就引出今天我們所要學習的內容。

          2.探究新知(約8分鐘)

          為了引入概念,我首先給出了一個基本的應用條件語句能夠解決的例題:

          例1 編寫一個程序,求實數x的絕對值。

          整個過程由師生共同分析完成。老師要引導學生分析、研究例題中的兩個程序,既要讓學生們看到已知的三種語句,更要注意到未知的語句,即條件語句?偨Y上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進行研究.

          3.知識應用(約15分鐘)

          此環節有兩個例題

          例2 編寫程序,寫出輸入兩個數a和b,將較大的數打印出來

          例3 編寫程序,使任意輸入的3個整數按從大到小的順序輸出.

          先把解決問題的思路用程序框圖表示出來,然后再根據程序框圖給出的算法步驟,逐步把算法用對應的程序語句表達出來。(程序框圖先由學生討論,再統一,然后利用圖形計算器演示,學生會驚喜的發現:自己也是個編程高手了!這樣可以激發學生們的學習興趣)

          4.練習鞏固(約4分鐘)

          課本第30頁第3題

          練習可鞏固學生對知識的理解,也可在練習中發現問題,使問題得到及時的解決。

          5.課堂小結(約5分鐘)

          條件語句的步驟、結構及功能.

          知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用

          6.布置作業

          課本練習第3、4題

          [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。

          7.板書設計

          1.2.2條件語句

          1、條件語句的一般格式

         。1)IF-THEN-ELSE語句

          格式: 框圖:

          (2)IF-THEN語句

          格式: 框圖:

          2、小結

         。1)

          (2)

         。3)

          2、例1 引例

          例2 例4

          例3

          

        高中數學說課稿 篇6

          函數的單調性

          今天我說課的題目是《函數的單調性》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

          一、說教材

          1、教材的地位和作用

          本節內容選自北師大版高中數學必修1,第二章第3節。函數是高中數學的課程,它是描述事物運動變化的模型,而函數的單調性是函數的一大特征,它為我們之后的學習奠定重要基礎。

          2、學情分析

          本節課的學生是高一學生,他們在初中階段,通過一次函數、二次函數、反比例函數的學習已經對函數的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結果,有利于培養學生的理性思維,為后續函數的學習作準備,也為利用倒數研究單調性的相關知識奠定了基礎。

          教學目標分析

          基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

          1.知識與技能(1)理解函數的單調性和單調函數的意義;

         。2)會判斷和證明簡單函數的單調性。

          2.過程與方法

         。1)培養從概念出發,進一步研究性質的意識及能力;

         。2)體會數形結合、分類討論的數學思想。

          3.情感態度與價值觀

          由合適的例子引發學生探求數學知識的欲望,突出學生的主觀能動性,激發學生學習數學的興趣。

          三、教學重難點分析

          通過以上對教材和學生的分析以及教學目標,我將本節課的重難點

          重點:

          函數單調性的概念,判斷和證明簡單函數的單調性。

          難點:

          1.函數單調性概念的認知

         。1)自然語言到符號語言的轉化;

         。2)常量到變量的轉化。

          2.應用定義證明單調性的代數推理論證。

          四、教法與學法分析

          1、教法分析

          基于以上對教材、學情的分析以及新課標的教學理念,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

          2、學法分析

          新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法理解函數的單調性及特征。

          五、教學過程

          為了更好的實現本課的三維目標,并突破重難點,我設計以下五個環節來進行我的教學。

         。ㄒ唬┲R導入

          溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x、y=-x、y=|x|,讓學生作出這些函數的圖像,然后讓學生討論這些函數圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數圖像的情況,而且符合學生的認知結構,通過學生自主探究,從知識產生、發展的過程中構建新概念,有利于激發學生的思維和學習的積極主動性。

         。ǘ┲v授新課

          1.問題:分別做出函數y=x2,y=x+2的圖像,指出上面的函數圖象在哪個區間是上升的,在哪個區間是下降的?

          通過學生熟悉的圖像,及時引導學生觀察,函數圖像上A點的運動情況,引導學生能用自然語言描述出,隨著x增大時圖像變化規律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

          2.觀察函數y=x2隨自變量x變化的情況,設置啟發式問題:

         。1)在y軸的右側部分圖象具有什么特點?

          (2)如果在y軸右側部分取兩個點(x1,y1),(x2,y2),當x1

         。3)如何用數學符號語言來描述這個規律?

          教師補充:這時我們就說函數y=x2在(0,+∞)上是增函數。

         。4)反過來,如果y=f(x)在(0,+∞)上是增函數,我們能不能得到自變量與函數值的變化規律呢?

          類似地分析圖象在y軸的左側部分。

          通過對以上問題的分析,從正、反兩方面領會函數單調性。師生共同總結出單調增函數的定義,并解讀定義中的關鍵詞,如:區間內,任意,當x1

          仿照單調增函數定義,由學生說出單調減函數的定義。

          教師總結歸納單調性和單調區間的定義。注意強調:函數的單調性是函數在定義域某個區間上的局部性質,也就是說,一個函數在不同的區間上可以有不同的單調性。

          (我將給出函數y=x2,并畫出這個函數的圖像,讓學生觀察函數圖像的特點,讓他們描述函數圖像的增減性,慢慢得到函數單調性的概念。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解)

         。ㄈ╈柟叹毩

          1練習1:說出函數f(x)=的單調區間,并指明在該區間上的單調性。x

          練習2:練習2:判斷下列說法是否正確

         、俣x在R上的函數f(x)滿足f(2)>f(1),則函數是R上的增函數。

         、诙x在R上的函數f(x)滿足f(2)>f(1),則函數是R上不是減函數。

          1③已知函數y=,因為f(-1)

          1我將給出一些具體的函數,如y=,f(x)=3x+2讓學生說出函數的單調區間,并指明在該區間x

          上的單調性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

         。ㄋ模w納總結

          我先讓學生進行小結,函數單調性定義,判斷函數單調性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節課的教學過程做好準備。

         。ㄎ澹┎贾米鳂I

          必做題:習題2-3A組第2,4,5題。

          選做題:習題2-3B組第2題。

          新課程理念告訴我們,不同的人在數學上可以獲得不同的發展,因此要設計不同程度要求的習題。

          篇二:高一數學必修一說課稿

          二次函數的圖像說課稿

          今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。

          一、教材分析

          教材的地位和作用

          本節內容選自北師大版高中數學必修1,第二章第4.1節。二次函數的圖像在教材中起著承上啟下的作用。

          學情分析

          本節課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變為參數,使學生對二次函數的圖像由感性認識上升到理性認識,能培養學生利用數形結合思想解決問題的能力。

          二、教學目標分析

          基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

          1.知識與技能

          理解二次函數中參數a,b,c,h,k對其圖像的影響;

          2.過程與方法

          通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。

          3.情感態度與價值觀

          通過本節的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。

          三、教學重難點分析

          通過以上對教材和學生的分析以及教學目標,我將本節課的重難點確定如下

          重點:

          二次函數圖像的平移變換規律及應用。

          難點:

          探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。

          四、教法與學法分析

          1、教法分析

          基于以上對教材、學情的分析以及新課改的要求,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。

          2、學法分析

          新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法進行學習。

          五、教學過程

          為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環節來進行我的教學。

          (1)知識導入

          溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。

         。2)講授新課

          例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

          讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

          前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉化為了數學關系,這種從特殊到一般的學習過程有利于學生對概念的理解,

         。3)鞏固練習

          我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。

          (4)歸納總結

          我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節課的教學過程做好準備。

         。5)布置作業

          略

        【實用的高中數學說課稿模板匯編6篇】相關文章:

        實用的高中數學說課稿模板匯編7篇08-09

        實用的高中數學說課稿模板匯編七篇08-18

        實用的高中數學說課稿模板匯編十篇08-17

        實用的高中數學說課稿模板9篇07-29

        實用的高中數學說課稿模板8篇07-28

        實用的高中數學說課稿模板九篇07-24

        實用的高中數學說課稿匯編六篇07-29

        實用的高中數學說課稿匯編9篇07-25

        實用的高中數學說課稿模板合集5篇08-13

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>