1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 數學的手抄報相關內容

        時間:2022-06-23 18:03:24 數學手抄報 我要投稿

        數學的手抄報相關內容

          數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。有關數學手抄報內容,歡迎參考!

        數學的手抄報相關內容

          發展歷史

          數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自于古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,“學問的基礎”。另外,還有個較狹隘且技術性的意義——“數學研究”。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。

          其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικ(ta mathēmatiká).

          在中國古代,數學叫作算術,又稱算學,最后才改為數學.中國古代的算術是六藝之一(六藝中稱為“數”).

          數學起源于人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,并能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.

          基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處于獨立的狀態.

          代數學可以說是最為人們廣泛接受的“數學”.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究“數”的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.

          直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯系到了一起.從那以后,我們終于可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其后更發展出更加精微的微積分.

          現時數學已包括多個分支.創立于二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).

          數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,并促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之后也許會發現合適的應用.

          具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對于不確定性的研究(混沌、模糊數學).

          就縱度而言,在數學各自領域上的探索亦越發深入.

          定義

          亞里士多德把數學定義為“數量科學”,這個定義直到18世紀。從19世紀開始,數學研究越來越嚴格,開始涉及與數量和量度無明確關系的群論和投影幾何等抽象主題,數學家和哲學家開始提出各種新的定義。這些定義中的一些強調了大量數學的演繹性質,一些強調了它的抽象性,一些強調數學中的某些話題。今天,即使在專業人士中,對數學的定義也沒有達成共識。數學是否是藝術或科學,甚至沒有一致意見。許多專業數學家對數學的定義不感興趣,或者認為它是不可定義的。有些只是說,“數學是數學家做的。”

          數學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受,沒有和解似乎是可行的。

          數學邏輯的早期定義是本杰明·皮爾士(Benjamin Peirce)的“得出必要結論的科學”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被稱為邏輯主義的哲學程序,并試圖證明所有的數學概念,陳述和原則都可以用符號邏輯來定義和證明。數學的邏輯學定義是羅素的“所有數學是符號邏輯”(1903)。

          直覺主義定義,從數學家L.E.J. Brouwer,識別具有某些精神現象的數學。直覺主義定義的一個例子是“數學是一個接著一個進行構造的心理活動”。直觀主義的特點是它拒絕根據其他定義認為有效的一些數學思想。特別是,雖然其他數學哲學允許可以被證明存在的對象,即使它們不能被構造,但直覺主義只允許可以實際構建的數學對象。

          正式主義定義用其符號和操作規則來確定數學。 Haskell Curry將數學簡單地定義為“正式系統的科學”。[33]正式系統是一組符號,或令牌,還有一些規則告訴令牌如何組合成公式。在正式系統中,公理一詞具有特殊意義,與“不言而喻的真理”的普通含義不同。在正式系統中,公理是包含在給定的正式系統中的令牌的組合,而不需要使用系統的規則導出。

        【數學的手抄報相關內容】相關文章:

        數學手抄報的相關內容資料07-03

        重陽節手抄報相關內容06-21

        中考數學復習策略的相關內容06-26

        小學生勵志手抄報相關內容07-04

        清明節手抄報相關內容參考06-20

        春節手抄報相關內容06-27

        春節的節日手抄報相關內容06-20

        小升初數學知識點相關內容07-27

        以講好普通話為主題的手抄報相關內容07-07

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>