數據挖掘工程師崗位職責(15篇)
在現在的社會生活中,大家逐漸認識到崗位職責的重要性,明確崗位職責能讓員工知曉和掌握崗位職責,能夠最大化的進行勞動用工管理,科學的進行人力配置,做到人盡其才、人崗匹配。什么樣的崗位職責才是有效的呢?以下是小編精心整理的數據挖掘工程師崗位職責,希望能夠幫助到大家。
數據挖掘工程師崗位職責1
職責:
深入研究業內領先的技術思路,輸出具有創新價值的預研項目可行性分析報告以及相關實驗數據;
負責產品、銷售、供應鏈、電商等公司數據的海量挖掘,并建立和優化用戶標簽、特征模型、產品精準匹配、異常預警等;
負責大數據下傳統機器學習算法的并行化實現及應用,并提出改進方法和思路;
參與公司大數據架構,負責BI實施中的數據挖掘模塊算法研究、模型建立和優化,幫助實現數據挖掘和分析平臺的建設;
負責相關數據挖掘項目的需求收集、項目建立、項目設計開發和結果輸出質量把控,通過數據挖掘結果驅動業務執行;
配合技術進行數據挖掘模型開發和模型封裝,例如決策規則模型、預警模型、流失模型、效果標桿模型、客戶生命周期管理模型等;
任職要求:
大學本科及以上學歷,統計學、計算機、信息技術、數學相關專業;
兩年以上數據建模經驗;
數據主流數據庫,mysql、oracle、DB2等傳統結構化數據倉庫,熟悉HBase、MongoDB等非結構化數據庫;
熟悉常用的聚類、分類、回歸、關聯、時間序列等監督式和非監督式學習算法;
熟悉R、Python、MLlib等數據挖掘工具中至少一種。
熟悉spark、storm等大數據計算框架者優先。
數據挖掘工程師崗位職責2
職責:
1.依據項目需求建構數據萃取與轉換流程
2.挖掘數據特征,進行數據和特征融合
3.搭建數學模型,并對模型進行檢驗評估
職位要求:
1、計算機、數學、統計、人工智能等相關專業的碩士或以上學歷;
2、二年以上數據挖掘、機器學習相關工作經驗,熟悉python、spark、pandas、sklearn等數據分析工具者優先;
3、熟練掌握貝葉斯、隨機森林、深度學習等機器學習算法;
4、突出的分析問題和解決問題能力,自我驅動,并且具備較強的學習能力、創新應用能力及溝通協調能力,有良好的團隊合作意識;
5、有國際背景或能熟練使用英文溝通者優先
數據挖掘工程師崗位職責3
職責:
1、對通信和金融業務數據進行分析和挖掘,滿足研發和運營等部門的業務需求和決策需求;
2、能根據業務特點選擇最合適的數據挖掘算法,并做調優;
3、支持數據分析、挖掘算法平臺的部署和日常運營;
4、撰寫分析類報告。
任職資格:
1、大學本科或本科以上統計學、數學或其他相關專業,對數據結構熟悉;
2、熟練使用python進行數據分析、處理、可視化。熟悉numpy/pandas/matplotlib等常用模塊。熟練使用sql,最好用過hive-sql或spark-sql;
3、對hadoop/spark有一定了解。能夠簡單使用hadoop系列命令;
4、對線性回歸,決策森林,xgboost,評分卡等數據挖掘相關算法有一定了解;
5、做過web接口調試,熟悉json者優先;
6、熟練掌握PPT和EXCEL制作;
7、具備良好的學習、溝通與表達能力,具有較強的團隊合作精神,對工作富有熱情,能承受工作壓力;
8、有運營商或金融類相關數據經驗工作優先考慮;
9、能適應中長期現場出差。
數據挖掘工程師崗位職責4
職責:
1、整合基礎業務數據,對基礎數據庫進行更新維護,參與部門常規報表開發與維護;
2、負責數據集市規劃,開發及維護;
3、處理各業務模塊數據需求,為業務運營提供數據分析方面咨詢和建議;
4、負責搭建并完善業務指標監控體系,為管理層和運營層提供決策支持;
5、負責數據分析和應用相關的業務系統建設,編寫對應系統開發需求,并完成系統測試及應用推廣。
職位要求
1、兩年以上工作經驗,本科以上學歷,計算機相關專業優先;
2、具有良好統計學及相關領域的理論基礎,熟悉數理統計、數據分析工作方法,具有較強的數據分析能力;
3、精通SQLPython語言,有銀行數據倉庫,數據集市開發經驗者優先;
4、具備較強文字分析和數據處理能力,能獨立編寫數據分析報告;
5、具備開闊的互聯網業務思維,對數據敏感,有較好的業務開拓和溝通表達能力。
數據挖掘工程師崗位職責5
職責:
1.負責海量數據的分析開發工作;
2.完成數據挖掘模型,跟蹤模型的實施和效果,定期優化算法和分析策略,分析研究后提供建設性建議 ;
3.優化大數據存儲、計算等各方面性能,確保能從海量大數據信息里,有效進行數據分析和挖掘;
4.根據用戶的活動記錄進行特征篩選和關聯挖掘。提高關聯準確性;
5.參與相關數據標準和規范的制定。
要求:
1.熟悉java/scala/python/R中至少一種編程語言,具有良好的編碼習慣;
2.計算機、數學相關專業本科以上學歷;
3.2年以上數據挖掘及其相關經驗,對常用的數據挖掘算法有較深入了解,有實際算法調優經驗 ;
4.熟悉常用數據挖掘算法(聚類/分類/回歸/關聯規則/圖模型)等算法原理,具備實際的建模經驗,熟悉常用機器學習算法原理,如樸素貝葉斯/決策樹/隨機森林/邏輯回歸/SVM等,并具備相關應用經驗;
5.熟悉hadoop生態,具有spark/flink等實際開發經驗;
6.極強的數據敏感度,能從海量數據中挖掘出數據核心價值,相關;
7.熟悉分布式存儲,熟悉mysql/oracle、hbase、redis、mogongdb、elasticsearch等,熟悉neo4j/JanusGraph等圖數據庫優先 ;
8.富有創新精神,充滿激情,樂于接受挑戰,良好的溝通技巧和團隊合作,抗壓性強,能適應加班。
數據挖掘工程師崗位職責6
職責:
1、負責內容的處理,包括關鍵詞提取、主題分析、類目預測、質量打分等;
2、負責海量用戶行為的分析研究,挖掘優化用戶畫像,包括人口屬性和用戶興趣等;
3、負責推薦引擎算法的開發,包括各類推薦算法的實現、特征和參數調優、用戶體驗優化等;
4、負責數據營銷平臺策略的開發,包括用戶洞察、行業指數趨勢預測、各類精準定向算法的實現和優化等;
5、負責人工智能技術的'研究,包括機器學習、知識推理、文本語義理解、計算機視覺等技術;
6、通過海量數據對用戶廣告的行為進行深入分析與洞察,提煉和發現業務規律,指導推薦模型特征構建,定位產品相關的數據問題及分析優化;
7、結合廣告投放場景和用戶畫像進行分析、歸納統計指標建設,協助模型快速定位問題。
招聘要求及條件:
1、具備數據挖掘、NLP、機器學習、最優化等算法原理知識背景;
2、具備推薦系統、精準營銷、信息檢索等方面的工作經驗優先;
3、具備大規模分布式計算平臺的使用和并行算法的開發經驗,對大數據處理及應用有濃厚興趣;
4、具有機器學習、數據挖掘、算法優化的基礎并具有濃厚興趣;
5、熟悉統計原理及檢驗方法、熟悉數據分析方法;
6、熟悉分類、回歸、聚類、降維等機器學習算法及應用場景;
7、熟悉Java、Python等,能獨立完成相關的數據分析及分析報告相關工作。
數據挖掘工程師崗位職責7
職責:
1、對海量業務數據進行分析,并利用算法挖掘用戶行為特征,發現潛在規律,建立機器學習算法并優化;
2、利用數據挖掘技術分析、預測用戶的消費行為;
3、建立各種業務邏輯模型和數學模型,幫助公司改善運營管理,節省成本。
任職要求:
1、大學本科及以上學歷;
2、統計學、會計學、數學、物理等相關專業;
3、本科5年以上同崗位工作經驗,研究生3年以上同崗位工作經驗;
4、對統計學和數據挖掘算法原理有較為深刻的理解,了解數據倉庫思想,熟悉SPSS、SAS、R、MAHOUT等數據挖掘軟件之一;
5、熟悉決策樹、聚類、邏輯回歸,關聯分析、SVM,貝葉斯等數據挖掘算法,有海量數據挖掘的項目經驗;
6、有用戶行為分析、用戶建模、業務建模、數學建模經驗優先;
7、良好的邏輯分析能力、分析問題和解決問題的能力,對數據敏感,良好的溝通能力。
數據挖掘工程師崗位職責8
職責:
1、利用數據挖掘、機器學習相關算法,解決業務需求,提高產品的用戶體驗;
2、對海量的業務數據、用戶數據進行挖掘分析,發現數據和業務背后的規律;
3、針對業務流程進行分析調研,探索提升轉化率效果的思路和方案并推動轉化、
崗位要求:
1、熟悉大規模數據挖掘、機器學習、分布式計算等相關技術,能熟練使用聚類、回歸、分類等算法并調優;
2、熟悉Linux環境開發,至少熟悉java/PHP/Python/Scala/Go/C/C++等語言中一種或一種以上;
3、熟悉基于Spark、ElasticSearch、hbase等大數據平臺的相關開發;
4、有深度學習實踐經驗者優先,有sparkmlib經驗者優先。
數據挖掘工程師崗位職責9
職責:
1.參與金融大數據平臺系統和算法的研發和優化;
2.基于大數據金融場景,進行信用風險模型,風控模型,營銷模型的創新設計;
3.與業務部門溝通合作,將數據模型應用于實際業務。
任職要求:
1.計算機相關專業碩士及以上學歷,至少7年以上相關工作經驗;;
2.具有良好的商業敏感度和優秀的數據分析技能,能夠開發創新而實際的分析方法以解決復雜的商業問題。
3.熟悉機器學習的一般模型;例如分類.聚類.預測,理解一些常用的特征選擇和矩陣分解算法。
4.熟悉深度神經網絡和常用模型(如CNN,DBN,sparseconding,RNN等),有Caffe或Theano或ConvNet的實踐經驗。
5.在語義理解檢索(如知識圖譜表示.結構化預測.語義解析.信息檢索.知識挖掘等)有過深入的工作與研究。
6.較強的自學能力.優秀的邏輯思維能力和良好的溝通表達能力和敬業精神。
7.具備良好的系統分析能力,良好的抽象思維和邏輯思維能力,獨立分析問題解決問題的能力;
8.可承受較大壓力,有責任感,較強的溝通協調能力,具有團隊合作精神;
9.有互聯網公司.大型金融企業和大型IT企業工作經歷的優先。
數據挖掘工程師崗位職責10
職責:
1、根據項目經理或高級數據挖掘工程師要求獨立完成項目的數據搜集和數據處理;
2、能夠快速根據項目需要學習并理解行業知識,并能在項目經理或高級數據挖掘工程指導下完成部分數據分析工作;
3、能夠使用SAS,SPSS,或R,Python等開源平臺根據用戶需求定制開發相應的算法;
4、理解數據挖掘模型及預測分析結果,撰寫相關分析報告;
5、了解數據倉庫及商務智能背景,熟練掌握一類數據展現分析工具,如:Tableau,Cognos等;
任職要求
1、信息化管理、數學或統計學專業背景本科以上學歷;
2、具有一定的統計學、數據挖掘知識基礎,有數據倉庫/商業智能項目經驗尤佳;
3、精通數據挖掘方法論,熟悉數據挖掘項目過程;
4、熟悉并掌握SAS、SPSS統計分析或數據挖掘工具至少一種;或具備Python,R等使用開源平臺開發算法的經驗;
5、有很強的事業心、責任感,良好敬業精神、團隊精神與人際溝通能力。
數據挖掘工程師崗位職責11
職責:
1、負責對海量文本內容進行要素提取,精分類別、關聯挖掘等技術的研發工作;
2、負責實現文本挖掘技術的產品化,并且結合招標領域開展應用與優化;
3、能指導較低職位的工程師完成工作;
4、能與高?蒲袡C構進行協同創新。
任職資格:
1、模式識別/人工智能/計算機相關專業,本科或以上學歷;3年以上工作經驗;
2、正直、誠信、敬業、有激情、有良好團隊交流能力;
3、精通Java、Python語言,熟悉linux基本開發環境;
4、精通NLP相關領域知識,擁有較為豐富的文本處理經驗:精準分詞、實體抽取、屬性抽取、關系抽取、分類聚類、主題挖掘、POI挖掘等;
5、具有NLP實戰經驗,參與過相關項目,有知識圖譜/深度學習研發經驗者優先;熟悉Hadoop、Spark、Storm等分布式處理框架者更佳;
6、熟悉Git,SVN等通用工具;
7、對自然語言處理、知識圖譜構建、人工智能等具有濃厚的興趣。
數據挖掘工程師崗位職責12
職責
1、負責構建公司數據分析與數據挖掘業務分析體系,整體架構設計、規劃,充分發揮數據的價值,提高數據質量,促進公司業務更好的發展;
2、通過建立業務的數據分析模型來指導業務的發展,對數據庫信息進行深度挖掘和有效利用,充分實現數據的商業價值,構建公司核心競爭力;
3、跟蹤并分析用戶行為,為公司廣告業務的發展及產品的設計進行海量數據支持;
4、負責數據管理中心團隊的建設、發展、激勵、培訓等管理工作,有效領導數據分析與挖掘團隊支持和推動業務發展。
任職要求:
1、熱愛數據,對數據及邏輯關系敏感,并對數據體系有深入的認識;
2、本科以上學歷、計算機/統計學/經濟學等相關專業,有一定工作經驗,;
3、具備數據建模(機器學習,數據挖掘,信息檢索背景)和分析理論知識和經驗;
4、熟悉Linux平臺的海量數據分布式存儲、分布式計算;
5、熟悉常用的數據分析工具,有基于Hadoop的云計算平臺,HBase及類似的NoSQL存儲, MySQL,和BI系統等實踐經驗;
6、熟悉互聯網并且對于互聯網常見的業務形態與商業模式有深入的理解,對業務變化有敏銳的洞察力;
7、有較強的對業務理解與分析能力,了解業務規劃與策劃能力以及相應經驗;
8、具備較強的問題定位、分解、解決能力及計劃和組織能力;
9、善于創新、思維敏捷、精力充沛,溝通能力強,能夠承受較大工作壓力;
10、有電子商務或互聯網數據倉庫或商業智能架構設計、開發實施經驗者優先。
數據挖掘工程師崗位職責13
職責:
1、負責公司與阿里巴巴在新行業方向(新金融、新零售、國內外運營商)的產品研發;
2、負責分析挖掘客戶/行業對大數據產品的需求(應用場景),利用數據分析結論提升客戶業務能力。例如:文本挖掘,潛在客戶挖掘,用戶畫像,個性化推薦,用能預測等;
3、進行大數據場景下的數據統計、數據挖掘、機器學習、深度學習,包括數據整理、模型建立、模型應用、評估優化等;
4、將客戶需求準確轉化為可執行的數學模型,針對不同的應用場景,負責編寫數據挖掘算法及對其的優化;
5、基于需求分析/運營支持/商業報告等成果,抽取典型用戶/客戶/行業/產品分析模型并與開發團隊溝通實施方案及構建產品原型。
崗位要求:
1、本科以上學歷,扎實的機器學習、數據挖掘、統計學理論基礎;有統計、應用數學、金融等相關專業背景優先;
2、精通常見機器學習算法(如邏輯回歸、SVM、神經網絡、決策樹、貝葉斯等),有實際建模經驗,掌握深度學習算法優先;
3、具有扎實的計算機操作系統、數據結構等編程基礎,精通至少一門編程語言例如JAVA/python/R等;
4、熟悉Map-Reduce模型,對Hadoop、Spark、Storm等大規模數據存儲與運算平臺有實踐經驗優先。
數據挖掘工程師崗位職責14
職責:
業務數據的收集整理和分析;
負責公安、交通領域的業務建模和算法設計;
分析項目數據需求,完成系統中數據分析模塊的設計、實現和測試;
設計、構建和優化基于大數據的存儲平臺架構,編寫相關技術文檔;
設計并實現基于開源項目(Cobar,Spark等)的海量數據集成與處理平臺;
為其他部門提供數據分析支撐。
任職資格:
計算機相關專業;
熟悉數據挖掘算法,對分類、聚類、時序、圖等算法有很深了解;
熟練掌握Hadoop、Spark生態系統組件(MR、HBase、Hive、ZooKeeper、Spark SQL、Spark Mlib等),有相關大數據架構,開發成功案例;
熟練的使用、開發ETL工具經驗,有數據庫建模ER建模經驗優先;
有海量數據BI或數據挖掘項目實施和管理經驗,對數據挖掘理論方法有一定了解者優先;
熟悉的Bash Shell和Python等腳本編程能力;
強烈的責任心和工作熱情,良好的團隊合作精神。
數據挖掘工程師崗位職責15
職責:
(1)分析需求,完成相關數據抽取、數據清洗、數據探索、數據建模分析等工作;
(2)按要求完成數據分析報告、建模報告、數據報表等;
(3)對數據進行深度挖掘和建模,做運營和用戶等各方面分析,深度挖掘運營優化和用戶行為特征等,推動分析問題的解決,為業務決策提供日常支持;
(4)與業務部門和技術部門對接,完成設計,編寫,維護和完善公司業務相關的算法。
(5)參與項目成果匯編,對相關結果進行解讀和匯報。
任職要求:
(1)大專以上學歷,統計、數學、計算機、軟件專業優先;
(2)熟練使用Python,Mysql語言,具有一定的工程能力,完善的文檔和注釋習慣。熟悉JupyterLab遠程代碼編寫環境,Linux常用命令。會使用R,Java,Scala等語言更佳。
(3)熟悉數據分析過程,能夠完成數據抽取、數據處理、數據建模、數據分析報告等任務;
(4)一定的數據挖掘/機器學習理論和技術基礎,了解常用的數據挖掘算法如:聚類模型、線性回歸、邏輯回歸、分類模型、決策樹模型等。
【數據挖掘工程師崗位職責(15篇)】相關文章:
數據挖掘算法工程師崗位職責01-24
數據挖掘工程師崗位職責(14篇)02-11
數據挖掘工程師崗位職責14篇02-11
數據挖掘工程師工作的崗位職責01-17
數據挖掘工程師工作的崗位職責(10篇)01-17
數據挖掘工程師工作的崗位職責10篇01-17
Web數據挖掘技術探析11-14
百度(數據挖掘工程師)筆試題目12-17