1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. -八年級(jí)數(shù)學(xué)期中試卷

        時(shí)間:2024-11-01 07:04:31 初中知識(shí) 我要投稿

        2016-2017八年級(jí)數(shù)學(xué)期中試卷

          好學(xué)者如禾如稻,不好學(xué)者如篙如草,學(xué)習(xí)不是為別人。下面小編給大家整理了2016-2017八年級(jí)數(shù)學(xué)期中試卷,各位不妨試做下。

        2016-2017八年級(jí)數(shù)學(xué)期中試卷

          一.選擇題(本大題共10小題,每小題3分,共30分)

          1.點(diǎn)A(﹣3,﹣5)向上平移4個(gè)單位,再向左平移3個(gè)單位到點(diǎn)B,則點(diǎn)B的 坐標(biāo)為(  )

          A.(1,﹣8) B.(1,﹣2) C.(﹣6,﹣1) D.(0,﹣1)

          2.若三角形的三邊長(zhǎng)分別為3,4,x,則x的值可能是(  )

          A.1 B.6 C.7 D.10

          3.一個(gè)三角形的三個(gè)外角之比為3:4:5,則這個(gè)三角形內(nèi)角之比是(  )

          A.5:4:3 B .4:3:2 C.3:2:1 D.5:3:1

          4.下列函數(shù)中,y是x的一次函數(shù)的是(  )

         、賧=x﹣6;②y= ;③y= ;④y=7﹣x.

          A.①②③ B.①③④ C.①②③④ D.②③④

          5.若直線y=mx+2m﹣3經(jīng)過(guò)二、三、四象限,則m的取值范圍是(  )

          A.m< B.m>0 C.m> D.m<0

          6.下列四個(gè)圖形中,線段BE是△ABC的高的是(  )

          A.     B.        C.          D.

          7.如圖,△ABC≌△AEF,AB=AE,∠B=∠E,則對(duì)于結(jié)論①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正確結(jié)論的個(gè)數(shù)是(  )

          A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

          8.小剛以400米/分的速度勻速騎車(chē)5分,在原地休息了6分,然后以500米/分的速度騎回出發(fā)地.下列函數(shù)圖象能表達(dá)這一過(guò)程的是(  )

          A. B C D.

          9.如圖,∠MON=90°,點(diǎn)A,B分別在射線OM,ON上運(yùn)動(dòng),BE平分∠NBA,BE的反向延長(zhǎng)線與∠BAO的平分線交于點(diǎn)C.則∠C的度數(shù)是(  )

          9題 10題

          A.30° B.45° C.55° D.60°

          10 .如圖所示,已知直線 與x、y軸交于B、C兩點(diǎn),A(0,0),在△ABC內(nèi)依次作等邊三角形,使一邊在x軸上,另一個(gè)頂點(diǎn)在BC邊上,作出的等邊三角形分別是第1個(gè)△AA1B1,第2個(gè)△B1A2B2,第3個(gè)△B2A3B3,…則第n個(gè)等邊三角形的邊長(zhǎng)等于(  )

          A. B. C. D.

          二.填空題(本大題共8小題,每小題3分,共24分)

          11.函數(shù)y= 中,自變量x的取值范圍是      .

          12.已知一次函數(shù)y=(k﹣1)x|k|+3,則k=      .

          13.直線y=kx+b與直線y=﹣2x+1平行,且經(jīng)過(guò)點(diǎn)(﹣2,3),則kb=      .

          14.如圖,一次函數(shù)y=x+6的圖象經(jīng)過(guò)點(diǎn)P(a,b)和Q(c,d),則a(c﹣d)﹣b(c﹣d)的值為      .

          14題 15題 17題

          15 如圖,直線l1,l2交于點(diǎn)A,觀察圖象,點(diǎn)A的坐標(biāo)可以看作方程組   的解.

          16 .y+2與x+1成正比例,且當(dāng)x=1時(shí),y=4,則當(dāng)x=2時(shí),y= _________ .

          17.如圖,點(diǎn)D是△ABC的邊BC上任意一點(diǎn),點(diǎn)E、F分別是線段AD、CE的中點(diǎn),且△ABC的面積為16cm2,則△BEF的面積:      cm2.

          18.某物流公司的快遞車(chē) 和貨車(chē)同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車(chē)到達(dá)乙地后缷完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車(chē)相遇.已知貨車(chē)的速度為60千米/時(shí),兩車(chē)之間的距離y(千米)與貨車(chē)行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個(gè)結(jié)論:

         、倏爝f車(chē)從甲地到乙地的速度為100千米/時(shí);

         、诩、乙兩地之間的距離為120千米;

         、蹐D中點(diǎn)B的坐標(biāo)為(3 ,75);

         、芸爝f車(chē)從乙地返回時(shí)的速度為90千米/時(shí),

          以上4個(gè)結(jié)論正確的是      .

          三.解答題(本大題共6 小題,第19題8分,20題10分,21題10分,22題12分,23題12分,24題14分,共66分)

          19.如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).

          (1)寫(xiě)出點(diǎn)A、B的坐標(biāo):A(    ,     )、

          B(    ,     )

          (2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(      ,      )、

          B′(      ,      )、

          C′(      ,      ).(3)△ABC的面積為      .

          20.已知直線y=kx+b經(jīng)過(guò)點(diǎn)A(5,0),B(1,4).

          (1)求直線AB的解析式;

          (2)若直 線y=2x﹣4與直線AB相交于點(diǎn)C,求點(diǎn)C的坐標(biāo);

          (3)根據(jù)圖象,寫(xiě)出關(guān)于x的不等式2x﹣4>kx+b的解集.

          21.如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數(shù).

          22.某商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種新型節(jié)能臺(tái)燈共100盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:

          類(lèi)型 價(jià)格 進(jìn)價(jià)(元/盞) 售價(jià)(元/盞)

          A型 30 45

          B型 50 70

          (1)設(shè)商場(chǎng)購(gòu)進(jìn)A型節(jié)能臺(tái)燈為x盞,銷(xiāo)售完這批臺(tái)燈時(shí)可獲利為y元,求y關(guān)于x的函數(shù)解析式;

          (2)若商場(chǎng)規(guī)定B型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)A型臺(tái)燈數(shù)量的3倍,應(yīng)怎樣 進(jìn)貨才能使商場(chǎng)在銷(xiāo)售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤(rùn)為多少元?

          23.已知:如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形 如圖1的圖形稱(chēng)之為“8字形”.試解答下列問(wèn)題:

          (1)在圖1中,請(qǐng)直接寫(xiě)出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)      ;

          (2)在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.利用(1)的結(jié)論,試求∠P的度數(shù);

          (3)如果圖2中∠D和∠B為任意角時(shí),其他條件不變,試問(wèn)∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系?并說(shuō)明理由

          24.一輛快車(chē)從甲地開(kāi)往乙地,一輛慢車(chē)從乙地開(kāi)往甲地, 兩車(chē)同時(shí)出發(fā),設(shè)慢車(chē)離乙地的距離為y1(km),快車(chē)離乙地的距離為y2(km),慢車(chē)行駛時(shí)間為x(h),兩車(chē)之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖(1)所示,S與x的函數(shù)關(guān)系圖象如圖(2)所示:

          (1)圖中的a=      ,b=      .

          (2)求S關(guān)于x的函數(shù)關(guān)系式.

          (3)甲、乙兩地間依次有E、F兩個(gè)加油站,相距 200km,若慢車(chē)進(jìn)入E站加油時(shí),快車(chē)恰好進(jìn)入F站加油.求E加油站到甲地的距離.

          參考答案

          一CBCBD DCCBA 11 . X<3 12 . _1 13 . 2 14, 36 15

          16 7 17 . 4 18 (1)(3)(4)

          19(1)寫(xiě)出點(diǎn)A、B的坐標(biāo):

          A( 2 , ﹣1 )、B( 4 , 3 )---------------------------------2分

          (2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′( 0 , 0 )、B′( 2 , 4 )、C′( ﹣1 , 3 )-------------5分.(3)△ABC的面積為 5 ------------------8分.

          20 解:(1)∵直線y=kx+b經(jīng)過(guò)點(diǎn)A(5,0),B(1,4),

          ∴直線AB的解析式為:y=﹣x+5;------------4分(2)∵若直線y=2x﹣4與直線AB相交于點(diǎn)C,點(diǎn)C(3,2);------------8分(3)根據(jù)圖象可得x>3.--------------10分

          21 解答: 解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣(∠A+∠B),

          =180°﹣(30°+62°)=180°﹣92°=88°,∵CE平分∠ACB,

          ∴∠ECB=∠ACB=44°,∵CD⊥AB于D,∴∠CDB=90°,

          ∴ ∠BCD=90°﹣∠B=90°﹣62°=28°,

          ∴∠ECD=∠ECB﹣∠BCD=44°﹣28°=16°,∵DF⊥CE于F,∴∠CFD=90°,

          ∴∠CDF=90°﹣∠ECD=90°﹣16°=74°.--- ---------------------------------------10分

          22 . 解:(1)y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,

          =﹣5x+2000----6分,

          (2)∵B型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)A型臺(tái)燈數(shù)量的3倍,

          ∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,

          ∴x=25時(shí),y取得最大值為﹣5×25+2000=1875(元).-------------------------------12分

          23. 解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,

          在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(對(duì)頂角相等),

          ∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;-----------3分

          (2)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,

          ∴∠OCB﹣∠OAD=4°,∵AP、CP分別是∠DAB和∠BCD的角平分線,

          ∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,

          ∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°-----7分;

          (3)根據(jù)“8字形”數(shù)量關(guān)系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,

          所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,

          ∵AP、CP分別是∠DAB和∠BCD的角平分線,∴∠DAM=∠OAD,∠PCM=∠OCB,

          ∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.----------------------12分

          24 解:(1)由S與x之間的函數(shù)的圖象可知:當(dāng)位于C點(diǎn)時(shí),兩車(chē)之間的距離增加變緩,∴由 此可以得到a=6,

          ∴快車(chē)每小時(shí)行駛100千米,慢車(chē)每小時(shí)行駛60千米,兩地之間的距離為600,

          ∴b=600÷(100+60)=15/4------------------------------------------ -----------4分

          (2)∵從函數(shù)的圖象上可以得到A、B、C、D點(diǎn)的坐標(biāo)分別為:(0,600)、(3.75,0)、(6,360)、(10,600),

          ∴設(shè)線段AB所在直線解析式為:S=kx+b,解得:k=﹣160,b=600,S=-160x+600

          設(shè)線段BC所在的直線的解析式為:S=kx+b,

          解得:k=160,b=﹣600,s=160x-600

          設(shè)直線CD的解析式為:S=kx+b,解得:k=60,b=0 ,s=60x-----------------------10分

          (3)當(dāng)兩車(chē)相遇前分別進(jìn)入兩個(gè)不同的加油站,

          此時(shí):S=﹣160x+600=200,

          解得:x=2.5,

          當(dāng)兩車(chē)相遇后分別進(jìn)入兩個(gè)不同的加油站,

          此時(shí):S=160x﹣600=200,

          解得:x=5,

          ∴當(dāng)x=2.5或5時(shí),此時(shí)E加油站到甲地的距離為450km或300km.-----------14分

        【-八年級(jí)數(shù)學(xué)期中試卷】相關(guān)文章:

        2023八年級(jí)數(shù)學(xué)上冊(cè)期中試卷含答案11-07

        2016-2017八年級(jí)上冊(cè)語(yǔ)文期中試卷09-06

        四年級(jí)數(shù)學(xué)下冊(cè)期中試卷01-23

        人教版五年級(jí)數(shù)學(xué)下冊(cè)期中試卷01-22

        五年級(jí)下冊(cè)數(shù)學(xué)期中試卷01-23

        小升初模擬試卷數(shù)學(xué)10-10

        2016-2017八年級(jí)語(yǔ)文期中試卷含答案09-08

        2016年八年級(jí)第一學(xué)期英語(yǔ)期中試卷10-12

        2016-2017八年級(jí)物理上冊(cè)期中試卷10-29

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>