初中數(shù)學教學中分類思想的滲透淺析
數(shù)學學習離不開思維,數(shù)學探索需要通過思維來實現(xiàn),在初中數(shù)學教學中逐步滲透數(shù)學思想方法,培養(yǎng)思維能力,形成良好的數(shù)學思維習慣,既符合新的課程標準,也是進行數(shù)學素質(zhì)教育的一個切入點。數(shù)學分類思想,就是根據(jù)數(shù)學對象本質(zhì)屬性的相同點與不同點,將其分成幾個不同種類的一種數(shù)學思想。它既是一種重要的數(shù)學思想,又是一種重要的數(shù)學邏輯方法。
所謂數(shù)學分類討論方法,就是將數(shù)學對象分成幾類,分別進行討論來解決問題的一種數(shù)學方法。有關分類討論思想的數(shù)學問題具有明顯的邏輯性、綜合性、探索性,能訓練人的思維條理性和概括性。
分類討論思想,貫穿于整個中學數(shù)學的全部內(nèi)容中。需要運用分類討論的思想解決的數(shù)學問題,就其引起分類的原因,可歸結(jié)為:①涉及的數(shù)學概念是分類定義的;②運用的數(shù)學定理、公式或運算性質(zhì)、法則是分類給出的;③求解的數(shù)學問題的結(jié)論有多種情況或多種可能;④數(shù)學問題中含有參變量,這些參變量的取值會導致不同結(jié)果的。應用分類討論,往往能使復雜的問題簡單化。分類的過程,可培養(yǎng)學生思考的周密性,條理性,而分類討論,又促進學生研究問題,探索規(guī)律的能力。
分類思想不象一般數(shù)學知識那樣,通過幾節(jié)課的教學就可掌握。它根據(jù)學生的年齡特征,學生在學習的各階段的認識水平和知識特點,逐步滲透,螺旋上升,不斷的豐富自身的內(nèi)涵。
教學中可以從以下幾個方面,讓學生在數(shù)學學習過程中,通過類比、觀察、分析、綜合、抽象和概括,形成對分類思想的主動應用。
一、滲透分類思想,養(yǎng)成分類的意識
每個學生在日常中都具有一定的分類知識,如人群的分類、文具的分類等,我們利用學生的這一認識基礎,把生活中的分類遷移到數(shù)學中來,在教學中進行數(shù)學分類思想的滲透,挖掘教材提供的機會,把握滲透的契機。如數(shù)的分類,絕對值的意義,不等式的性質(zhì)等,都是滲透分類思想的很好機會。
教授完負數(shù)、有理數(shù)的概念后,及時引導學生對有理數(shù)進行分類,讓學生了解到對不同的標準,有理數(shù)有不同的分類方法,為下一步分類討論奠定基礎。
認識數(shù)a可表示任意數(shù)后,讓學生對數(shù)a進行分類,得出正數(shù)、零、負數(shù)三類。
講解絕對值的意義時,引導學生通過對正數(shù)、零、負數(shù)的絕對值的認識,了解如何用分類討論的方法學習理解數(shù)學概念。
又如,兩個有理數(shù)的比較大小,可分為:正數(shù)和正數(shù)、正數(shù)和零、正數(shù)和負數(shù)、負數(shù)和零、負數(shù)和負數(shù)幾類情況來比較,而負數(shù)和負數(shù)的大小比較是新的知識點,這就突出了學習的重點。
結(jié)合“有理數(shù)”這一章的教學,反復滲透,強化數(shù)學分類思想,使學生逐步形成數(shù)學學習中的分類的意識。并能在分類討論的時候注意一些基本原則,如分類的對象是確定的,標準是統(tǒng)一的,如若不然,對象混雜,標準不一,就會出現(xiàn)遺漏、重復等錯誤。如把有理數(shù)分為:正數(shù)、負數(shù)、整數(shù),就是犯分類標準不一的錯誤。在確定對象和標準之后,還要注意分清層次,不越級討論。
二、學習分類方法,增強思維的縝密性
在教學中滲透分類思想時,應讓學生了解,所謂分類就是選取適當?shù)臉藴,根?jù)對象的屬性,不重復、不遺漏地劃分為若干類,而后對每一子類的問題加以解答。掌握合理的分類方法,就成為解決問題的關鍵所在。分類的方法常有以下幾種:
1、根據(jù)數(shù)學的概念進行分類。
有些數(shù)學概念是分類給出的,解答此類題,一般按概念的分類形式進行分類。比較與易得的錯誤,導致錯誤在于沒有注意到數(shù)可表示不同類的數(shù)。而對數(shù)進行分類討論,既可得到正確的解答。
2、根據(jù)數(shù)學的法則、性質(zhì)或特殊規(guī)定進行分類。
學習一元二次方程,根的判別式時,對于變形后的方程用兩邊開平方求解,需要分類研究大于0,等于0,小于0這三種情況對應方程解的情況。而此題的符號決定能否開平方,是分類的依據(jù)。從而得到一元二次方程的根的三種情況。
3、根據(jù)圖形的特征或相互間的關系進行分類。
如三角形按角分類,有銳角三角形、直角三角形、鈍角三角形,直線和圓根據(jù)直線與圓的交點個數(shù)可分為:直線與圓相離、直線與圓相切、直線與圓相交。
例如等腰三角形一腰上的高與另一腰的夾角為30°,底邊長為a,則其腰上的高是 。
分析:本題根據(jù)圖形的特征,把等腰三角形分為銳角三角形和鈍角三角形兩類作高CD,如圖,可得腰上的高是或從幾何圖形的點和線出現(xiàn)不同的位置進行分類
在證明圓周角定理時,由于圓心的位置有在角的邊上、角的內(nèi)部,角的外部三種不同的情況,因此分三種不同情況分別討論證明。先證明圓心在圓周角的一條邊上,這種最容易解決的情況,然后通過作過圓周角頂點的直徑,利用先證明(圓心在圓周角的一條邊上)的這種情況來分別解決圓心在圓周角的內(nèi)部、圓心在圓周角的外部這兩種情況。這是一種從定理的證明過程中反映出來的分類討論的思想和方法。它是根據(jù)幾何圖形點和線出現(xiàn)不同位置的情況逐一解決的方法。教材中在證明弦切角定理:弦切角等于它所夾的弧所對的圓周角。也是如此分圓心在弦切角的一條邊上,弦切角的內(nèi)部、弦切角的外部三種不同情況解決的。
三、引導分類討論,提高合理解題的能力
初中課本中有不少定理、法則、公式、習題,都需要分類討論,在教授這些內(nèi)容時,應不斷強化學生分類討論的意識,讓學生認識到這些問題,只有通過分類討論后,得到的結(jié)論才是完整的、正確的,如不分類討論,就很容易出現(xiàn)錯誤。在解題教學中,通過分類討論還有利于幫助學生概括,總結(jié)出規(guī)律性的東西,從而加強學生思維的條理性,縝密性。
一般來講,利用分類討論思想和方法解決的問題有兩大類:;其一是涉及代數(shù)式或函數(shù)或方程中,根據(jù)字母不同的取值情況,分別在不同的取值范圍內(nèi)討論解決問題。其二是根據(jù)幾何圖形的點和線出現(xiàn)不同位置的情況,逐一討論解決問題。
由此我們可以看出分類討論往往能使一些錯綜復雜的問題變得異常簡單,解題思路非常的清晰,步驟非常的明了。另一方面在討論當中,可以激發(fā)學生學習數(shù)學的興趣。
利用現(xiàn)有教材,教學中著意滲透并力求幫助學生初步掌握分類的思想方法,結(jié)合其它數(shù)學思想方法的學習,注意幾種思想方法的綜合使用,給學生提供足夠的材料和時間,啟發(fā)學生積極思維。相信會使學生在認識層次上得到極大的提高,收到事半功倍的教學成效。
【初中數(shù)學教學中分類思想的滲透淺析】相關文章:
初中數(shù)學教學中滲透數(shù)形結(jié)合思想的意義及途徑論文12-27
高職院校數(shù)學教學中滲透數(shù)學建模思想方法的思考與實踐12-07
淺析多媒體技術在的初中數(shù)學教學中的優(yōu)勢03-13
淺析初探中學語文教學中滲透美育12-09
淺析數(shù)學教學中的有效互動03-28
論閱讀教學中滲透思想教育的途徑11-23
- 相關推薦