1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 淺談初中學生數(shù)學解題誤區(qū)

        時間:2023-03-28 08:58:35 數(shù)學畢業(yè)論文 我要投稿
        • 相關(guān)推薦

        淺談初中學生數(shù)學解題誤區(qū)

          在學習過程中,錯誤的出現(xiàn)是不可避免的。因此,對錯誤進行系統(tǒng)的分析是非常重要的:首先教師可以通過錯誤來發(fā)現(xiàn)學生的不足,從而采取相應的補救措施;其次,錯誤從一個特定的角度揭示了學生掌握知識的過程;最后,錯誤對于學生來說也是不可或缺的,是學生在學習過程中對所學知識不斷嘗試的結(jié)果。本文就初中學生數(shù)學解題錯誤作一簡要分析。

        淺談初中學生數(shù)學解題誤區(qū)

          一、對待初中學生解題錯誤的態(tài)度

          在初中數(shù)學教學中,教師害怕學生出現(xiàn)解題錯誤,對錯誤采取嚴厲禁止的態(tài)度是司空見慣的。在這種懼怕心理支配下,教師只注重教給學生正確的結(jié)論,而不注重揭示知識形成的過程,害怕啟發(fā)學生進行討論會得出錯誤的結(jié)論。長此以往,學生只接受了正確的知識,但對錯誤的出現(xiàn)缺乏心理準備,看不出錯誤或看出錯誤但改不對。持這種態(tài)度的教師只關(guān)心學生用對知識而忽視學生會用知識。例如,在講有理數(shù)運算時,由于只注重得出正確的結(jié)果,強調(diào)運算法則、運算順序,而對運用運算律簡化運算注意不夠,但后者對發(fā)展學生運算能力卻更為重要?傊@種對待錯誤的態(tài)度會對教學帶來一些消極的影響。

          事實上,錯誤是正確的先導,成功的開始。學生所犯錯誤及其對錯誤的認識,是學生知識寶庫的重要組成部分。筆者至今仍然對學生時代的一節(jié)數(shù)學課記憶猶新。

          當時老師講過a+2-b+2=(a+b)(a-b)后,讓我們自己分解x+4-y+4。很快大家就做完了。老師一邊巡視一邊督促檢查。但在最后教師宣布只有1人做對時,我們都感到非常吃驚。我們把x+4-y+4分解為(x+2+y+2)(x+2-y+2)錯在哪里呢?做對同學的答案是(x+2+y+2)(x+y)(x-y),兩相對照,我們發(fā)現(xiàn)原來x+2-y+2還可以繼續(xù)分解。于是,分解因式要進行到每個因式都不能再分解為止給每個同學都留下了深刻的印象。由此也可以看出,利用學生典型錯誤并進行正確誘導會收到良好的教學效果。

          基于上述原因,教師對待錯誤的懼怕心理和嚴厲態(tài)度轉(zhuǎn)變?yōu)槌惺苄睦砗蛯捜輵B(tài)度是十分有意義的。因為數(shù)學學習實際上是不斷地提出假設,修正假設,使學生對數(shù)學的認知水平不斷復雜化,并逐漸接近成熟的過程。從這個意義上說,錯誤不過是學生在數(shù)學學習過程中所做的某種嘗試,它只能反映學生在數(shù)學學習的某個階段的水平,而不能代表其最終的實際水平。此外,正是由于這些假設的不斷提出與修正,才使學生的能力不斷提高。因此,揭示錯誤是為了最后消滅錯誤,我們所說的承受與寬容也是相對于這一過程而言的。在教學中給學生展示的這一嘗試、修正的過程,是與學生獨立解題的過程相吻合的。因而學生在教師教學過程中學到的不僅僅是正確的結(jié)論,而且領(lǐng)略了探索、調(diào)試的過程,這對學生的解題過程會產(chǎn)生有益的影響,使學生學會分析,自己發(fā)現(xiàn)錯誤,改正錯誤。教師具備這樣的承受心理與寬容態(tài)度,才會耐心尋找學生解題錯誤的原因,并做出適當?shù)奶幚怼?/p>

          二、初中學生解題錯誤的原因

          學生順利正確地完成解題,表明其在分析問題,提取、運用相應知識的環(huán)節(jié)上沒有受到干擾或者說克服了干擾。在上述環(huán)節(jié)上不能排除干擾,就會出現(xiàn)解題錯誤。就初中學生解題錯誤而言,造成錯誤的干擾來自以下兩方面:一是小學數(shù)學的干擾,二是初中數(shù)學前后知識的干擾。

          (一)小學數(shù)學的干擾

          在初中一開始,學生學習小學數(shù)學形成的某些認識會妨礙他們學習代數(shù)初步知識,使其產(chǎn)生解題錯誤。

          例如,在小學數(shù)學中,解題結(jié)果常常是一個確定的數(shù)。受此影響,學生在解答下述問題時出現(xiàn)混亂與錯誤。原題是這樣的:禮堂第一排有a個座位,后面每排都比前1排多1個座位,第2排有幾個座位?第3排呢?設m為第n排的座位數(shù),那么m是多少?求a=20,n=19時,m的值。學生在解答上述問題時,受結(jié)果是確定的數(shù)的影響,把用n表示m與求m的值混為一談,暴露出其思考過程受到上述干擾的痕跡。

          又如,小學數(shù)學中形成的一些結(jié)論都只是在沒有學負數(shù)的情況下成立的。在小學,學生對數(shù)之和不小于其中任何一個加數(shù),即a+b≥a是堅信不疑的,但是,學了負數(shù)后,a+b<a也是可能的。也就是說,習慣于在非負數(shù)范圍內(nèi)討論問題,容易忽視字母取負數(shù)的情況,導致解題錯誤。另外,“+”、“-”號長期作為加、減號使用,學生對于3-5+4-6,習慣上看作3減5加4減6,而初中更需要把上式看成正3負5正4負6之和。對習慣看法的印象越牢固,新的看法就越難牢固樹立。

          再有,學生習慣于算術(shù)解法解應用題,這會對學生學習代數(shù)方法列方程解應用題產(chǎn)生干擾。例如,在求兩車相遇時間時(甲、乙兩站間的路程為360km,一列慢車從甲站開出,每小時行駛48km,一列快車從乙站開出,每小時行駛72km,兩列火車同時開出,相向而行,經(jīng)過多少小時相遇?),列出的“方程”為x=360/48+72。由此可以看出學生拘泥于算術(shù)解法的痕跡。而初中需要列出48x+72x=360這樣的方程,這表明學生對已知數(shù)和未知數(shù)之間的相等關(guān)系的把握程度。

          總之,初中開始階段,學生解題錯誤的原因常可追溯到小學數(shù)學知識對其新學知識的影響。講清新學知識的意義(如用字母表示數(shù))、范圍(正數(shù)、0、負數(shù))、方法(代數(shù)和、代數(shù)方法)與舊有知識(具體數(shù)字、非負數(shù)、加減運算、算術(shù)方法)的不同,有助于克服干擾,減少初始階段的錯誤。

          (二)初中數(shù)學前后知識的干擾

          隨著初中知識的展開,初中數(shù)學知識本身也會前后相互干擾。

          例如,在學有理數(shù)的減法時,教師反復強調(diào)減去一個數(shù)等于加上它的相反數(shù),因而3-7中7前面的符號“-”是減號給學生留下了深刻的印象。緊接著學習代數(shù)和,又要強調(diào)把3-7看成正3與負7之和,“-”又成了負號。學生不禁產(chǎn)生到底要把“-”看成減號還是負號的困惑。這個困惑不能很好地消除,學生就會產(chǎn)生運算錯誤。

          又如,了解不等式的解集以及運用不等式基本性質(zhì)3是不等式教學的一個難點,學生常常在這里犯錯誤,其原因就有受等式兩邊可以乘以或除以任何一個數(shù)以及方程的解是一個數(shù)有關(guān)。事實也證明,把不等式的有關(guān)內(nèi)容與等式及方程的相應內(nèi)容加以比較,使學生理解兩者的異同,有助于學生學好不等式的內(nèi)容。

          學生在解決單一問題與綜合問題時的表現(xiàn)也可以說明這個問題。學生在解答單一問題時,需要提取、運用的知識少,因而受到知識間的干擾小,產(chǎn)生錯誤的可能性。欢龅骄C合問題,在知識的選取、運用上受到的干擾大,容易出錯。

          總之,這種知識的前后干擾,常常使學生在學習新知識時出現(xiàn)困惑,在解題時選錯或用錯知識,導致錯誤的發(fā)生。

          三、減少初中學生解題錯誤的方法

          由上所述,學生不能順利正確地完成解題,產(chǎn)生解題錯誤,表明其在解題過程中受到干擾。因此,減少初中解題錯誤的方法是預防和排除干擾。為此,要抓好課前、課內(nèi)、課后三個環(huán)節(jié)。

          (一)課前準備要有預見性

          預防錯誤的發(fā)生,是減少初中學生解題錯誤的主要方法。講課之前,教師如果能預見到學生學習本課內(nèi)容可能產(chǎn)生的錯誤,就能夠在課內(nèi)講解時有意識地指出并加以強調(diào),從而有效地控制錯誤的發(fā)生。例如,講解方程x/0.7-(0.17-0.2x)/0.03=1之前,要預見到本題要用分式的基本性質(zhì)與等式的性質(zhì),兩者有可能混淆,因而要在復習提問時準備一些分數(shù)的基本性質(zhì)與等式的性質(zhì)的練習,幫助學生弄清兩者的不同,避免產(chǎn)生混亂與錯誤。因此備課時,要仔細研究教科書正文中的防錯文字、例題后的注意、小結(jié)與復習中的應該注意的幾個問題等,同時還要揣摸學生學習本課內(nèi)容的心理過程,授業(yè)解惑,使學生預先明了容易出錯之處,防患于未然。如果學生出現(xiàn)問題而未查覺,錯誤沒有得到及時的糾正,則遺患無窮,不僅影響當時的學習,還會影響以后的學習。因此,預見錯誤并有效防范能夠為揭示錯誤、消滅錯誤打下基礎(chǔ)。

          (二)課內(nèi)講解要有針對性

          在課內(nèi)講解時,要對學生可能出現(xiàn)的問題進行針對性的講解。對于容易混淆的概念,要引導學生用對比的方法,弄清它們的區(qū)別和聯(lián)系。對于規(guī)律,應當引導學生搞清它們的來源,分清它們的條件和結(jié)論,了解它們的用途和適用范圍,以及應用時應注意的問題。教師要給學生展示揭示錯誤、排除錯誤的手段,使學生會識別錯誤、改正錯誤。要通過課堂提問及時了解學生情況,對學生的錯誤回答,要分析其原因,進行針對性講解,利用反面知識鞏固正面知識。課堂練習是發(fā)現(xiàn)學生錯誤的另一條途徑,出現(xiàn)問題,及時解決?傊ㄟ^課堂教學,不僅教會學生知識,而且要使學生學會識別對錯,知錯能改。

          (三)課后講評要有總結(jié)性

          要認真分析學生作業(yè)中的問題,總結(jié)出典型錯誤,加以評述。通過講評,進行適當?shù)膹土暸c總結(jié),也使學生再經(jīng)歷一次調(diào)試與修正的過程,增強識別、改正錯誤的能力。

          綜上所述,學生的學習過程經(jīng)歷了從不知到知,從知之不多到知之較多,其間正確與錯誤交織,對錯誤正確對待、認真分析、有效控制,就能夠使學生的學習順利進行,能力逐漸提高。

        【淺談初中學生數(shù)學解題誤區(qū)】相關(guān)文章:

        淺談初中數(shù)學教學反思11-12

        淺談初中數(shù)學教學心得02-20

        淺談初中數(shù)學教學方法07-21

        淺談初中數(shù)學教學反思(9篇)11-13

        淺談初中數(shù)學教學反思9篇11-13

        淺談初中數(shù)學教學反思匯編9篇11-14

        淺談初中數(shù)學教學反思(集錦9篇)11-14

        重視數(shù)學實驗的解題的幾個技巧11-02

        怎樣提高學生數(shù)學的解題能力論文(通用9篇)06-08

        淺談數(shù)學教學反思11-03

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>