1. <tt id="5hhch"><source id="5hhch"></source></tt>
    1. <xmp id="5hhch"></xmp>

  2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

    <rp id="5hhch"></rp>
        <dfn id="5hhch"></dfn>

      1. 高中數學公式和定理教學在高二學生中的研究論文

        時間:2024-06-24 00:27:41 數學畢業論文 我要投稿
        • 相關推薦

        有關高中數學公式和定理教學在高二學生中的研究論文

          關鍵詞:高中數學 公式和定理教學

        有關高中數學公式和定理教學在高二學生中的研究論文

          摘要:高中數學課程應該返璞歸真,努力揭示數學概念、法則、結論的發展過程和本質。數學課程要講邏輯推理,更要講道理,通過典型例子的分析和學生自主探索活動,使學生理解數學概念、結論逐步形成的過程,體會蘊涵在其中的思想方法,追尋數學發展的歷史足跡,把數學的學術形態轉化為學生易于接受的教育形態。

          公式和定理是中學數學知識體系的重要組成部分,是數學推理論證的重要依據。因此,公式和定理的教學是基礎知識教學的重要組成部分。高中數學公式和定理大部分是需要掌握的,按照課程標準對掌握的定位,就是必須明了知識的來龍去脈,領會知識的本質,能從本質上把握內容、形式的變化,對其中蘊含的數學思想方法也要掌握[1]。

          1.數學理解的作用

          1.1理解可以促進記憶

          由于學生將數學知識形成記憶的過程是一個建構和再建構的過程,因此記憶并不是將知識直接原封不動地接收然后儲存的過程,而是要理解要不斷做一些建構的工作,這些工作主要涉及三個方面:把原有知識變成更容易記和提取的知識;新舊知識盡量聯系更多;新舊知識本質屬性聯系數量越多,就越容易提取。因此,在記憶知識時,個體會主動去理解,加強知識聯系的廣度和深度,由此提高新知識的記憶程度。

          1.2理解能降低知識的記憶量

          沒有理解,知識就是孤立存在,各種知識分別占用記憶單位;如果理解,新舊知識之間有聯系,構成一些有機組成部分,那么需要單獨記憶的東西變少,這樣,記憶量就減少了[2]。

          1.3理解將推動遷移

          遷移是指一種學習對另一種學習的影響,有正遷移和負遷移之分。由于建構性的理解活動能突破限制,組建表象與表象之間豐富的聯系,在結構內部或更大范圍以及結構之間尋找更深層次的意義,因此能發揮知識方法的潛能,推動遷移的進行[3]。

          1.4理解會影響信念

          學生在思考和理解的過程中會漸漸地體會到數學是一個緊密的內部聯系的整體,知識網絡之間非常有條理地聯系在一起,這些聯系是學習者自己通過努力去探索和嘗試地建立起來的,這同時就建立了比較正確的數學觀、數學學習觀和數學信念等。就在學生對數學概念的本質及關聯有了理解,對數學方法的運用有體會時,學生對數學及其應用產生興趣,想學習更新更深的知識。因此,只要抓住學習的關鍵—理解,或者學生的學習達到該水平,那么就能促進學生形成正確的觀念[4]。

          2.強化高中數學公式和定理教學在高二學生中的理解措施

          2.1教師要增強對公式和定理證明的意識

          在課堂上適時的簡單證明公式和定理,讓學生掌握公式和定理的證明,也就是把大部分學生對公式和定理的理解水平提升到領會水平,學會公式和定理的證明才能有效地提高學生的解題能力。教師的信念會直接影響學生的信念,教師如果自己覺得公式和定理只要會用就可以,那么要學生掌握公式和定理的證明這是不可能的,目前普遍認為公式和定理只要記住會用就可以了,可見教師信念對學生信念的影響很大以及學生本身對公式和定理的認識不深刻。處于公式和定理的不同理解水平的學生在解題能力上有顯著性差異,兩者成高度正相關。也就是說,掌握公式和定理的證明能有效地提高學生的解題能力。

          2.2重視學生數學語言的運用和理解

          讓更多的學生能正確表達數學和明白數學專用名詞的意思。在學生訪談中,當問到錯位相減法的字面意思時,所有的學生都不知如何回答,經過提示,才慢慢的能說清楚一些。因為數學名詞的命名都是有一定原因的,它跟命名的對象有關,所以教師在講解比如倒序相加法、錯位相減法時,把推導過程與名字結合在一起,學生當時理解會稍微深刻一點,以后估計看到方法的名字就能想起或知道具體的證明過程。這也讓學生慢慢形成一種意識,就是中學數學中只要從字面上簡單清晰地理解數學,不僅在以后可使回憶變得簡單,而且呈現知識的“原貌”也顯得不是那么困難了。

          2.3教師本身應提高對學生數學學習能力的認識

          問卷的同時,也與高中數學教師進行交流,比如問為什么公式和定理的證明一般只講一遍,對公式和定理的要求一般為什么是只要記住會用就可以?教師的回答一般是:我們學校的學生生源差,好的學生都被最好的市重點先錄取;就算講了,學生能掌握證明的也很少。事實上,分析學生測試卷可以發現,很多問題學生都有比較完美的解法,說明學生并不差,總是有很多不錯的學生存在,教師可以適當進行資優教育。如果教師因未發掘學生潛能而期望過低,使學生感受到老師認為自己不行,那么一方面教師對學生的定位就己經很低了,學生要達到更高的認知水平就非常困難,另一方面教師講得簡單,沒講一些數學深刻的地方,那學生也沒法領會數學的深奧,以及數學原來很有趣。

          2.4教師有時要基于數學史作教學設計

          以有趣的故事來引發學生的興趣,以一些更簡單、更巧妙、更直觀的方法讓學生明白數學可以很簡單直觀,只不過是自己沒發現而已。

          2.5教師平時應多強調推理的嚴密性,少用“記住、別忘了”等詞

          比如對于學生忘記分q等于1和q不等于1兩種情況,或在學生忘記a=0的情況,不要只強調下次別忘了,而應該指出這是數學推理的嚴密性,a=0時就不是等比數列了,就不能用等比數列的求和公式。這樣做可以讓學生發現數學的深刻性,可以減少認為數學只是解一些題而不存在多少思想和特點的學生的人數。

          3.結論

          綜上所述,對于數學公式和定理,學生不能只是簡單的“一背二套”,還要學會其證明過程,因為只有這樣,才能更好地促進記憶、知道應用條件和掌握數學思想方法,并最終達到靈活應用的目的;教師也不能注重應用,而忽略推導過程,并且推導過程中最好“藝術化”一些,更好地創設情境加以引導,多加入美的元素,激發學生思維的活力。因此,研究高中生對公式和定理的理解水平,對高中生的數學學習和中學數學教學有著重要意義。

          參考文獻:

          [1]黃燕玲,喻平.對數學理解的再認識[J].數學教育學報,2002,11(03):17-l9.

          [2]胡梅.等比數列前n項和公式的七種推導方法[J].考試(教研版),2009(07):67.

          [3]劉良華.數學理解的認知過程及其教學策略[[J].高等函授學報(自然科學版),200922(04): 13-15.

          [4]林湘.在有效提問中提升學生的數學理解[[J].廣西教育,2010(05):42-43.

        【高中數學公式和定理教學在高二學生中的研究論文】相關文章:

        高中歷史教學中課堂導入策略研究論文09-14

        研究性學習在高中地理教學中的應用論文06-12

        高中物理教學情境化和生活化研究論文09-15

        高中地理教學如何培養學生的研究能力的論文09-11

        實例研究探討式教學在高中地理課程教學中的應用論文08-10

        高中音樂教學技巧研究論文06-22

        高中物理教學實驗研究論文10-16

        高中音樂教學研究論文09-29

        高校教學管理中教學干事研究論文10-17

        探究高中物理教學中對學生能力培養的論文08-25

        国产高潮无套免费视频_久久九九兔免费精品6_99精品热6080YY久久_国产91久久久久久无码

        1. <tt id="5hhch"><source id="5hhch"></source></tt>
          1. <xmp id="5hhch"></xmp>

        2. <xmp id="5hhch"><rt id="5hhch"></rt></xmp>

          <rp id="5hhch"></rp>
              <dfn id="5hhch"></dfn>