- 相關推薦
漫談小學數學思想及其在教學中的滲透的論文
摘要:數學思想是從某些具體數學認識過程中提煉和概括,在后繼的認識活動中被反復證實其正確性,帶有一般意義和相對穩定的特征。在小學數學教育中有意識地向學生滲透一些基本數學思想方法是提高學生數學能力和思維品質的重要手段,是數學教育中實現從傳授知識到培養學生分析問題、解決問題能力的重要思維活動,且它本身也蘊涵了情感素養的熏染。這點也是新課程標準充分強調的。
關鍵詞:數學思想;滲透;符號思想;類比思想;分類思想;方程與函數思想;建模思想。
數學思想是從某些具體數學認識過程中提煉和概括,在后繼的認識活動中被反復證實其正確性,帶有一般意義和相對穩定的特征。它揭示了數學發展中普遍的規律,對數學的發展起著指引方向的作用,它直接支配著數學的實踐活動,是數學的靈魂。而數學方法則體現了數學思想,在自然辯證法一書的導言中,恩格斯敘述了笛卡兒制定了解析幾何,耐普爾制定了對數,來布尼茨和牛頓制定了微積分后指出:“最重要的數學方法基本上被確定了”,對數學而言,可以說最重要的數學思想也基本上被確定了。
《九年制義務教育全日制小學數學課程標準》(試驗稿)提出:“學生通過學習,能夠獲得適應未來社會生活和進一步發展所必需的重要數學知識以及基本的數學思想方法!币虼,在小學數學教學階段有意識地向學生滲透一些基本數學思想方法可以加深學生對數學概念、公式、定理、定律的理解,是提高學生數學能力和思維品質的重要手段,是數學教育中實現從傳授知識到培養學生分析問題、解決問題能力的重要途徑,也是小學數學教學進行素質教育的真正內涵之所在。在小學階段,數學思想主要有符號思想、類比思想、分類思想、方程與函數思想、建模思想等。
一、符號思想
西方較早地在數學研究中引進了符號,十六世紀數學家韋達對數學符號作了很多改進,并且第一個有意識地系統地用字母表示已知數、未知數及其乘冪,帶來了代數學研究的重大拓展,奠定了符號代數的基礎,后來大數學家笛卡兒對韋達使用的字母又作了改進。用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學的內容,這就是符號思想。在數學中各種量的關系,量的變化以及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式來表達大量的信息,如乘法分配律(a+b)×c=a×c+b×c,這里的a、b、c不僅可以表示1、2、3,也可以表示4、5、6、7……長方形的面積計算公式s=a×b,不管世界上有多少個不同的長方形,都可用它計算出來。又如在“有余數的除法”教學中,最后出現一道思考題:“六一”聯歡會上,小明按照3個紅氣球、2個黃氣球、1個藍氣球的順序把氣球串起來裝飾教室。你能知道第24個氣球是什么顏色的嗎?解決這個問題,學生可以有多種方法。如,用書寫簡便的字母a、b、c分別表示紅、黃、藍氣球,則按照題意可以轉化成如下符號形式:aaabbc aaabbc aaabbc……從而可以直觀地找出氣球的排列規律,并推出第24個氣球是藍色的。
上例所分析的這些都是符號思想的具體體現,它們將所有的數據實例集為一體,把復雜的語言文字敘述用簡潔明了的字母公式表示出來,便于記憶,便于運用,正如華羅庚所說的“數學的特點是抽象,正因為如此,用符號表示就更具有廣泛的應用性與優越性”。這種用符號來體現的數學語言是世界性語言,是一個人數學素養的綜合反映。
把客觀存在的事物和現象及它們相互之間的關系抽象概括為數學符號和公式,有一個從具體到表象再抽象符號化的過程,小學生在數學學習中,從接受到運用會遇到較多的困難,需要教師在平時地教學中,從介紹字母使用的歷史入手,循循善誘,加強培養和訓練。
二、類比思想
數學上的類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想,它能夠解決一些表面上看似復雜困難的問題。就遷移過程來分,有些類比十分明顯、直接、比較簡單,如由加法交換律a+b=b+a的學習遷移到乘法分配律a×b=b×a的學習;而有些類比需在建立抽象分析的基礎上才能實現,比較復雜。
例如有這么一道數學奧林匹克競賽題:某科學考察組進行科學考察,要越過一座山。上午8時上山,每小時行3千米,到達山頂時休息1小時。下山時,每小時行5千米,下午2時到達山底。全程共行了19千米。上山和下山的路程各是多少千米?分析:此題表面上看似一道行程問題,但實質上只不過是一道典型的“雞兔同籠”問題的變化題型。其特征是:
。1)已知兩種事物的單值:上山速度為3千米;下山速度為5千米。
(2)已知這兩種不同事物的總個數:除去休息1小時的5小時;全程19千米。
(3)要求的是這兩種不同事物的個數:上山和下山的時間各是多少?可見此題的解答方法與"雞兔同籠"問題的解答方法完全相同。假設5小時都是上山時間,則共走路程為3×5=15(千米),比實際走的19千米少了19-15=4(千米),原因是由于把下山時間也當作了上山時間,則下山時間為4÷(5-3)=2(小時)。從而可以推出下山路程是5×2=10(千米),上山路程是19-10=9(千米)。當然我們也可以假設5小時都是下山時間來類推求解。數學中所有公式定理的運用就是類比思想的直接反映。
目前,小學數學教材中類比思想的內容很多,雜志上發表得較多的某些定理,問題的延伸,推論,拓廣也是類比思想的反映,這就要求教師去發掘去實施,如長方形的面積公式為長×寬=a×b,通過類比,三角形的面積公式也可以理解為長(底)×寬(高)÷2=a×b(h)÷2。類似的,圓柱體體積公式為底面積×高,那么錐體的體積可以理解為底面積×高÷。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟得自然和簡潔,從而可以激發起學生的創造力,正如數學家波利亞所說:"我們應該討論一般化和特殊化和類比的這些過程本身,它們是獲得發現的偉大源泉。"
三、分類思想
數學中每一個概念都有其特有的本質特征,它又是按照一定的規律擴展變化的,它們之間都存在著質變到量變的關系。要正確的認識這些概念,就需要具體的概念依據具體的標準具體分析,這就是數學的分類思想,是指按某種標準,將研究地數學對象分成若干部分進行分析研究。
一般我們分類時要求滿足互斥,無遺漏、最簡便的原則。如整數以能否被2整除為例,可分為奇數和偶數;若以自然數的約數個數來分類,則可分為質數、合數和1。幾何圖形中的分類更常見,如學習"角的分類"時,涉及到許多概念,而這些概念之間的關系滲透著量變到質變的規律。其中幾種角是按照度數的大小,從量變到質變來分類的,由此推理到在三角形中以最大一個角大于、等于和小于90°為分類標準,可分為鈍角三角形、直角三角形和銳角三角形。而三角形以邊的長短關系為分類標準,又可分為不等邊三角形和等邊三角形,等邊三角形又可分為正三角形和等腰三角形。不同的分類標準會有不同的分類結果,從而產生新的數學概念和數學知識的結構。 由于分類討論,一則在學習數學的過程中,學生潛移默化地受到了辨證唯物主義思想的啟蒙教育;又一則對學生能力有明顯的區別功能,再加上現實世界需要分類研究的普遍性,作為一種數學思想必然會引起人們的重視。
例如在教學多位數讀寫法后,設計了這樣一道開放題:下面五張卡片上分別寫有數字0、0、1、2、3,可以利用它們組成許多不同的五位數,求所有五位數的平均數。分析:以最高位上的數字為標準,把所有能組成的五位數分成三類,再依從小到大的順序列表如下。
。1)10023(2)20013(3)30012
100322003130021
102032010330102
102302013030120
103022030130201
103202031030210
120032100331002
120302103031020
123002130031200
130022300132001
130202301032010
132002310032100
這36個數的平均數,萬位上的數字是2,可由(1+2+3)÷3=2確定,其他數位上的數字都是1,可由(1+2+3)×6÷36=1確定。平均數是21111。
【漫談小學數學思想及其在教學中的滲透的論文】相關文章:
談小學數學思想及其在教學中的滲透11-18
數形結合的思想在初中數學教學中的滲透03-01
淺談初中數學思想方法在教學中的滲透05-26
論文《應用題數學要滲透數學思想》12-09
高中數學教學中數學文化的滲透論文11-14
如何在數學教學中合理滲透環境教育論文05-10
如何在小學音樂教學中滲透德育論文05-13
高中化學教學如何滲透學科思想論文04-24
數學精神和數學思想在數學教學中的應用論文12-10